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Abstract - In today’s times, when data volumes are massive, and the speed of data is continuous, managing and optimizing 

such extremely large and complex datasets can be a huge ordeal for organizations. Optimizing storage costs and maintaining 

performance and efficiency becomes key, especially when dealing with Big Data datasets. When it comes to Big Data, it 

becomes extremely important for data teams to have the right data format and framework strategy from the get-go to be able to 

design and develop robust, efficient and sustainable processes around this data. A poor choice with data processing file 

formats could potentially hurt operational and/or analytical consumption, thereby leading to a low return on investment of this 

data. This paper explores the characteristics, advantages, and limitations of several prominent file formats in big data 

ecosystems: ORC, Parquet, Avro, Iceberg, and others. Each format is evaluated based on key criteria, including storage 

efficiency, query performance, schema evolution, and compatibility across platforms and analytical engines. By analyzing 

these formats in practical scenarios, this paper provides a decision matrix to guide data engineers, architects, and analysts in 

selecting the most suitable format based on their unique workload and infrastructure requirements. This comparative analysis 

ultimately serves as a strategic resource for organizations to make informed, efficient, and scalable choices in their big data 

environments. 

Keywords - Apache Kafka, Apache Hadoop Distributed File System (HDFS), Apache Flink, Delta Lake, Snowflake. 

1. Introduction 
Big data is one of the most influential technologies of 

the modern era. However, in order to support the maturity of 

big data systems, the development and sustenance of 

heterogeneous environments are required. In today’s data-

driven world, the data comes in large volumes and diverse 

formats from several different channels, such as customer 

interactions, IoT devices, social media, etc., which has 

necessitated highly efficient storage and processing solutions 

within big data ecosystems. As organizations seek to 

leverage vast datasets for competitive advantage, they must 

consider how to store, query, and manage data at scale. The 

choice of file format [1] plays a central role in these efforts, 

impacting factors such as data storage efficiency, query 

performance, compatibility with analytics platforms, and 

scalability across large datasets. Inadequate or suboptimal 

file format selection can lead to increased storage costs, 

slower processing times, and difficulty managing evolving 

data structures. While JSON and CSV files are still common 

for storing data, they were never designed for the massive 

scale of big data and tend to eat up resources unnecessarily 

(for example, JSON files with nested data can be very CPU-

intensive). They are in text format and, therefore, human-

readable. However, they lack the efficiencies offered by 

binary options. So, as data has grown, file formats have 

evolved. File format impacts speed and performance and can 

be a key factor in determining whether you must wait an 

hour for an answer – or milliseconds. Several file formats 

have been developed to meet different demands in big data 

processing. Columnar formats like Optimized Row 

Columnar (ORC) and Parquet provide high compression and 

fast analytical processing, making them popular choices for 

data warehousing and business intelligence applications. 

Avro, a row-based format, offers efficient data serialization 

and schema evolution capabilities, which makes it ideal for 

streaming data and real-time pipelines. Recently, newer table 

formats like Iceberg have emerged to address the needs of 

data lakes, adding support for features like partition 

evolution and ACID transactions, which improve data 

management and query consistency on cloud-based 

platforms. This paper presents how to choose the right file 

format for the respective use case. Also, comparative 

analysis of ORC, Parquet, Avro, Iceberg, and other 

prominent file formats, focusing on their performance 

characteristics, use case suitability, and flexibility within 

various big data architectures. The analysis also includes a 
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decision matrix summarizing optimal scenarios for each 

format, helping organizations make informed choices that 

enhance both performance and cost-effectiveness in their big 

data solutions. This introduction to file formats highlights the 

critical role of format selection in building scalable, efficient, 

and future-proof data pipelines and storage solutions in the 

big data landscape.  

2. Background and Context 
2.1. Row-Based Formats  

Row-based format storage organizes data by rows. Each 

row stores a complete record, and each record includes all 

the fields (or columns) of that record. Row-based storage is 

optimized for transaction-oriented operations where you 

often need to access and modify entire records, such as 

inserting new customer details or updating an order. There 

are different types of row-based big data formats, and one 

such format considered for comparative analysis and review 

is the Avro file format.  

2.1.1. Avro File Format 

Apache Avro [2] is used for compact binary format as a 

data serialization standard. Typically, it is used to store 

persistent data related to communication protocols and 

HDFS. One of the major advantages of using Apache Avro is 

high ingestion performance, which is attributed to fast and 

lightweight deserialization and serialization. It is important 

to mention that Avro does not have an internal index. 

However, the directory-based partitioning technique 

available in HDFS can be used for facilitating random access 

of data. Data compression algorithms supported by Apache 

Avro.  

2.2. Column-Based Formats 

Column-based formats organize data by columns. Each 

column is stored separately, allowing the system to read or 

write specific columns independently. This format is 

common in data warehouses like Google Big Query and 

Amazon Redshift. Column-based storage is optimized for 

read-heavy operations and analytical queries, where you 

typically need to scan and aggregate data across many rows 

but only a few columns. Columns with similar data types can 

be highly compressed, reducing storage costs and improving 

read performance. Aggregations and calculations are faster 

since only the required columns are read, and the data is 

already organized in a columnar format. Apache ORC and 

Apache Parquet are the most popular and widely used file 

formats for Big Data analytics, and they share many common 

concepts in their internal design and structure. In this section, 

we will present the main aspects of columnar file formats in 

general and their purpose in optimizing query execution: 

2.2.1. Optimized Row Columnar (ORC) File Format 

Apache Optimized Record Columnar (ORC) is a self-

describing (includes metadata), a type-aware columnar file 

format designed initially for Hadoop workloads but is now 

used as a general-purpose storage format. It is optimized for 

large streaming reads and has many advantages over its 

predecessor, the ORC file format [3]. The metadata in ORC 

is stored at the end of the file (after the file footer) using 

Protocol Buffers, providing the ability to add new fields to 

the table schema without breaking readers. 

2.2.2. Parquet File Format 

Apache Parquet is an open-source columnar storage 

format using complex nested data structures. It is a general-

purpose storage format that can be used or integrated with 

any data processing framework or engine. Parquet supports 

efficient compression [3] and encoding schemas on a per-

column level. At the end of the file, metadata describing the 

file structure are stored. File metadata contains references to 

all of the column chunk metadata start locations to easily 

access them. Furthermore, it allows us to immediately filter 

out columns not needed by the query. 

2.3. Tabular-Based Formats 

A tabular-based format in big data refers to a structured 

way of storing large datasets where information is organized 

into rows and columns. Each row represents a single record, 

and each column represents a specific attribute or feature of 

that record. The structure makes it simple to interpret and 

access data. With well-defined columns, data analysis tools 

can quickly filter and retrieve specific information. Most data 

analysis platforms and tools can readily handle tabular data. 

A very popular type in this category of formats is Apache 

Iceberg. It addresses these challenges by providing a robust 

and reliable table format that supports rollbacks and restores 

previous states of your data. This ensures data integrity and 

consistency, making data management more efficient and 

less error-prone. 

2.3.1. Iceberg File Format 

Apache Iceberg is an open-source table format purpose-

built for addressing the limitations of traditional data lake 

architectures. Designed with scalability and flexibility in 

mind, Iceberg provides a robust framework for managing 

datasets in modern data lakes. Its features, such as ACID 

transactions, schema evolution, and data versioning, have 

made it a game-changer for organizations seeking to 

optimize their analytical workloads. Unlike earlier table 

formats like Apache Hive or Apache Hudi, Iceberg 

prioritizes performance and consistency, ensuring that 

analytical queries yield accurate and reliable results, even at 

scale. 

 

3. Materials and Methods 
     This study employs a comparative methodology to 

evaluate and analyze several big data file formats, 

specifically ORC, Parquet, Avro, and Iceberg. The analysis is 

based on technical documentation, experimental testing 

within a controlled environment, and real-world use case 

studies.  
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Fig. 1 Big data file format types 

Each format is assessed based on predefined criteria, 

including storage efficiency, query performance, schema 

evolution capability, partitioning support, and compatibility 

with popular big data tools and platforms. The testing 

framework and methods are described below: 

3.1. Data and Environment Setup 

Data: A set of diverse datasets was selected to represent 

various real-world scenarios. These include structured, semi-

structured, and unstructured data types, which simulate 

different data volumes and schema complexities typical in 

big data environments. 

Environment: Tests were conducted using a distributed 

processing environment built on Apache Spark, Hive, and 

Hadoop clusters to ensure compatibility and performance 

under industry-standard conditions. For streaming and 

serialization tests, Apache Kafka was also integrated. 

Infrastructure: All tests were run on cloud-based 

infrastructure using virtual machines configured with similar 

compute and storage specifications to maintain consistency 

across evaluations. 

3.2. File Format Criteria 

      Each file format was evaluated based on the following 

key criteria: 

Storage Efficiency and Compression: Compression ratio 

tests were conducted by converting the datasets into ORC, 

Parquet, Avro, and Iceberg formats and then measuring the 

storage footprint. Compression rates were calculated as a 

percentage reduction in storage size relative to the original 

data. 

Query Performance: Performance was tested using 

common analytical queries (e.g., aggregation, filtering, 

sorting) to simulate real-world analytics workloads. The tests 

included: 

Read/Write Speed: Measured by querying data [4] stored 

in each format with Spark SQL and Hive, assessing the time 

taken to perform both simple and complex queries. 

Scalability: Tests were scaled across increasing data 

volumes to observe query performance under large dataset 

conditions. 

Schema Evolution: Each format’s ability to handle 

schema changes [5], such as adding or modifying columns, 

was evaluated. This included assessing how each format 

maintains compatibility with applications after schema 

modifications. 

Partitioning and Data Pruning: Partitioning capabilities 

were tested by applying various partitioning strategies (e.g., 

based on date and region) and measuring query response 

time improvements. This helped identify formats that support 

efficient data pruning, which can significantly impact query 

performance. 

Platform Compatibility: Compatibility was assessed by 

integrating each file format with big data processing tools 

(e.g., Spark, Hive, Flink, Kafka) and cloud storage services 

(e.g., AWS S3, Google Cloud Storage, Azure Data Lake). 

Compatibility metrics included ease of integration and 

support for features like ACID transactions and partition 

evolution. 

3.3. Methods 

Benchmarking: For each criterion, a benchmarking 

script was created using Python and Spark SQL to run 

identical queries on each format and record processing times 

and memory consumption. Data ingestion and transformation 

Big Data File Formats 

Row-based 

Column-based 

Table-based 

Avro 

ORC Parquet 

Iceberg 
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times were also captured to measure each format’s impact on 

end-to-end pipeline performance. 

Compression and Storage Analysis: Compression tests 

involved [6] applying various encoding and compression 

techniques (e.g., Snappy, Zlib) to measure storage footprint 

and retrieval speeds across formats. 

Schema Evolution Testing: Simulated schema changes 

were applied to datasets [7] stored in each format to test 

adaptability and backward compatibility. Avro and Iceberg, 

known for strong schema evolution support, were further 

tested in scenarios with frequently changing data structures. 

Performance Metrics Collection: Performance data, 

including [8] CPU, memory usage, and I/O throughput, were 

collected during each test using monitoring tools. This data 

was analyzed to assess the resource efficiency of each file 

format under different workloads. 

3.4. Data Analysis 

The collected data was aggregated and analyzed to 

provide quantitative comparisons across formats. Average 

values for key metrics, such as query performance and 

storage efficiency, were calculated and presented as 

benchmark figures. Statistical analysis [9] was used to 

evaluate the significance of performance differences among 

the file formats under varying data volumes and query types. 

Results were visualized in bar charts and line graphs to 

highlight comparative performance and the trade-offs 

between formats. 

3.5. Decision Matrix Development 

Based on the results, a decision matrix was developed to 

summarize the optimal use cases for each file format. This 

matrix factors in data types, query patterns, workload 

requirements, and compatibility needs. The matrix [10] 

serves as a practical guide for data engineers and architects, 

helping them to select the most suitable file format for 

specific big data environments. 

4. Results and Discussion 
The comparative evaluation of ORC, Parquet, Avro, and 

Iceberg formats revealed notable differences in performance, 

storage efficiency, schema evolution capabilities, and 

compatibility with big data tools. These findings are 

presented in relation to each evaluation criterion and 

discussed with respect to typical use cases, highlighting 

where each format excels and where trade-offs exist. 

4.1. Storage Efficiency and Compression 

Results: ORC and Parquet, both columnar formats, 

demonstrated the highest compression ratios, reducing data 

storage by up to 70-80% on average for structured datasets. 

Avro, a row-based format, had a lower compression rate, 

averaging around 40-50%, while Iceberg’s compression was 

similar to Parquet when used with columnar storage. 

Discussion: The high compression achieved by ORC and 

Parquet makes them ideal for data warehousing, where 

storage efficiency and read performance are crucial [12]. 

Avro’s lower compression is balanced by its lightweight 

storage and high write performance, making it more suitable 

for streaming and real-time processing. Iceberg, while 

capable of comparable compression, is primarily used for 

managing data lakes [13], where data versioning and 

complex partitioning provide additional value. 

 

4.2. Query Performance 

Results: Parquet and ORC significantly outperformed 

Avro in read-heavy analytical queries, particularly when 

handling aggregations and filtering on large datasets. Parquet 

showed a slight edge over ORC in Spark and Hive 

environments, with query times averaging 10-15% faster in 

complex analytical scenarios. Iceberg exhibited solid 

performance in scenarios that involved partitioning and time-

travel queries, leveraging its metadata handling to improve 

query times. 

Discussion: The columnar design of ORC and Parquet 

allows them to optimize for analytical workloads, where only 

relevant columns are accessed, reducing I/O overhead. 

Parquet’s broad compatibility with tools like AWS Athena 

and Google BigQuery [14, 15] makes it particularly versatile 

for cross-platform analytics. Avro, with its row-based 

structure, is less efficient for these operations but ideal for 

fast sequential reads in streaming and ETL pipelines. Iceberg 

adds flexibility with its ability to handle complex 

partitioning, though its query performance depends on the 

underlying file format (e.g., Parquet or ORC). 

4.3. Schema Evolution 

 Results: Avro and Iceberg exhibited the strongest 

schema evolution capabilities, handling additions and 

modifications to the schema without requiring data rewriting. 

Parquet and ORC offered limited schema evolution, mainly 

supporting the addition of new columns but not 

modifications or deletions. 

Discussion: Avro’s robust schema evolution makes it a 

preferred choice for Kafka-based streaming [16] and 

environments where schema changes are frequent. Iceberg 

further enhances schema evolution by supporting not only 

schema modifications but also partition evolution, which 

allows data engineers to adapt partitioning schemes as 

business needs evolve. This makes Iceberg particularly 
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valuable in dynamic, large-scale data lakes where schema 

and partitioning changes are common. The limited schema 

evolution capabilities in ORC and Parquet suit environments 

with stable schemas, such as data warehousing. 

4.4. Partitioning and Data Pruning 

Results: Iceberg’s support for partition evolution and 

efficient data pruning made it superior in managing large, 

partitioned datasets in data lakes. Parquet also showed 

effective data pruning with predicate pushdown, especially 

when queries focused on specific partitions. 

Discussion: Partitioning support is a critical factor in 

improving query performance on large datasets. Iceberg’s 

advanced partition handling allows for more complex data 

pruning, which is especially beneficial in cloud data lakes 

where scalability is essential. Parquet also performs well 

with partitioned data, especially in environments where 

predicate filtering is common. ORC supports partitioning 

effectively within Hadoop-based ecosystems but lacks the 

partition flexibility seen in Iceberg. Avro does not support 

partitioning natively, limiting its use to scenarios that require 

efficient, partition-based data access. 

 

4.5. Platform Compatibility 

Results: Parquet proved to be the most widely 

compatible format, with support across Spark, Hive, AWS 

Athena, Google BigQuery, and other big data tools. [17] 

ORC is highly optimized for Hadoop ecosystems but has 

limited support in non-Hadoop tools. Avro is well-suited for 

streaming platforms like Kafka but has fewer integrations 

with analytics tools. Iceberg, as a table format rather than a 

file format, works with multiple engines (Spark, Flink, 

Trino) and supports multiple underlying formats. 

Discussion: Parquet’s compatibility across cloud 

platforms and analytics tools makes it highly versatile for 

multi-platform architectures, supporting data interoperability 

in diverse big data environments. ORC’s compatibility is 

narrower, making it ideal for Hadoop-based infrastructures 

but less suited for cloud-native systems. Avro’s strength lies 

in streaming applications, as it is designed for efficient 

serialization and is widely used in Kafka pipelines [18]. 

Iceberg’s flexibility in data lakes allows organizations to 

standardize on a single format across different processing 

engines, making it a future-proof choice for organizations 

moving towards cloud-native and multi-engine analytics 

[19]. 

 

4.6. Summary of Key Findings 

The results suggest that no single file format is optimal 

for all scenarios; instead, each format has distinct strengths 

that make it suitable for specific big data needs: 

● ORC is optimal for Hadoop-based data warehousing and 

ETL processes requiring high compression and 

analytical performance. 

● Parquet is versatile and suitable for cross-platform data 

lakes, especially in cloud-native analytics environments. 

● Avro excels in real-time and streaming applications due 

to its schema evolution support and efficient row-based 

storage. 

● Iceberg is designed for large-scale data lake 

management, supporting complex partitioning, time 

travel, and schema evolution. 

5. Conclusion 
 This comparative analysis demonstrates that the choice 

of file format depends on the specific requirements of the big 

data application. Organizations should consider factors such 

as data processing patterns, platform compatibility, and long-

term data management needs when selecting a format. As 

data lakes and cloud-native architectures evolve, newer 

formats like Iceberg that support rich metadata and flexible 

partitioning may become increasingly important. The 

decision matrix developed in this study provides a practical 

guide for data engineers, architects, and analysts to select the 

right file format for their unique workloads, ensuring 

efficiency, scalability, and cost-effectiveness in big data 

processing. 

 
Fig. 2 Compression ratio (storage efficiency) 

 
Fig. 3 Read-write speed compare analysis 
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Table 1. Decision matrix for big data file compare study 

Criteria ORC Parquet Avro Iceberg 

Storage 

Efficiency & 

Compression 

High compression (70-

80%) for structured 

datasets 

High compression (70-

80%) for structured 

datasets 

Moderate compression 

(40-50%) 

Comparable to Parquet 

with columnar storage 

Best Use Case 
Data warehousing, ETL 

processes 

Data warehousing, 

cross-platform 

analytics 

Real-time streaming, 

event logging 

Data lakes, versioning, 

and partitioning 

Query 

Performance 

Excellent for analytical 

queries, but slower than 

Parquet in Spark/Hive 

Best for cross-platform 

analytics, faster in 

Spark/Hive 

Less efficient for 

analytical queries, 

optimized for sequential 

reads 

Solid performance with 

partitioning and time-

travel queries 

Best Use Case 
Analytical workloads, 

large datasets 

Cross-platform 

analytics, cloud-native 

environments 

Streaming, real-time 

data processing 

Complex partitioning and 

time-travel queries in 

data lakes 

Schema 

Evolution 

Limited to adding 

columns 

Limited to adding 

columns 

Excellent schema 

evolution (additions, 

modifications) 

Strong schema and 

partition evolution, ideal 

for dynamic 

environments 

Best Use Case 
Stable schemas, data 

warehousing 

Stable schemas, cloud-

native analytics 

Real-time data streams, 

Kafka-based systems 

Dynamic data lakes, 

evolving schemas and 

partitions 

Partitioning & 

Data Pruning 

Effective within Hadoop 

ecosystems, limited 

flexibility 

Effective with 

predicate pushdown, 

supports partition 

pruning 

No native support for 

partitioning 

Advanced partition 

evolution and data 

pruning, ideal for large-

scale data lakes 

Best Use Case 

Hadoop-based 

ecosystems with 

partitioned data 

Partitioned data in 

cloud-native 

environments 

Not suitable for 

partitioning scenarios 

Large-scale data lakes 

requiring advanced 

partitioning and pruning 

Platform 

Compatibility 

Optimized for Hadoop-

based systems 

Highly compatible 

across cloud platforms 

and big data tools 

Best for streaming 

platforms (e.g., Kafka) 

Supports multiple 

engines (Spark, Flink, 

Trino) and multiple 

underlying formats 

Best Use Case Hadoop ecosystems 

Multi-platform big 

data analytics, cloud-

native environments 

Streaming and real-time 

data pipelines 

Multi-engine data lakes, 

cloud-native 

environments 

Overall 

Strength 

Ideal for Hadoop-based 

data warehousing 

Versatile, cloud-

native, cross-platform 

analytics 

Best for real-time data 

streaming and schema 

evolution 

Best for large-scale data 

lake management, 

schema evolution, and 

partitioning 
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