
International Journal of Computer Trends and Technology Volume 73 Issue 1, 44-50, January 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I1P105 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Mastering Big Data Formats: ORC, Parquet, Avro,

Iceberg, and the Strategy of Selection

Srinivasa Rao Nelluri1, Flavia Ann Albert Saldanha2

1Independent Researcher, Charlotte, NC, USA.
2Independent Researcher, Cincinnati, OH, USA.

1Corresponding Author : srinivasa.r.nelluri@gmail.com

Received: 19 November 2024 Revised: 26 December 2024 Accepted: 14 January 2025 Published: 30 January 2025

Abstract - In today’s times, when data volumes are massive, and the speed of data is continuous, managing and optimizing

such extremely large and complex datasets can be a huge ordeal for organizations. Optimizing storage costs and maintaining

performance and efficiency becomes key, especially when dealing with Big Data datasets. When it comes to Big Data, it

becomes extremely important for data teams to have the right data format and framework strategy from the get-go to be able to

design and develop robust, efficient and sustainable processes around this data. A poor choice with data processing file

formats could potentially hurt operational and/or analytical consumption, thereby leading to a low return on investment of this

data. This paper explores the characteristics, advantages, and limitations of several prominent file formats in big data

ecosystems: ORC, Parquet, Avro, Iceberg, and others. Each format is evaluated based on key criteria, including storage

efficiency, query performance, schema evolution, and compatibility across platforms and analytical engines. By analyzing

these formats in practical scenarios, this paper provides a decision matrix to guide data engineers, architects, and analysts in

selecting the most suitable format based on their unique workload and infrastructure requirements. This comparative analysis

ultimately serves as a strategic resource for organizations to make informed, efficient, and scalable choices in their big data

environments.

Keywords - Apache Kafka, Apache Hadoop Distributed File System (HDFS), Apache Flink, Delta Lake, Snowflake.

1. Introduction
Big data is one of the most influential technologies of

the modern era. However, in order to support the maturity of

big data systems, the development and sustenance of

heterogeneous environments are required. In today’s data-

driven world, the data comes in large volumes and diverse

formats from several different channels, such as customer

interactions, IoT devices, social media, etc., which has

necessitated highly efficient storage and processing solutions

within big data ecosystems. As organizations seek to

leverage vast datasets for competitive advantage, they must

consider how to store, query, and manage data at scale. The

choice of file format [1] plays a central role in these efforts,

impacting factors such as data storage efficiency, query

performance, compatibility with analytics platforms, and

scalability across large datasets. Inadequate or suboptimal

file format selection can lead to increased storage costs,

slower processing times, and difficulty managing evolving

data structures. While JSON and CSV files are still common

for storing data, they were never designed for the massive

scale of big data and tend to eat up resources unnecessarily

(for example, JSON files with nested data can be very CPU-

intensive). They are in text format and, therefore, human-

readable. However, they lack the efficiencies offered by

binary options. So, as data has grown, file formats have

evolved. File format impacts speed and performance and can

be a key factor in determining whether you must wait an

hour for an answer – or milliseconds. Several file formats

have been developed to meet different demands in big data

processing. Columnar formats like Optimized Row

Columnar (ORC) and Parquet provide high compression and

fast analytical processing, making them popular choices for

data warehousing and business intelligence applications.

Avro, a row-based format, offers efficient data serialization

and schema evolution capabilities, which makes it ideal for

streaming data and real-time pipelines. Recently, newer table

formats like Iceberg have emerged to address the needs of

data lakes, adding support for features like partition

evolution and ACID transactions, which improve data

management and query consistency on cloud-based

platforms. This paper presents how to choose the right file

format for the respective use case. Also, comparative

analysis of ORC, Parquet, Avro, Iceberg, and other

prominent file formats, focusing on their performance

characteristics, use case suitability, and flexibility within

various big data architectures. The analysis also includes a

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1srinivasa.r.nelluri@gmail.com%20;%202krishna.m.poluri6@gmail.com
mailto:srinivasa.r.nelluri@gmail.com

Srinivasa Rao Nelluri & Flavia Ann Albert Saldanha / IJCTT, 73(1), 44-50, 2025

45

decision matrix summarizing optimal scenarios for each

format, helping organizations make informed choices that

enhance both performance and cost-effectiveness in their big

data solutions. This introduction to file formats highlights the

critical role of format selection in building scalable, efficient,

and future-proof data pipelines and storage solutions in the

big data landscape.

2. Background and Context
2.1. Row-Based Formats

Row-based format storage organizes data by rows. Each

row stores a complete record, and each record includes all

the fields (or columns) of that record. Row-based storage is

optimized for transaction-oriented operations where you

often need to access and modify entire records, such as

inserting new customer details or updating an order. There

are different types of row-based big data formats, and one

such format considered for comparative analysis and review

is the Avro file format.

2.1.1. Avro File Format

Apache Avro [2] is used for compact binary format as a

data serialization standard. Typically, it is used to store

persistent data related to communication protocols and

HDFS. One of the major advantages of using Apache Avro is

high ingestion performance, which is attributed to fast and

lightweight deserialization and serialization. It is important

to mention that Avro does not have an internal index.

However, the directory-based partitioning technique

available in HDFS can be used for facilitating random access

of data. Data compression algorithms supported by Apache

Avro.

2.2. Column-Based Formats

Column-based formats organize data by columns. Each

column is stored separately, allowing the system to read or

write specific columns independently. This format is

common in data warehouses like Google Big Query and

Amazon Redshift. Column-based storage is optimized for

read-heavy operations and analytical queries, where you

typically need to scan and aggregate data across many rows

but only a few columns. Columns with similar data types can

be highly compressed, reducing storage costs and improving

read performance. Aggregations and calculations are faster

since only the required columns are read, and the data is

already organized in a columnar format. Apache ORC and

Apache Parquet are the most popular and widely used file

formats for Big Data analytics, and they share many common

concepts in their internal design and structure. In this section,

we will present the main aspects of columnar file formats in

general and their purpose in optimizing query execution:

2.2.1. Optimized Row Columnar (ORC) File Format

Apache Optimized Record Columnar (ORC) is a self-

describing (includes metadata), a type-aware columnar file

format designed initially for Hadoop workloads but is now

used as a general-purpose storage format. It is optimized for

large streaming reads and has many advantages over its

predecessor, the ORC file format [3]. The metadata in ORC

is stored at the end of the file (after the file footer) using

Protocol Buffers, providing the ability to add new fields to

the table schema without breaking readers.

2.2.2. Parquet File Format

Apache Parquet is an open-source columnar storage

format using complex nested data structures. It is a general-

purpose storage format that can be used or integrated with

any data processing framework or engine. Parquet supports

efficient compression [3] and encoding schemas on a per-

column level. At the end of the file, metadata describing the

file structure are stored. File metadata contains references to

all of the column chunk metadata start locations to easily

access them. Furthermore, it allows us to immediately filter

out columns not needed by the query.

2.3. Tabular-Based Formats

A tabular-based format in big data refers to a structured

way of storing large datasets where information is organized

into rows and columns. Each row represents a single record,

and each column represents a specific attribute or feature of

that record. The structure makes it simple to interpret and

access data. With well-defined columns, data analysis tools

can quickly filter and retrieve specific information. Most data

analysis platforms and tools can readily handle tabular data.

A very popular type in this category of formats is Apache

Iceberg. It addresses these challenges by providing a robust

and reliable table format that supports rollbacks and restores

previous states of your data. This ensures data integrity and

consistency, making data management more efficient and

less error-prone.

2.3.1. Iceberg File Format

Apache Iceberg is an open-source table format purpose-

built for addressing the limitations of traditional data lake

architectures. Designed with scalability and flexibility in

mind, Iceberg provides a robust framework for managing

datasets in modern data lakes. Its features, such as ACID

transactions, schema evolution, and data versioning, have

made it a game-changer for organizations seeking to

optimize their analytical workloads. Unlike earlier table

formats like Apache Hive or Apache Hudi, Iceberg

prioritizes performance and consistency, ensuring that

analytical queries yield accurate and reliable results, even at

scale.

3. Materials and Methods
 This study employs a comparative methodology to

evaluate and analyze several big data file formats,

specifically ORC, Parquet, Avro, and Iceberg. The analysis is

based on technical documentation, experimental testing

within a controlled environment, and real-world use case

studies.

Srinivasa Rao Nelluri & Flavia Ann Albert Saldanha / IJCTT, 73(1), 44-50, 2025

46

Fig. 1 Big data file format types

Each format is assessed based on predefined criteria,

including storage efficiency, query performance, schema

evolution capability, partitioning support, and compatibility

with popular big data tools and platforms. The testing

framework and methods are described below:

3.1. Data and Environment Setup

Data: A set of diverse datasets was selected to represent

various real-world scenarios. These include structured, semi-

structured, and unstructured data types, which simulate

different data volumes and schema complexities typical in

big data environments.

Environment: Tests were conducted using a distributed

processing environment built on Apache Spark, Hive, and

Hadoop clusters to ensure compatibility and performance

under industry-standard conditions. For streaming and

serialization tests, Apache Kafka was also integrated.

Infrastructure: All tests were run on cloud-based

infrastructure using virtual machines configured with similar

compute and storage specifications to maintain consistency

across evaluations.

3.2. File Format Criteria

 Each file format was evaluated based on the following

key criteria:

Storage Efficiency and Compression: Compression ratio

tests were conducted by converting the datasets into ORC,

Parquet, Avro, and Iceberg formats and then measuring the

storage footprint. Compression rates were calculated as a

percentage reduction in storage size relative to the original

data.

Query Performance: Performance was tested using

common analytical queries (e.g., aggregation, filtering,

sorting) to simulate real-world analytics workloads. The tests

included:

Read/Write Speed: Measured by querying data [4] stored

in each format with Spark SQL and Hive, assessing the time

taken to perform both simple and complex queries.

Scalability: Tests were scaled across increasing data

volumes to observe query performance under large dataset

conditions.

Schema Evolution: Each format’s ability to handle

schema changes [5], such as adding or modifying columns,

was evaluated. This included assessing how each format

maintains compatibility with applications after schema

modifications.

Partitioning and Data Pruning: Partitioning capabilities

were tested by applying various partitioning strategies (e.g.,

based on date and region) and measuring query response

time improvements. This helped identify formats that support

efficient data pruning, which can significantly impact query

performance.

Platform Compatibility: Compatibility was assessed by

integrating each file format with big data processing tools

(e.g., Spark, Hive, Flink, Kafka) and cloud storage services

(e.g., AWS S3, Google Cloud Storage, Azure Data Lake).

Compatibility metrics included ease of integration and

support for features like ACID transactions and partition

evolution.

3.3. Methods

Benchmarking: For each criterion, a benchmarking

script was created using Python and Spark SQL to run

identical queries on each format and record processing times

and memory consumption. Data ingestion and transformation

Big Data File Formats

Row-based

Column-based

Table-based

Avro

ORC Parquet

Iceberg

Srinivasa Rao Nelluri & Flavia Ann Albert Saldanha / IJCTT, 73(1), 44-50, 2025

47

times were also captured to measure each format’s impact on

end-to-end pipeline performance.

Compression and Storage Analysis: Compression tests

involved [6] applying various encoding and compression

techniques (e.g., Snappy, Zlib) to measure storage footprint

and retrieval speeds across formats.

Schema Evolution Testing: Simulated schema changes

were applied to datasets [7] stored in each format to test

adaptability and backward compatibility. Avro and Iceberg,

known for strong schema evolution support, were further

tested in scenarios with frequently changing data structures.

Performance Metrics Collection: Performance data,

including [8] CPU, memory usage, and I/O throughput, were

collected during each test using monitoring tools. This data

was analyzed to assess the resource efficiency of each file

format under different workloads.

3.4. Data Analysis

The collected data was aggregated and analyzed to

provide quantitative comparisons across formats. Average

values for key metrics, such as query performance and

storage efficiency, were calculated and presented as

benchmark figures. Statistical analysis [9] was used to

evaluate the significance of performance differences among

the file formats under varying data volumes and query types.

Results were visualized in bar charts and line graphs to

highlight comparative performance and the trade-offs

between formats.

3.5. Decision Matrix Development

Based on the results, a decision matrix was developed to

summarize the optimal use cases for each file format. This

matrix factors in data types, query patterns, workload

requirements, and compatibility needs. The matrix [10]

serves as a practical guide for data engineers and architects,

helping them to select the most suitable file format for

specific big data environments.

4. Results and Discussion
The comparative evaluation of ORC, Parquet, Avro, and

Iceberg formats revealed notable differences in performance,

storage efficiency, schema evolution capabilities, and

compatibility with big data tools. These findings are

presented in relation to each evaluation criterion and

discussed with respect to typical use cases, highlighting

where each format excels and where trade-offs exist.

4.1. Storage Efficiency and Compression

Results: ORC and Parquet, both columnar formats,

demonstrated the highest compression ratios, reducing data

storage by up to 70-80% on average for structured datasets.

Avro, a row-based format, had a lower compression rate,

averaging around 40-50%, while Iceberg’s compression was

similar to Parquet when used with columnar storage.

Discussion: The high compression achieved by ORC and

Parquet makes them ideal for data warehousing, where

storage efficiency and read performance are crucial [12].

Avro’s lower compression is balanced by its lightweight

storage and high write performance, making it more suitable

for streaming and real-time processing. Iceberg, while

capable of comparable compression, is primarily used for

managing data lakes [13], where data versioning and

complex partitioning provide additional value.

4.2. Query Performance

Results: Parquet and ORC significantly outperformed

Avro in read-heavy analytical queries, particularly when

handling aggregations and filtering on large datasets. Parquet

showed a slight edge over ORC in Spark and Hive

environments, with query times averaging 10-15% faster in

complex analytical scenarios. Iceberg exhibited solid

performance in scenarios that involved partitioning and time-

travel queries, leveraging its metadata handling to improve

query times.

Discussion: The columnar design of ORC and Parquet

allows them to optimize for analytical workloads, where only

relevant columns are accessed, reducing I/O overhead.

Parquet’s broad compatibility with tools like AWS Athena

and Google BigQuery [14, 15] makes it particularly versatile

for cross-platform analytics. Avro, with its row-based

structure, is less efficient for these operations but ideal for

fast sequential reads in streaming and ETL pipelines. Iceberg

adds flexibility with its ability to handle complex

partitioning, though its query performance depends on the

underlying file format (e.g., Parquet or ORC).

4.3. Schema Evolution

 Results: Avro and Iceberg exhibited the strongest

schema evolution capabilities, handling additions and

modifications to the schema without requiring data rewriting.

Parquet and ORC offered limited schema evolution, mainly

supporting the addition of new columns but not

modifications or deletions.

Discussion: Avro’s robust schema evolution makes it a

preferred choice for Kafka-based streaming [16] and

environments where schema changes are frequent. Iceberg

further enhances schema evolution by supporting not only

schema modifications but also partition evolution, which

allows data engineers to adapt partitioning schemes as

business needs evolve. This makes Iceberg particularly

Srinivasa Rao Nelluri & Flavia Ann Albert Saldanha / IJCTT, 73(1), 44-50, 2025

48

valuable in dynamic, large-scale data lakes where schema

and partitioning changes are common. The limited schema

evolution capabilities in ORC and Parquet suit environments

with stable schemas, such as data warehousing.

4.4. Partitioning and Data Pruning

Results: Iceberg’s support for partition evolution and

efficient data pruning made it superior in managing large,

partitioned datasets in data lakes. Parquet also showed

effective data pruning with predicate pushdown, especially

when queries focused on specific partitions.

Discussion: Partitioning support is a critical factor in

improving query performance on large datasets. Iceberg’s

advanced partition handling allows for more complex data

pruning, which is especially beneficial in cloud data lakes

where scalability is essential. Parquet also performs well

with partitioned data, especially in environments where

predicate filtering is common. ORC supports partitioning

effectively within Hadoop-based ecosystems but lacks the

partition flexibility seen in Iceberg. Avro does not support

partitioning natively, limiting its use to scenarios that require

efficient, partition-based data access.

4.5. Platform Compatibility

Results: Parquet proved to be the most widely

compatible format, with support across Spark, Hive, AWS

Athena, Google BigQuery, and other big data tools. [17]

ORC is highly optimized for Hadoop ecosystems but has

limited support in non-Hadoop tools. Avro is well-suited for

streaming platforms like Kafka but has fewer integrations

with analytics tools. Iceberg, as a table format rather than a

file format, works with multiple engines (Spark, Flink,

Trino) and supports multiple underlying formats.

Discussion: Parquet’s compatibility across cloud

platforms and analytics tools makes it highly versatile for

multi-platform architectures, supporting data interoperability

in diverse big data environments. ORC’s compatibility is

narrower, making it ideal for Hadoop-based infrastructures

but less suited for cloud-native systems. Avro’s strength lies

in streaming applications, as it is designed for efficient

serialization and is widely used in Kafka pipelines [18].

Iceberg’s flexibility in data lakes allows organizations to

standardize on a single format across different processing

engines, making it a future-proof choice for organizations

moving towards cloud-native and multi-engine analytics

[19].

4.6. Summary of Key Findings

The results suggest that no single file format is optimal

for all scenarios; instead, each format has distinct strengths

that make it suitable for specific big data needs:

● ORC is optimal for Hadoop-based data warehousing and

ETL processes requiring high compression and

analytical performance.

● Parquet is versatile and suitable for cross-platform data

lakes, especially in cloud-native analytics environments.

● Avro excels in real-time and streaming applications due

to its schema evolution support and efficient row-based

storage.

● Iceberg is designed for large-scale data lake

management, supporting complex partitioning, time

travel, and schema evolution.

5. Conclusion
 This comparative analysis demonstrates that the choice

of file format depends on the specific requirements of the big

data application. Organizations should consider factors such

as data processing patterns, platform compatibility, and long-

term data management needs when selecting a format. As

data lakes and cloud-native architectures evolve, newer

formats like Iceberg that support rich metadata and flexible

partitioning may become increasingly important. The

decision matrix developed in this study provides a practical

guide for data engineers, architects, and analysts to select the

right file format for their unique workloads, ensuring

efficiency, scalability, and cost-effectiveness in big data

processing.

Fig. 2 Compression ratio (storage efficiency)

Fig. 3 Read-write speed compare analysis

Srinivasa Rao Nelluri & Flavia Ann Albert Saldanha / IJCTT, 73(1), 44-50, 2025

49

Table 1. Decision matrix for big data file compare study

Criteria ORC Parquet Avro Iceberg

Storage

Efficiency &

Compression

High compression (70-

80%) for structured

datasets

High compression (70-

80%) for structured

datasets

Moderate compression

(40-50%)

Comparable to Parquet

with columnar storage

Best Use Case
Data warehousing, ETL

processes

Data warehousing,

cross-platform

analytics

Real-time streaming,

event logging

Data lakes, versioning,

and partitioning

Query

Performance

Excellent for analytical

queries, but slower than

Parquet in Spark/Hive

Best for cross-platform

analytics, faster in

Spark/Hive

Less efficient for

analytical queries,

optimized for sequential

reads

Solid performance with

partitioning and time-

travel queries

Best Use Case
Analytical workloads,

large datasets

Cross-platform

analytics, cloud-native

environments

Streaming, real-time

data processing

Complex partitioning and

time-travel queries in

data lakes

Schema

Evolution

Limited to adding

columns

Limited to adding

columns

Excellent schema

evolution (additions,

modifications)

Strong schema and

partition evolution, ideal

for dynamic

environments

Best Use Case
Stable schemas, data

warehousing

Stable schemas, cloud-

native analytics

Real-time data streams,

Kafka-based systems

Dynamic data lakes,

evolving schemas and

partitions

Partitioning &

Data Pruning

Effective within Hadoop

ecosystems, limited

flexibility

Effective with

predicate pushdown,

supports partition

pruning

No native support for

partitioning

Advanced partition

evolution and data

pruning, ideal for large-

scale data lakes

Best Use Case

Hadoop-based

ecosystems with

partitioned data

Partitioned data in

cloud-native

environments

Not suitable for

partitioning scenarios

Large-scale data lakes

requiring advanced

partitioning and pruning

Platform

Compatibility

Optimized for Hadoop-

based systems

Highly compatible

across cloud platforms

and big data tools

Best for streaming

platforms (e.g., Kafka)

Supports multiple

engines (Spark, Flink,

Trino) and multiple

underlying formats

Best Use Case Hadoop ecosystems

Multi-platform big

data analytics, cloud-

native environments

Streaming and real-time

data pipelines

Multi-engine data lakes,

cloud-native

environments

Overall

Strength

Ideal for Hadoop-based

data warehousing

Versatile, cloud-

native, cross-platform

analytics

Best for real-time data

streaming and schema

evolution

Best for large-scale data

lake management,

schema evolution, and

partitioning

References
[1] Seref Sagiroglu, and Duygu Sinanc, “Big Data: A Review,” 2013 International Conference on Collaboration Technologies and Systems,

San Diego, CA, USA, pp. 42-47, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[2] Samiya Khan, and Mansaf Alam, “File Formats for Big Data Storage Systems,” International Journal of Engineering and Advanced

Technology, vol. 9, no. 1, pp. 1-7, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[3] Todor Ivanov, and Matteo Pergolesi, “The Impact of Columnar File Formats on SQL‐on‐Hadoop Engine Performance: A Study on ORC

and Parquet,” Concurrency and Computation: Practice and Experience, vol. 32, no. 5, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[4] Vishal Naidu, “Performance Enhancement Using Appropriate File Formats in Big Data Hadoop Ecosystem,” International Research

Journal of Engineering and Technology, vol. 9, no. 1, pp. 1247-1251, 2022. [Google Scholar] [Publisher Link]

[5] Ibrar Yaqoob et al., “Big Data: From Beginning to Future,” International Journal of Information Management, vol. 36, no. 6, pp. 1231-

1247, 2017. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/CTS.2013.6567202
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=S+Sagiroglu%2C+D+Sinanc+-+Big+data%3A+A+review&btnG=
https://ieeexplore.ieee.org/abstract/document/6567202
https://doi.org/10.35940/ijeat.A1196.109119
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=File+Formats+for+Big+Data+Storage+Systems&btnG=
https://www.ijeat.org/portfolio-item/a1196109119/
https://doi.org/10.1002/cpe.5523
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+impact+of+columnar+file+formats+on+SQL%E2%80%90on%E2%80%90hadoop+engine+performance%3A+A+study+on+ORC+and+Parquet&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.5523
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.5523
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+Enhancement+using+Appropriate+File+Formats+in+Big+Data&btnG=
https://www.irjet.net/archives/V9/i1/IRJET-V9I1221.pdf
https://doi.org/10.1016/j.ijinfomgt.2016.07.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=I+Yaqoob%2C+Big+data%3A+From+beginning+to+future&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0268401216304753

Srinivasa Rao Nelluri & Flavia Ann Albert Saldanha / IJCTT, 73(1), 44-50, 2025

50

[6] Amanpreet Kaur Sandhu, “Big Data with Cloud Computing: Discussions and Challenges,” Big Data Mining and Analytics, vol. 5, no. 1,

pp. 32-40, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[7] Akram Elomari, Larbi Hassouni, and Abderrahim Maizate, “The Main Characteristics of Five Distributed File Systems Required for Big

Data: A Comparative Study,” Advances in Science, Technology and Engineering Systems Journal, vol. 2, no. 4, pp. 78-91, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Spyros Blanas et al., “Parallel Data Analysis Directly on Scientific File Formats,” Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data, Snowbird Utah USA, pp. 385-396, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] Software: Landmark Solution, Halliburton. [Online]. Available: https://www.halliburton.com/en/software

[10] Eileen McNulty, Understanding Big Data: The Seven Vs, 2014. [Online]. Available: https://dataconomy.com/2014/05/22/seven-vs-big-

data/

[11] Thomas H. Davenport, and Jill Dyche, “Big Data in Big Companies,” International Institute for Analytics, 2013. [Google Scholar]

[12] James Manyika et al., “Big Data: The Next Frontier for Innovation, Competition, and Productivity,” Mickensy Global Institute,

2011.[Google Scholar] [Publisher Link]

[13] Avita Katal, Mohammad Wazid, and R.H. Goudar, “Big Data: Issues, Challenges, Tools and Good Practices,” 2013 Sixth International

Conference on Contemporary Computing, Noida, India, pp. 404-409, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[14] Xin Luna Dong, and Divesh Srivastava, “Big Data Integration,” 2013 IEEE 29th International Conference on Data Engineering,

Brisbane, QLD, Australia, pp. 1245-1248, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[15] Firat Tekiner, and John A. Keane, “Big Data Framework,” 2013 IEEE International Conference on Systems, Man, and Cybernetics,

Manchester, UK, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[16] Chun-Wei Tsai et al., “Big Data Analytics: A Survey,” Journal of Big Data, vol. 2, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[17] Uthayasankar Sivarajah et al., “Critical Analysis of Big Data Challenges and Analytical Methods,” Journal of Business Research, vol.

70, pp. 263-286, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[18] Xiaolong Jin et al., “Significance and Challenges of Big Data Research,” Big Data Research, vol. 2, no. 2, pp. 59-64, 2015. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.26599/BDMA.2021.9020016
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AK+Sandhu+-+Big+data+with+cloud+computing%3A+Discussions+and+challenges&btnG=
https://ieeexplore.ieee.org/abstract/document/9663258
http://dx.doi.org/10.25046/aj020411
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+main+characteristics+of+five+distributed+file+systems+required+for+big+data%3A+A+comparative+study&btnG=
https://www.astesj.com/v02/i04/p11/
https://doi.org/10.1145/2588555.2612185
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Parallel+data+analysis+directly+on+scientific+file+formats&btnG=
https://dl.acm.org/doi/abs/10.1145/2588555.2612185
https://www.halliburton.com/en/software
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=TH+Davenport%2C+J+Dych%C3%A9+-++Big+Data+in+Big+Companies&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data%3A+The+next+frontier+for+innovation%2C+competition%2C+and+productivity&btnG=
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
https://doi.org/10.1109/IC3.2013.6612229
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data%3A+Issues%2C+challenges%2C+tools+and+good+practices&btnG=
https://ieeexplore.ieee.org/abstract/document/6612229
https://doi.org/10.1109/icde.2013.6544914
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data+integration&btnG=
https://ieeexplore.ieee.org/abstract/document/6544914
https://doi.org/10.1109/SMC.2013.258
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+Data+Framework&btnG=
https://ieeexplore.ieee.org/abstract/document/6722011
https://doi.org/10.1186/s40537-015-0030-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data+analytics%3A+a+survey&btnG=
https://link.springer.com/article/10.1186/s40537-015-0030-3
https://doi.org/10.1016/j.jbusres.2016.08.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Critical+analysis+of+Big+Data+challenges+and+analytical+methods&btnG=
https://www.sciencedirect.com/science/article/pii/S014829631630488X
https://doi.org/10.1016/j.bdr.2015.01.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Significance+and+Challenges+of+Big+Data+Research&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2214579615000076

