
International Journal of Computer Trends and Technology Volume 69 Issue 10, 39-42, October 2021

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V69I10P106 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Review Article

Virtualization Technologies: Overview,

Differences & Similarities

Omro Alawadh, Raif Abdulrahman, Fahad Alkhaldi, Khalid Alsheddi, Mohammad Buaysha,

Humoud Rashidi

Saudi Aramco, Area IT Department, Abqaiq, Saudi Arabia

Received Date: 12 September 2021

Revised Date: 14 October 2021

 Accepted Date: 27 October 2021

Abstract - Virtualization is a key technology in today’s

world. To use it effectively, one must understand how it

works and identify which type best suits their needs. This

paper defines virtualization and goes over its potential

applications. The three main types of virtualization are

also discussed in detail: OS-level virtualization,

paravirtualization, and full virtualization. Finally, the

similarities and differences among them are highlighted in

terms of security, performance, features, and OS support.

Keywords - Virtualization, Paravirtualization, Os-level,

container, Performance, Cloud-computing.

I. INTRODUCTION

It is universally agreed upon that the more time people

spend honing their skills, the more experience they gain in

improving said skills. This was the case with the software

industry, where a combination of people, hard work, and

fierce competition led to great strides in software

development and security. Virtualization, especially, has

had one of the most noteworthy advancements and

transformations since its early use. Not only has it

provided security, but it also filled an important niche that

changed our view of hardware. This paper aims to explore

the different techniques developed for virtualization: OS-

level virtualization, paravirtualization, and full

virtualization while focusing on their similarities and

differences.

II. VIRTUALIZATION

Before we delve into the different types of

virtualization technologies, let us first define virtualization

and its importance. Virtualization is a technology that

allows us to create virtual instances of computer services

and resources, both physical and logical [5]. This

technology is praised by security professionals for

isolating between virtual resources and the physical host

they reside on, making it harder for attackers that have

compromised the virtual environment from reaching the

host system. Perhaps the most significant breakthrough of

virtualization technologies is allowing multiple isolated

systems to exist on the same hardware, maximizing the

cost-efficiency of servers [10]. This has allowed many

startups and small and medium businesses to afford entry

costs into the market [1]. It is also a key concept that

drives cloud computing. Many businesses outsource their

IT services to cloud providers, which is only possible due

to virtualization. Indeed, it can be argued that without it,

our world would not be the same. Therefore, it’s important

to analyze and compare the different types of

virtualization and the solutions they offer. There are three

types of virtualization: OS-level virtualization,

paravirtualization, and full virtualization.

A. OS-Level Virtualization

Also known as container virtualization. In this type of

virtualization, multiple isolated instances are created

within a system’s kernel. These instances can be jails,

containers, virtual partitions, virtual environments, or

virtual private servers [4][6]. A system’s kernel is the

brain of the operating system that allows the interaction

between applications and hardware [7]. All virtualization

instances of this type share the same kernel as the host

system. Therefore, creating a virtual window environment

on a Linux machine won’t be possible in OS-level

virtualization. However, sharing the same kernel does

come with its inherent advantages of having a smaller

overhead, which translates to faster execution and better

performance [15].

a) Chroot & jails

Starting with jail instances, “Chroot jail” is one of the

earlier examples of OS-level virtualization being utilized

by programmers. Chroot, short for change root, is a Unix

command that allowed programmers to change their

application’s perspective of its directory, to behave as if it

were installed in the root director jailed and unable to

traverse upwards to the system directories. This affects all

the applications and processes installed in a chrooted

directory. Chroot was implemented by programmers for

security reasons and was even considered a best practice

for a long time in order to isolate attackers in the

application’s directory in the event the application was

compromised. Unfortunately, this came with its own

limitations, which required all libraries and APIs that the

application was referencing to be in the same directory

because it could not escape into the system directories to

reach them. This meant programmers had to ensure all

application dependencies were also copied under the

chroot directory, which wasn’t time or space-efficient.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Omro Alawadh et al. / IJCTT, 69(10), 39-42, 2021

40

Freebsd jail is another type of jail instance

specifically for the Unix FreeBSD operating system. It

implements a partitioning approach to achieve isolation.

Each partition is referred to as a jail and is considered its

own independent virtual environment, sharing the host

system’s kernel, as is the case with all OS-level

virtualization instances[8]. Freebsd is an evolution of

“chroot” that addresses its limitations by virtualizing the

file system space. There are two types of Freebsd jails:

“Complete” jails that virtualize entire Freebsd operating

systems and “service” jails, which are used to isolate an

application or a service [16].

b) Virtual private servers (v-server)

Abbreviated as Linux V-server, Itis a Linux software

for creating multiple virtual private servers running

concurrently on the same physical hardware. Each of the

virtual private servers is an isolated Linux Operating

System that can provide the full functionality of a Linux

server. Linux V-server utilizes chroot, segmented routing,

and other tools to achieve its isolation[17]

c) Containers LXC& Docker

Linux containers, abbreviated LXC, are container

instances that allow users to create virtual environments

with all the required dependencies to run any number of

applications or services. Unlike chroot, LXC doesn’t

suffer from the same limitation where an application’s

libraries and APIs have to be copied to its directory.

Containers typically use Cgroups& Namespaces to

achieve their isolation. Cgroups allow managing &

controlling of the system resources for a group of

processes, mainly CPU memory utilization. The main

benefit of Cgroups is to prevent a single process from

using up all the system resources. On the other hand,

namespaces obtain the required resources for an

application to run and deliver them to the application. This

allows isolation of the application’s process from system

resources or other processes [14].

Docker is a very popular type of container. It is an

evolution of LXC that started out by using it but has long

since moved away from it. Docker focuses on single

application containment, unlike LXC, which can be used

to run any number of applications[18]. This makes docker

more lightweight. As a result, further boosts its portability

[4].

B. Paravirtualization

As a step up from OS-level virtualization,

paravirtualization allows for the virtualization of guest

operating systems that don’t necessarily share the same

OS as the host machine. This is done by using a

virtualization layer called a virtual machine manager

(VMM) or hypervisor. In other words, the guest OS

doesn’t have to share the same kernel as the host.

Hypervisors come in two types. Type 1 hypervisors, also

called bare-metal hypervisors, run directly on top of the

hardware, separating the OS from the hardware layer.

Therefore, all the guest OSs interact directly with the

hypervisor & the hardware rather than the host OS. On the

other hand, a type 2 hypervisor, also known as a hosted

hypervisor, runs within the host OS just like any normal

application [11].

”Para” has the Greek meaning of ”with” or

”alongside”. This appropriately describes

paravirtualization, as it is the type of virtualization where

we virtualize a guest OS alongside the host [12]. This is

achieved by running a hypervisor, VMM, or virtualization

layer under the OS in ”Ring -1” [6]. The guest OS also

knows it is being virtualized, as certain changes must be

made to it to allow it to communicate effectively with the

hypervisor [13]. Instead of directly executing privileged

instructions, the guest OS coordinates the process with the

hypervisor. In other words, system performance is

improved by replacing privileged instructions that are hard

to virtualize with easier ones that the hypervisor

understands [10].

Paravirtualization’s biggest flaw, however, is the need

to modify the guest OS. This means closed source

operating systems like Windows are not supported [6].

C. Full Virtualization

Like paravirtualization, full virtualization requires a

hypervisor to manage the guest OSs[9]. Unlike it,

however, the guest OS does not know it is being

virtualized. This is due to the fact that the hypervisor

presents the guest OS with a virtual interface that looks

and acts like a normal physical computer. This means full

virtualization supports unchanged operating systems,

including Windows. Indeed, that very reason might be

why it is the most popular form of virtualization used

today [2].

However, to achieve that, there are high-performance

penalties compared to OS-level virtualization or

paravirtualization. The most basic form of full

virtualization is hardware emulation. In this case, the

hypervisor listens for instructions and then traps and

executes any privileged ones. This process introduces

latency and additional processing required for instruction

translation. To mitigate this latency, some strategies are

used to speed up or circumvent the translation process

[13]. One of the strategies is called dynamic binary

translation. It works by directly executing privileged

instructions speeding up performance. In the event that a

privileged instruction is required, the dynamic binary

translator translates it into an unprivileged executable

instruction.

a) Hardware-assisted virtualization

Despite the speedup from dynamic binary translation,

there is still a noticeable performance penalty on full

virtualization [9]. As a solution to this problem, processor

manufacturers have implemented virtualization support on

their CPUs, namely Intel-VT and AMD-V. Both of these

implementations work by introducing another privilege

level to the CPU known as “Ring -1,” similar to

paravirtualization. After which, additional instructions are

included in the architecture that is specialized for virtual

machines. The hypervisor running the guest OSs must

Omro Alawadh et al. / IJCTT, 69(10), 39-42, 2021

41

support hardware assistance and the use of special

instructions. The idea here is that guest OSs run at a

higher ringing which privileged instructions are directly

executed through the use of special instructions [3].

D. Comparison

Even though all three aforementioned virtualization

techniques lie under the virtualization umbrella, each

comes with its own distinctions.

a) Security

All three types of virtualization utilize the idea of

separation or encapsulation, where the virtual instance is

separated from the outer system. However, not all three

share the same degree of separation. In testing, several

OS-Level virtualization systems showed poor isolation. In

fact, only the CPU could be properly isolated from the rest

of the system [14]. Paravirtualization has a similar

problem as well, in which all guest OSs share the same

kernel and are aware they are being virtualized.

Conversely, Full virtualization is the most secure as each

virtual machine runs separately and independent of the

other, providing overall the best isolation [10].

b) Performance

Despite the security advantage of full virtualization, it

lacks in terms of performance. While full virtualization

experiences a loss of performance, as previously

discussed, requiring hardware assistance and other

workarounds. Container or OS-level virtualization can

achieve near-native performance [14]. Paravirtualization

also shows great performance figures in contrast to full

virtualization as guest Oss know they are being virtualized

and can communicate with the hypervisor.

c) Features

Another aspect of comparison is the feature set each

type of virtualization includes. Full virtualization and

paravirtualization systems allow features such as full

migration, suspension and resumption, checkpoints, and

hardware independence. On the other hand, OS-level

virtualization requires support from kernel developers to

implement such features [14].

d) OS Support

The last important distinction to make is in guest OS

support. OS-level virtualization comes last in this regard

due to its inability to host a different OS version than the

host[13]. By contrast, Paravirtualization can run multiple

different OSs as long as they are modified to support it.

Finally, full virtualization provides the best OS support as

it requires neither modification of host nor guest OS [1].

III. SUMMARY

In summary, virtualization as a whole is a very useful

concept. It allows us to better utilize existing

infrastructure as well as reduce the cost of building new

infrastructure. There are many types and techniques used

for virtualization as they all fall under one of the three

categories: OS-level virtualization, paravirtualization, and

full virtualization. Each of the three types comes with its

own advantages and disadvantages. Overall, OS-level

virtualization provides the best performance but has

limited applications. Full virtualization has the most

potential applications and support but also suffers from the

highest performance penalty. Paravirtualization tries to

strike a balance between the two but has its own setbacks

in terms of security and OS support.

REFERENCES
[1] GhannamAljabari., Virtualization of IT infrastructure for small and

medium businesses, In: 2012 International Conference on

Communications and Information Technology (ICCIT),

International Conference on Communications and Information

Technology (ICCIT), (2012). June 2012, pp. 129–133.

doi: 10.1109/ICCITechnol.2012.6285775.

[2] Adriano Carvalho et al., Full virtualization on low-end hardware: A

case study, In: IECON 2016 - 42nd Annual Conference of the IEEE

Industrial Electronics Society. IECON 2016 - 42nd Annual

Conference of the IEEE Industrial Electronics Society., (2016)

4784–4789. doi: 10.1109/IECON.2016.7794064.

[3] Wei Chen et al., A Novel Hardware-Assisted Full Virtualization

Technique . In: 2008 The 9th International Conference for Young

Computer Scientists. 2008 The 9th International Conference for

Young Computer Scientists, (2008) 1292–1297.

doi: 10.1109/ ICYCS.2008.218.

[4] Scott Hogg. Software Containers: Used More Frequently than Most

Realize. Network World. May 26, (2014), url:

https://www.networkworld.com/article/2226996/softwarecontainers

--used-more-frequently-than-most-realize.html (visited on

09/20/2020).

[5] Nancy Jain and Sakshi Choudhary., Overview of virtualization in

cloud computing, In: 2016 Symposium on Colossal Data Analysis

and Networking (CDAN). Symposium on Colossal Data Analysis

and Networking (CDAN),(2016) 1–4.

doi: 10.1109/CDAN.2016.7570950.

[6] Barrett, D. and Kipper, G., (2010). How Virtualization Happens.

[online] ScienceDirect. Available at:

<https://www.sciencedirect.com/topics/computer-science/level-

virtualization> [Accessed 20 September 2020].

[7] Madhavan Nagarajan., An Overview of Operating Systems and

Explanation of the Kernel. Medium. July 30, (2019).

url:https://levelup.gitconnected.com/operating-systemand-kernel-

ef76f4d0bd8e (visited on 09/20/2020).

[8] Rani Osnat., A Brief History of Containers: From the 1970s Till

Now. Jan. 10, (2020). url:https://blog.aquasec.com/a-brief-history-

of-containers-from-1970s-chrootto-docker-2016 (visited on

09/20/2020).

[9] A. B. S. et al., System Performance Evaluation of Para

Virtualization, Container Virtualization, and Full Virtualization

Using Xen, OpenVZ, and XenServer, In: 2014 Fourth International

Conference on Advances in Computing and Communications,

(2014) 247– 250.

[10] Amir Ali Semnanian et al., Virtualization Technology and its

Impact on Computer Hardware Architecture, In: 2011 Eighth

International Conference on Information Technology: New

Generations, 2011 Eighth International Conference on Information

Technology: New Generations. (2011) 719–724.

doi: 10.1109/ITNG.2011.127.

[11] Michael Terrell and Natarajan Meghanathan., Setting Up of a Cloud

Cyber Infrastructure Using Xen Hypervisor, In: 10th International

Conference on Information Technology: New Generations. 2013

10th International Conference on Information Technology: New

Generations, (2013) 648–652. doi: 10.1109/ITNG.2013.100.

[12] Understanding Full Virtualization, Paravirtualization, and Hardware

Assist. Sept. 11,(2007)., url:

https://www.vmware.com/content/dam/digitalmarketing/vmware/en

/pdf/techpaper/VMware_paravirtualization.pdf (visited on

09/22/2020).

Omro Alawadh et al. / IJCTT, 69(10), 39-42, 2021

42

[13] John Paul Walters et al., A Comparison of Virtualization

Technologies for HPC, In: 22nd International Conference on

Advanced Information Networking and Applications (aina 2008).

22nd International Conference on Advanced Information

Networking and Applications (aina 2008). ISSN: 2332-5658, (2008)

861–868. doi: 10.1109/AINA.2008.45.

[14] Miguel G. Xavier et al., Performance Evaluation of Container-

Based Virtualization for High-Performance Computing

Environments, In: 2013 21st Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing. 2013 21st

Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing. ISSN:2377-5750. Feb. (2013) 233–240.

doi: 10.1109/PDP.2013.41.

[15] Yang Yu., OS-level Virtualization and Its Applications, Ph.D.

thesis. Dec. (2007).

url:https://dspace.sunyconnect.suny.edu/bitstream/handle/1951/448

96/000000243. sbu.pdf?sequence=3 (visited on 09/22/2020).

[16] Riondato, M., (2020). Chapter 14 Jails. [online] Freebsd.org.

Available at: <https://www.freebsd.org/doc/handbook/jails.html>

[Accessed 29 September 2020].

[17] Linux-vserver.org. n.d. Overview - Linux-Vserver. [online]

Available at: <http://linux-vserver.org/Overview> [Accessed 29

September 2020].

[18] Banerjee, T., (2014). LXC Vs. Docker. [online]

Archives.flockport.com. Available at:

 <https://archives.flockport.com/lxc-vs-docker/> [Accessed 29

September 2020].

