
International Journal of Computer Trends and Technology (IJCTT) – Volume 58 Issue 2- April 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 98

RDF Data Management Systems Based on

NoSQL Databases: A Comparative Study
Mouad Banane1, Abdessamad Belangour2, El Houssine Labriji3

Laboratory of Information Technology and Modeling LTIM

University Hassan II, Faculty of Sciences Ben M'sik, Casablanca, Morocco

Abstract— The growth of data transiting the Web

has presented new challenges for RDF data

management systems with respect to storage and the

ability to effectively query these large quantities of

RDF data. The limitations of traditional relational

database systems and the development of NoSQL

systems that are distributed databases that are

scalable and tolerant fail. All these reasons

motivated researchers to work on this topic to

develop a system that can efficiently handle large

RDF data based on NoSQL technology. This paper

provides an overview on the voluminous RDF data

management systems using NoSQL databases. It

studies and evaluates these databases RDF (called

triplestore). The comparison is based on some

criteria of database software such as the NoSQL

database, and model of database, index structure,

database licence. This is a comparison of the

systems proposed for efficient storage of massive

RDF data.

Keywords — Semantic Web, RDF, NoSQL, Big

Data, SPARQL.

I. INTRODUCTION

Recently, the web has experienced a quantitative

explosion of digital data. This increase of

information transiting on the Web complicates the

modalities of search engines. In the face of this

phenomenon, the members of the W3C/RDF have

developed a syntax called Resource Description

Framework (RDF) facilitating the description, the

layout and the sharing of data constituting a Web

page. In the other hand, the NoSQL technologies

have emerged with their considerable performance

in data management by providing the scalability and

high availability prompting researchers to switch to

NoSQL system dedicated to Big Data in order to

manage this massive RDF data.

Resource Description Framework (RDF)

developed by W3C is a graphical model for formally

describing Web resources and their metadata to

allow automatic processing of such descriptions.

Rather, it is a data model for describing resources on

the web. By resource we mean any entity that we

want to describe on the web, but which is not

necessarily accessible on the web. For example, one

could provide information about the author of this

document, even if the person described is not

accessible on the web. Rather, there are resources,

such as a personal page, or a photo, which can be

obtained from their URL (Universal Resource

Locator). These resources are related to this person,

but are not that person. To designate this person, we

will use a URI (Universal Resource Identifier), a

unique name that syntactically resembles a URL,

without the need for it to be accessible on the web.

In a sense, all URLs are included in all URIs. The

purpose of RDF is to allow resource information to

be manipulated by applications, rather than just

being displayed to web users. For this reason an

XML syntax has been proposed to convey

information modelled in RDF. Important features of

RDF include flexibility and extensibility.

RDF is a data model in the form of a graph; it

does not strictly speaking have syntax. Several

syntaxes can be used to represent an RDF

description. In an abstract way, the structure

underlying any RDF expression is a collection of

triplets, each consisting of a subject, a predicate, and

an object. A set of such triplets forms an RDF graph.

The subject of a triplet can be a URI or an empty

node, that is to say a node that designates a resource

without naming it. The predicate, which represents a

property, is always a URI. Finally, the object

represents the value of the property and can be a

URI, an empty node, or a literal. An empty node is

any node that is neither a URI nor a literal. It is a

single node that can appear in several triplets, and

has no intrinsic name. An empty node represents an

anonymous resource. Using URIs to designate the

resources described by an RDF graph has several

advantages. They make it possible not to mix the

designations used and to share the same vocabulary

while avoiding the conflicts of names with several

applications.

NoSQL databases have been designed to solve the

problems of volume, multi-source and multi-format

data processing in big data environments. NoSQL

(Not Only SQL) databases denote a category of non-

relational, horizontally scalable database

management systems on machines with a standard

configuration. Although this name is controversial

and there are several variations of NoSQL systems,

they have some or all of the following properties:

 - Horizontal scalability of operations on several

machines.

International Journal of Computer Trends and Technology (IJCTT) – Volume 58 Issue 2- April 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 99

- Replication and partitioning of data on several

machines.

- An interface or a simple call protocol (contrary

to SQL).

 - A weak competitive and transactional model

unlike the ACID model of the majority of relational

databases.

- Absence of the notion of schema which fixes the

data structure, new attributes can be added

dynamically to the existing structures. NoSQL

systems have several differences. We find systems

based on the distributed hash, distributed key-value

systems like Google's BigTable [14]. Indeed, the

pioneering NoSQL systems were a proof of concept

validating new approaches for scalability, coherence,

partitioning and fault tolerance. Using indexes in

memory can be highly scalable and can distribute

and replicate data across multiple nodes. There is no

guarantee that data retrieved from a node is up to

date, but the guarantee of propagating these updates

to all nodes is ensured. On the other hand, Google

has shown through BigTable that persistent storage

can be scalable on thousands of nodes.

This document is organized as follows: after the

first section introduction, the second section exposes

some existing related works in this topic, the third

section presents and exposes RDF data management

systems based on the NoSQL. Section IV presents a

review of RDF data management systems that use

NoSQL database. Finally, section V concludes this

work and suggests some future works.

II. RELATED WORK

Recently, several researches have focused on

large RDF data management. This research is based

on NoSQL data management systems, after this

opening of RDF data management systems on

NoSQL technology. Cuder and Haque [9] compared

five proposed implementations for storing massive

NoSQL-based RDF data that are: Jena + Hbase,

Hive + Hbase, Couchbase, 4Store, and CumulusRDF,

in both distributed and single-machine deployment

modes. . The results for a 16-node cluster show that:

RDF data stores that use Hbase and Cassandra are

not performing at the runtime level when the amount

of RDF data is not large and also when running on a

single machine or on a small number of nodes.

III. DISTRIBUTED RDF DATA

MANAGEMENT SYSTEMS

This section provides a detailed description of

each RDF data storage management system.

A. AdaptRDF

The authors of AdaptRDF[15] present a two-

phase approach for designing an efficient tailored

but flexible storage solution for resource description

framework (RDF) data based on its query workload

characteristics. AdaptRDF consists of two phases.

The vertical partitioning phase which aims to reduce

the number of join operations in the query evaluation

process, and secondly the adjustment phase aims to

maintain the efficiency of the query processing

performance by adapting the sub-scheme. relate to

the dynamics of queries.

B. Jena-HBase

Jena-HBase[1] is a HBase backed triple store that

can be used with the Jena framework along with a

preliminary experimental evaluation of the prototype.

This work focuses on the creation of a distributed

RDF storage framework, thereby mitigating the

scalability issue that exists with single-machine

systems. HBase is an interesting choice only if you

plan to handle a very large amount of data. Based on

Hadoop, it distributes data using the Hadoop

Distributed File System (HDFS) distributed file

system. HBase database column-oriented. The data

is organized according to row keys, then in columns-

families, then in columns. The cell consists of a

column name, value, and a timestamp. The value is

simply stored as bytes, you do not need to define

data types or pre-define columns, and only column

families must be predefined.

C. 4store

We know that the RDF data is stored in a triple

format (Subject, predicate, object) but 4store[13]

stores the RDF data in four elements of (model,

subject, predicate, object), where the model is

analogous to a SPARQL graph. In addition Uniform

Resource Identifier (URI), literals, and empty nodes

are all encoded using a cryptographic hash function.

In this case, the system defines two types of compute

nodes in this distributed environment: first storage

nodes, which store the actual data, and second, the

process nodes responsible for analyzing incoming

requests and managing all distributed

communications with the network storage. 4store

uses the approach of partitioning data into non-

overlapping segments and distributes quads based on

hash partitioning of their subject.

D. Hive-HBase

At the storage level, this approach[6] is based on

the NoSQL HBase database as a data store and for

queries it uses HiveQL as a query generator, it

implements an intermediate translator prototype that

will generate HiveQL language queries based on a

SPARQL query then the HiveQL query will return

the data to the distributed HBase storage system.

E. CumulusRDF

CumulusRDF [11] is a key/value RDF data store

that is nested distributed, it is used as an underlying

storage component to a related data server that

provides functionality for processing RDF data

which are linked via HTTP Searches and also offers

triple searches, for storage it offers two storage

schemes. CumulusRDF implemented on Apache

Cassandra which is is a distributed database that

International Journal of Computer Trends and Technology (IJCTT) – Volume 58 Issue 2- April 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 100

allows storing a large amount of data thanks to its

horizontal scalability. Cassandra takes the concepts

of 2 existing databases. The first BigTable, created

by Google, for its column-oriented data model and

persistence mechanism on disk, and the second

Dynamo, created by Amazon, for its distributed

architecture without master node. Cassandra is very

fast to handle a large volume of data. It allows to

have flexible data schemas thanks to its

representation in columns. Moreover, its architecture

enables it to evolve without problems in a distributed

environment; it integrates mechanisms of data

replication and the possibility of clustering several

Cassandra servers.

F. Rya

Rya[3] is a scalable RDF data management

system that uses a NoSQL database named

Accumulo, based on Google's BigTable, Apache

Accumulo is a structured and highly elastic storage

written in Java. He is a father on Hadoop's

Distributed File System (HDFS), which is part of the

acclaimed Apache Hadoop project. Accumulo

supports the recovery and storage of structured data,

including interval queries, and supports the use of

Accumulo tables as inputs / sorts for MapReduce

processing. Apache Accumulo provides a robust and

resilient data storage and retrieval system. Accumulo

has some innovative features, such as cell-based

access control and server-side programming

mechanisms, that can modify key / value pairs at

various locations in the data management process. In

Rya the authors propose storage methods, and

indexing schemes and use query processing

techniques that can reach billions of triples on

multiple nodes, more than that this approach

provides quick and easy access to data via

mechanisms classical query such as SPARQL.

G. H2RDF

H2RDF[4] is a fully distributed RDF triplestore

that combines two technologies the MapReduce

processing framework with a NoSQL distributed

data management system. The H2RDF system has

two features that allow the efficient processing of

SPARQL queries either simple or multi-join on an

unlimited number of triple RDFs: join algorithms

that perform joins according to the selectivity of

SPARQL queries for the purpose of reducing the

treatment; more than that and based on MapReduce

it is an adaptive choice among centralized and

distributed join execution for fast query responses.

H. Neo4J

An RDF is a set of triples or instructions (subject,

predicate, and object) where the subject and the

predicate are resources and the object can be another

resource or a literal. The only peculiarity of literals

is that they cannot be the subject of other

declarations. In a tree structure, we would call them

leaf nodes. We also note that resources are uniquely

identified by URIs. This approach consists of three

rules:

Rule 1: All triples are mapped to Neo4j's nodes. A

node in Neo4j representing an RDF resource will be

tagged: Resource and will have a uri property with

the URI of the resource.

(S,P,O) => (:Resource {uri:S})

Règle 2: Les prédicats de triplets sont mappés sur

les propriétés de nœud dans Neo4j si l'objet du

triplet est un littéral.

(S,P,O) && isLiteral(O) => (:Resource {uri:S,

P:O})

we now come to rule 3: The rdf: type statements

are mapped to categories in Neo4j.

(Something1, rdf:type, Category) => (:Category

{uri:Something1})

I. SHARD

SHARD[10], a massively scalable, robust and

powerful triple-store based on Hadoop. SHARD

offers a general approach to building an information

system from the MapReduce software framework

that responds to data queries. In this work the

authors discussed the use of the MapReduce

software framework to meet the challenge of

building scalable and high performance distributed

systems. They also proposed indexing evolutionarily,

all on the basis of Hadoop.

J. J.-H. Um et al

In this work [5], the authors propose a scalable

distributed RDF store based on a distributed

database that uses bulk loading for billions of triples

to store data and respond quickly to user queries. In

addition they give a mass loading algorithm using

the MapReduce framework and the SPARQL query

processing engine to connect to a large distributed

database

K. Couchbase

It is an RDF data management system based on

the NoSQL Couchbase[12] database, at indexing

level this approach uses the following triple patterns

(? P?), (? O) and (? PO). And for querying data uses

MapReduce views that are based primarily on the

JSON format for Couchbase which is a column-

oriented NoSQL database that relies on a Shared-

Nothing architecture in which each node is

independent - it contains all the services. Cluster

management and data distribution on a cluster is

managed from an application server that contains a

cluster map that is kept up to date (Cluster Map).

This architecture thus favors sizing, including

another function, the support of the distribution on

several data centers.

L. Aswamenakul et al[8]

This Triple Store-based implementation uses the

Jena TDB framework to store RDF data and an API

that uses SPARQL to query Jena TDB framework

International Journal of Computer Trends and Technology (IJCTT) – Volume 58 Issue 2- April 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 101

data. In this implementation which is based on a

NoSQL database named MongoDB, the authors use

RDF to JSON-LD Converter to convert the RDF

data format to JSON-LD format, we know that the

JSON format is designed for linked data, and in this

work they used JSON-LD Parser to parse and import

JSON-LD. For MongoDB, it uses JSON documents

with schemas. MongoDB supports fields, interval

queries, and regular expression searches. Fields in a

MongoDB document can be indexed with primary

and secondary indices. It remains expandable

horizontally using sharding. MongoDB can be used

as a file system with task balancing and data

replication capabilities on multiple machines for file

storage.

IV. REVIEW OF NOSQL-BASED RDF

SYSTEMS

This section reviews some of RDF data

management systems that use NoSQL databases to

store the RDF data including : Jena-HBase [1],

Rainbow [2], Hive-HBase [6], 4store[13],

CumulusRDF [11], Rya [3] , H2RDF [4], AdaptRDF

[15], Couchbase[12], SHARD [10], Aswamenakul et

al[8], Sun, J. et al[7], J.-H. Um et al[5]. The

comparison is based on some criteria of database

software such as :NoSQL database, NoSQL database

model, database Licence, Index structure, Execution

time ,Querying, Scalability, and support of SPARQL.

The table 1 illustrates a review of RDF data

management systems that use NoSQL database.

Table1: Review of RDF data management systems

that use NoSQL database

We know that the standard technology that allows

data access for the RDF dataset is the SPARQL

recommendation of the W3C, most of the RDF

storage systems presented in this work can accept

SPARQL queries. Note also that SPARQL-based

RDF data management systems rarely cause

semantic discordance. Effective query processing is

considered to be the most crucial challenge of these

large RDF data management systems.

The simplicity and the dynamism of a column-

oriented NoSQL databases like Accumulo HBase are

the reasons why the majority of these RDF data

management systems are based on column-oriented

NoSQL systems.

V. CONCLUSION

Resource Description Framework (RDF) is a

standard for describing Web resources. In this paper,

Name NoSQL

Database

Database

Model

Indexation Execution

time

Scalability Querying SPARQL

CumulusRDF[1

1]

Cassandra Key / Value

Oriented

Medium Medium Yes Sesame Yes

Neo4j Neo4j Graph

Oriented

Total Low No SPARQL Yes

Jena+HBase[1] HBase Column

Oriented

Total Medium Yes Jena Yes

Hive+HBase[6] HBase Column

Oriented

Medium Medium Yes Hive Yes

H2RDF[4] HBase Column

Oriented

Medium Medium Yes MapReduce Yes

Rainbow[2] HBase Column

Oriented

Medium Medium Yes Sesame Yes

Rya[3] Accumulo Column

Oriented

Medium Medium Yes SAIL API Yes

J.-H. Um et al[5] HDFS/Hbas

e

Column

Oriented

Total High Yes MapReduce Yes

Sun, J. et al[7] HBase Column

Oriented

Total Medium Yes MapReduce Yes

Aswamenakul et

al[8]

MongoDB Document

Oriented

- High Yes MongoDB

queries

Yes

Cudr et al[9] Cassandra

/HBase

/CouchDB

Column

Oriented

Medium Medium Yes Hive Yes

SHARD[10] HDFS Split Total Medium Yes MapReduce Yes

4store[13] distributed

RDF DBMS

Triple Medium Low No SPARQL Yes

Couchbase[12] Couchbase Document

Oriented

Total Medium Yes MapReduce Yes

AdaptRDF[15] - - Medium Medium Yes SPARQL Yes

International Journal of Computer Trends and Technology (IJCTT) – Volume 58 Issue 2- April 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 102

we presented an overview of huge RDF data

management systems based on Big Data's NoSQL

technology. Many research projects have been

devoted to the creation and development of

distributed and scalable RDF data management

systems. The NoSQL databases are systems that

offer the scalability and high performance needed

for efficient large data management. The paper

revealed that it would be possible to further improve

the efficient search process by developing web data

management technologies. In our future work we

propose a method to exploit a NoSQL database for

the storage of massive RDF data and an algorithm

for querying these data based on the HiveQL

language of the Hive tool

REFERENCES
[1] Khadilkar, V., Kantarcioglu, M., Thuraisingham, B., &

Castagna, P. (n.d.). /home/vaibhav/Research/Jena-

HBase/Results/LUBM/Query-Time-TDB-Comp-Q10.eps,

(ii), 1–4

[2] Gu, R., Hu, W., & Huang, Y. (2015). Rainbow: A

distributed and hierarchical RDF triple store with dynamic

scalability. Proceedings - 2014 IEEE International

Conference on Big Data, IEEE Big Data 2014, 561–566.

http://doi.org/10.1109/BigData.2014.7004274

[3] Punnoose, R., Crainiceanu, A., & Rapp, D. (2012). Rya: a

scalable RDF triple store for the clouds. Proceedings of the

1st International Workshop on Cloud Intelligence, 4.

http://doi.org/10.1145/2347673.2347677

[4] Papailiou, N., Konstantinou, I., Tsoumakos, D., & Koziris,

N. (2012). H RDF : Adaptive Query Processing on RDF

Data in the. Proceedings of the 21st International

Conference Companion on World Wide Web, 397–400.

http://doi.org/10.1145/2187980.2188058

[5] Um, J. H., Lee, S., Kim, T. H., Jeong, C. H., Song, S. K., &

Jung, H. (2016). Distributed RDF store for efficient

searching billions of triples based on Hadoop. Journal of

Supercomputing, 72(5), 1825–1840.

http://doi.org/10.1007/s11227-016-1670-6

[6] Haque, A., & Perkins, L. (2012). Distributed RDF Triple

Store Using HBase and Hive.

[7] Sun, J., & Jin, Q. (2010). Scalable RDF store based on

HBase and MapReduce. ICACTE 2010 - 2010 3rd

International Conference on Advanced Computer Theory

and Engineering, Proceedings, 1, 633–636.

http://doi.org/10.1109/ICACTE.2010.5578937

[8] Aswamenakul, C., & Buranarach, M. (n.d.). A Review and

Design of Framework for Storing and Querying RDF Data

using NoSQL Database, 1–4.

[9] Cudr, P., Haque, A., Harth, A., Keppmann, F. L., Miranker,

D. P., Sequeda, J. F., & Wylot, M. (n.d.). NoSQL

Databases for RDF : An Empirical Evaluation, 310–325.

[10] Rohloff, K., & Schantz, R. E. (n.d.). High-Performance ,

Massively Scalable Distributed Systems using the

MapReduce Software Framework : The SHARD Triple-

Store.

[11] Ladwig, G., & Harth, A. (2011). CumulusRDF: Linked

data management on nested key-value stores. The 7th

International Workshop on …, 30–42. Retrieved from

http://iswc2011.semanticweb.org/fileadmin/iswc/Papers/W

orkshops/SSWS/Ladwig-et-all-SSWS2011.pdf

[12] Zablocki, J. (n.d.). Couchbase essentials : harness the

power of Couchbase to build flexible and scalable

applications.

[13] Harris, S., Lamb, N., & Shadbolt, N. (2009). 4store: The

design and implementation of a clustered RDF store.

CEUR Workshop Proceedings, 517, 94–109.

[14] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,

D. A., Burrows, M., … Gruber, R. E. (n.d.). Bigtable: A

Distributed Storage System for Structured Data. Retrieved

from

https://static.googleusercontent.com/media/research.google

.com/fr//archive/bigtable-osdi06.pdf

[15] MahmoudiNasab, H., & Sakr, S. (2012). AdaptRDF:

adaptive storage management for RDF databases.

International Journal of Web Information Systems, 8(2),

234–250. http://doi.org/10.1108/17440081211241978

