
International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 105

CWHP algorithm for Scheduling Real-Time

Transactions
Fadia A. Elbagir#1, Ahmed Khalid*2, Khalid Khanfar#3

#1 PhD. Program in Computer Science, Sudan University of Science and Technology, Sudan

#2 Department of Computer Science, Community College, Najran University, Najran, KSA

#3 Full professor Head of Information Security Department at Naif Arab University for Security, Saudi Arabia

Abstracts

Scheduling is an important issue in the designof real

time database systems; Transactions in real time

systems must be scheduled in such a way that they can

be completed before their deadlines, the scheduler

assigns a priority to each transaction based on its

deadline, we are particularly interested in conflicts that

can lead to priority inversions.Priority inversion

problem may occur due to the sharing of resources

among transactions,which can cause unbound delay to

high priority transaction; this delaying may result in the

higher priority transactions missing their deadline.In

this paper we proposed a new scheduling algorithm

Conditional Waiting High Priority (CWHP), we used

simulation model tocompare the performance results of

our algorithm with other existing algorithms using of

the most popular priority assignment schemes Earliest

Deadline First (EDF) policy, focusing in “firm

deadline” real time applicationsand timing information

about firm transactions where transactions that miss

their deadlines are discarded and the objective of the

real-time database system is to maximize the number of

transactions that satisfied deadlines.

Keywords: Real Time, Scheduling, Firm Deadline,

Priority inversion, transactions, Earliest Deadline First

I. Introduction

A real-time database system (RTDBS) is a transaction

processing system that is design to handle workloads

where transactions have completion deadlines

[10,11,35].For scheduling transactions to satisfy time

constraints and data consistency requirements, the

efficient scheduling algorithm and concurrency control

protocols are requiredto induce a serialization order

among conflicting transactions [26]. For a concurrency

control protocol to accommodate timing constraints of

transactions, the serialization order it produces should

reflect the priority of transactions. [2,5]

The execution of concurrent transactions is scheduled

based on their assigned priority. [2, 20].The conflict is

appears when two transactions request the same data

item and at least one of them is an exclusivelock,Under

two phase locking protocol a transaction must obtain a

lock before accessing a data object and release the lock

when it commits or aborts[4],Ideally a high priority

transaction should never be blocked by any lower

priority transaction, the transaction which requesting a

lock on data item be placed in a wait queue if its lock

mode is found to be incompatible with that of the lock-

holding transaction.[4,6,20]

In real-time database systems, blockingmay cause

priority inversion. Priority inversion is said to occur

when a high priority transaction is blocked by lower

priority transactions [2, 4, 20]. The alternative is to abort

or restart lower priority transactions when priority

inversion occurs. This wastes the work done and very

costly in terms of wasted resources, and a large number

of restarts will increase the workload of the system and

may cause other transactions to miss their deadlines and

in turn also has a negative effect on time-critical

scheduling.[10,13,32]

In this paper we investigate the priority inversion

problem in a particular real-time environment and

proposed new algorithm “Conditional Waiting High

Priority (CWHP)” for scheduling

transactions,according to the priority

assignmentpolicy“Earliest Deadline First”.

The rest of this paper is organized as follows: Section II

introduces related works. Section III Describe

Scheduling and Concurrency Control. In section IV the

Implementation ofAssigning Priorities.Section

VDescribes the proposed methods and comparison with

the previous methods, section VI described the

simulation model & result.

II. Related work

Many researchers were discussing and published papers

for the issue in real time database systems and

scheduling.

In [3] Authors focused on scheduling transactions with

deadlines and the effect of real time constraints on

concurrency control. they discussing a new group of

algorithms for scheduling real time transactions which

produce serializable schedules, in result of evaluated the

scheduling through detailed simulation experiments they

found that Earliest Deadline (ED) is the best policy

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 106

overall priority assignment policy, and There is one case

where Serial execution (SE) may be superior to

Conditional Restart (CR). This occurs when there is a

high cost for restarting transactions. However, SE does

not become a better method until the cost of restarting is

more than half of the computation time of average

transactions.

In [4] Robert Abbott addressed modeling of real time

constraint and scheduling problems,they handled

simulation experiment to study performance and

behavior of variety of scheduling algorithms focused on

the effect of cognizant algorithm on the concurrency of

run times estimates and in the result of their work they

conclude that their simulation studies will enable to

develop better heuristics for scheduling real time

transactions.

In [7] Ben Kao1, and Hector Garcia-Molina, discussed

the various issues concerning the design and

implementation of real-time databases and transaction

processing,they discussing the role of application

semantics and showed how they can be used to improve

RTDBSs performance. They gave a brief note for that

appropriate deadline assignment to transactionsthat is

very critical to the success of many real-time database

protocols.

In [18]Authors address the problem of establishing a

priority ordering among transaction characterized by

both value and deadline that results in maximizing the

realized value. They study the relationswhich

established between these values and deadlines in

constructing the priority ordering. they evaluate the

performance of several priority mapping by

simulationmodel,they conclude that a” bucket” priority

mechanism allows the relative importance of values and

deadlines to be controlled introduced and studies.In

conclusionof the study is that there earlier results

generally carry over the value-based RTDBS domain for

all the priority mappings that we have considered.

In [28] the authors found that in the environment where

the physical resource is limited, a concurrency control

algorithm that tends to conserve physical resources by

blocking transactions that might otherwise have to be

restarted is a better choice than a restart-oriented

algorithm, and they found the optimistic algorithm to

perform the best of the three algorithms tested under

these conditions. They reconfirmed there result with

other studies, However, the overall conclusions about

which algorithm performed the best relative to the other

algorithms were not altered significantly by this

assumption

Sang H. Son& others in [32] present an intelligent

dynamic scheduling algorithm for transactions in real-

time database systems. The scheduling algorithm uses

timing information about transactions and the database

to enhance the system’s ability to meet transaction

deadlines. The scheduling algorithm is implemented in a

simulated puke detection system, and its performance is

demonstrated by a series of experiments. The proposed

algorithm has been implemented and evaluated using a

pulse detection system as a real-life, real-time database

application. The experimental results show that

scheduling algorithms for real-time database systems

can be made more effective by making use of extra

information about transactions and the database,the

dynamic scheduling algorithm presented in this paper

shows promising characteristics that are important to the

problem of real-time transaction scheduling.

III. Scheduling and Concurrency Control

The main goal of scheduling in RTDBS is to meet

timing constraints and to enforce data consistency. Real-

time transactions scheduling methods can be extended

for real-time transaction scheduling, while the

concurrency control protocols are needed for operation

scheduling to maintain data consistency [31,32]

The concurrency control of transactions in a real-time

database must satisfy timing constraints of individual

transactions and the consistency constraints of the

database. Various scheduling algorithms have been

developed to schedule real timetransactions to meet

their timing constraints,given the arrival time deadline,

execution time and criticality of each task. [14, 26, 26,

37]

In case of concurrently executed transactions we need a

concurrency control mechanism to order the updates to

the database so that the final schedule is a serializable,an

Efficient resource scheduling algorithms and

concurrency control protocols are required to schedule

RTDB transactions to maximize the number of satisfied

deadlines [8,23,25,30]

In general many researchers note that the scheduling

transactions according to the Earliest DeadlineFirst

(EDF)policy in which priorities are based on transaction

deadlines can minimize the number of late transactions

especially when the system is highly loaded.[7,16], there

for we found most research studies in real-time

databases with hard deadlines have taken the earliest-

deadline first approach for scheduling priorities ,

mention that Amongst the proposed resource scheduling

algorithms for RTDBS .[2,10,27,15]

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 107

In general, the performance of real-time concurrency

control system is affected by the method used for

assigning the priorities of the transactions [37]

Our method implementation depends on comparing

transaction priorities at the time of the conflict, to take

appropriate decisions.

IV. Assigning Priorities

As considered by A. P. Buchmann Priority scheduling is

a mechanism for including a limited measure of

timeliness in blocking concurrency-control mechanisms

[1]. Priorities are calculated based on deadlines the

transaction considered as a higher priority as it closer

the deadline, If the deadline of transactions is

passed,howeverexecuted, either are dropped, or

executed later [1, 5, 7, 15, 24]

The priority assignment usually takes into account the

deadlines of the transactions because the underlying

assumption is that the deadline reflects the urgency of

completing the transaction. Scheduling policies such as

earliest deadline first (EDF) and least slack first (LSF)

are examples of policies that account for deadlines [2,

19, 5, 37].

First Come First policy assigns the highest priority to

the transaction with the earliest release time. The

primary weakness of FCFS is that it does not make use

of deadline information. FCFS will discriminate against

a newly arrived task with an urgent deadline in favor of

an older task which may not have such an urgent

deadline. This is not desirable for real-time systems.

 Earliest Deadline policy assigns highest priority for

the transaction with the earliest deadline. A major

weakness of this policy is that it can assign the highest

priority to a task that has already missed or is about to

miss its deadline.

Least Slack policyhere a transaction’s priority depends

on the amount of service time that it has received.

Rolling back a transaction to its beginning reduces its

effective service time to 0 and raises its priority under

the Least Slack policy.

The scheduler is invoked whenever a transaction

terminates and, for preemptive scheduling, whenever a

new transaction arrives. The concurrency control

mechanism is invoked to resolve lock conflicts

whenever one occurs.

V. The Model

Our objective by proposed algorithm is to minimize the

number of transactions that miss their deadlines, our

proposed methods is a continuation of previous

algorithms that proposed in [3,4]; we assume that

transaction executions must be serializable by using a

locking protocol. In case of transaction arrives, the

concurrency control mechanism is invoked to resolve

lock conflicts whenever one occurs.

When transaction enters to the system characterized by

its timing constants and its data and computation

requirements, the time constraints is a release time

anddeadline,computationrequirement is anestimation

run time which considered as amount of computation

time required by the transaction.

Each arriving transaction has a release time r (Arrival

time) , Estemated run time E ,and deadline D which is

acount as maximum commit time.[25,35]

- 𝐷𝑇 = 𝐴𝑇 + 𝑆𝑇 + 𝑅𝑇𝑇

- Where,

- DT = Deadline of Transaction

- AT = Sink Arrival time of Transaction

- RTT = Resource Time of Transaction

- ST = Slack Time

As discussed in [3] there four techniques to resolve

conflicts that may lead to a priority inversion. In the

following discussion let TR be a transaction that is

requesting a lock on a data object O that is already

locked by transaction TH. Furthermore, the lock modes

are conflicting and TR has a higher priority than the

priority of O. Thus the priority of TR is greater than TH.

In our experiment example for tested the new method

and Compared with previous methods, we considered

the set of transactions with release time r, deadline d,

runtime estimate E and data requirements.

Method1: Wait techniques with earliest deadline first

for resovling the conflict

Resolution for Wait policy: Requesting transaction

always blocks and waits for the data object to become

free. [3,4,7,36,37]

IF TR conflict with TH

Then TR Blocks

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 108

I. TABLE 1

EXAMPLE1

transaction Arrival

time (r)

Execution

time (E)

Deadline

(d)

updat

es

A 0 2.5 5 X

B 1 2 4 X

C 2 2.5 8 Y

- Transaction A is the only job in the time 0, it gains

the processor and executes until time 1 when

transaction B arrives

- TB during this time it request and gain an exclusive

lock on data object X since TB has an earlier line

than TA

- TB prempts TA and begin to to execute

- At time 1.5 TB attempts to lock data object X which

already locked by A

- Under Wait strategy B must wait untIl TA is

finishes and releases the lock on X thus B loses the

processor

- TA resumes execution and completes its remaining

1.5 units of computation at time 3 , when it

commits it releases the lock on item X thus TB is

unblocked and resume execution ,it finish its

remaining 1.5 units of computation at time 4.5

- TC arrives and preemptes ,it has late deadline than

TB.

- TC executes to completion and finishes at time 7

- Under this schedule ,TB misses its dedline by .5

time units and TA and TC both meet there deadline

as shown in figure 6

- The over all schedule length is 7

Method2: High Priority techniques with earliest

deadline first for resovling the conflict

Resolution for High Prioritypolicy: Comparing

transaction priorities at the time of the conflict. If the

priority of TR is greater than the priority of object O,

and thus greater than every transaction holding a lock on

O, then we abort the lock holders thereby freeing the

object for TR[3,4,7,36,37].

IF For all TH holding a lock on O

P (TR)>P (TH) AND P (TR)>p (T
A

H)

THEN Abort each lock holder

ELSE TR blocks

- A runs in the first time unit during which it acquires

a lock on item X

- Transaction B gains the processor at time 1 and

causes a conflict at time 1.5 when it requests a lock

on item X

- Since B has an earlier deadline than A and thus a

higher priority, the conflict is resolved by rolling

back A thereby freeing the lock on X

- Transaction B continues processing and completes

at time 3

- Transaction A regains the processor and starting

from the beginning, executes for 2.5 units and

finishes at time 5.5

- Transaction C gains the processor at time 2, starting

the execution after Transaction A release the lock

and completes at time 8

- In this schedule, A misses its deadline by 0.5 units

and B and C meet their deadlines.

- The overall schedule length is 8

Method3: Conditional Restart techniques with

earliest deadline first for resovling the conflict

Resolution for Conditional Restart policy: estimate if

TH, the transaction holding the lock, can be finished

within the amount of time that TR, the lock requester,

can afford to wait[3,4,7,36,37].

IFP (TR)>P (TH) AND P (TR)<p (T
A

H)

THEN IF SR ≥ EH -PH

THEN TR blocks

 TH inherits the priority of TR

ELSE Abort TH

ELSE TR blocks

- The idea here is to estimate if TH, the transaction

holding the lock, can be finished within the amount

of time that TR, the lock requester, can afford to

wait.

- a conflict occurs when B requests a lock on X at

time 1.5.

- At this time the algorithm calculates the slack time

for B as S = 4 – 2 – 0.5 = 1.5, the remaining run

time for A= 2.5- 1= 1.5

- This equals exactly the remaining run time for A.

- Therefore, B waits and A inherits the priority of B.

- Transaction A,executesthen Transaction B is

unblocked and resumes execution to finish at time

4.5

- Then C executes to finish at time 7.

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 109

- In this schedule B missed it is deadline , A and C

transactios meet there deadline

- The overall schedule length is 7

Proposed model: it called ConditionalWaiting High

Priority technieque (CWHP) to resolve the conflict .

Resolution for Conditional waiting high priority:

itComparing transaction priorities at the time of the

conflict and if TH, can be finished within the amount of

time that TR can afford to wait, if not, it Considered the

waiting time for TR as the remaining time for TH.

IFP (TR)>P (TH) AND P (TR)<p (T
A

H)

THEN IF SR ≥ EH -PH

THEN TR blocks

TH inherits the priority of TR

THEN IF (ATTR+RETH +ETR) ≤ DTR

THEN TR blocks

TH inherits the priority of TR

ELSE Abort TH

The different from new method and Conditional Restart

methods as it works as controller which monitors the

situation by counting the remains time of TH and

replacing this value with the STvalue of TR, in other

word all times the waiting time for TR is equaled to the

remaining time to complete the process for TH,

ATTR+RETH +ETR ≤ DTR

ATTR:Arrival time for transaction that request the lock

RETH: Remaining time for transaction that holds the

lock

ETR:Executiontime for transaction holds the lock

DTR: Deadline for transaction that request the lock

The Conditional Waiting High Priority technieque

(CWHP) : It work by two ways for silving the conflict :

First : counting the remaining time of execuion time of

TA using these Formula:

RETA = ETA - ∆ETA

RETA : is the remaining executin time for TA which

holding the lock on data object X

ETA: execusion estemated time for TA

∆ETA : is the amount by serves already TA recieved

The deadline of transaction B calculated by formula

DTB= ATB+RETA+EB

DTB: deadline of transaction B

ATB : Arrival time of transaction B

RETA: the remaing time for execution transaction A

EB : execusion time of transaction B

To Calculates how long transaction execution can be

delayed while still making it possible to meet the

transaction deadline we use STB

STB = DB-EB

- The CWHP compare the remaining execution time

of A RETA with slack time of SB

- if RETA ≤ SB

- TR blocked until transaction TH release the lock on

dada object and TR resumes execution and untill

completes its computation.

-

If we take the previous example for our methods:

- Transaction A is the only job in the time 0, it gains

the processor and executes until time 1 when

transaction B arrives

- TB during this time it request and gain an exclusive

lock on data object X since TB has an earlier line

than TA

- TB prempts TA and begin to execute

- At time 1.5 TB attempts to lock data object X which

already locked by TA

- Under Conditional Waiting High Priority strategy B

must wait untill TA is finishes

- Our proposed algorithm Conditional Waiting High

Priority technieque (CWHP) counted the remaining

time of execuion time of TA using these Formula:

RTA = 2.5-1 =1.5

The slack time of B

SB = DB-EB

SB = 4-2- 0.5 = 1.5

STB : is how long transaction execution can be delayed

while still making it possible to meet the transaction

deadline

- The CWHP compare the remaining execution time

of A RETA with slack time of SB

- ifRETA ≤ SB ; 1.5 ≤ 1.5

- The deadline of B

- ATB+RTA+ETB ≤ DB

- 1+1.5+ 2= 4.5

- After calculation under the CWHP policy TB

executed and release the lock on dada object X at

time 3.

- TA resumes execution and completes its

computation at time 4.5 , when it commits it

releases the lock on item X

- TC enter the system at time 2 and start the

execution at time 4.5 and finish at time 8

- The over all schedule length is 7

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 110

- By using new propsed CWHP all transactiom meet

there deadline as shwon in figure

VI. Simulation Experiments & Result

The simulation testbed constructed using the C#

programming language within Microsoft visual Studio

Environment

The simulation is the system of queuing network where

a numbers of users submit transaction request, any new

or re-submitted transaction will enter the scheduling

queue and arranged by Early Deadline First priority

method. Before transaction perform operation, it must

go through the concurrency control (cc) to obtain lock

on the objects, if request of lock is denied, the

transaction will be placed into wait queue.

Two or more transaction has a data conflict when they

were requiring the same data in non- compatible lock

model (rr–wr).

our proposed new algorithm compared with existing

protocols for Prove it is effectiveness.

The transaction waiting for the lock may terminate or

restart depends on the deadline time.

Transaction will be restarted if it still has some value of

the system, only if we estimate that the transaction can

complete before the deadline.

Each arriving transaction has a release time r (Arrival

time) , Estemated run time E ,and deadline D which is

acount as maximum commit time.

The performance of a scheduling algorithm depends

upon the average utilization of the system. At low

utilizations, sufficient time exists for nearly all

overrunning jobs to complete in time. As the utilization

increases, overrunning jobs become more likely to miss

their deadlines.

As we planned that our algorithms should schedule all

transactions such that all dead line are met and that

transaction with missing deadline minimized, the

simulation experiments show that the new algorithm

CWHP “Conditional waiting High Priority” reduce the

number of deadline missed compared with four other

algorithms. We examined the performance of five

concurrency control mechanism, each algorithm paired

to the priority protocol Early Deadline First, within

different workloads such as normal load and heavy load.

For a given set of transactions, order according to which

the tasks are to be executed such that various constraints

are satisfied.

The simulation experiments using the parameters, and

were considered for scheduling as in example1: release

time, deadline, and execution time of the transaction.

success ratio (commit percentage) was used as measure

of performance metrics in our simulation result, it is the

percentage of input transactions that the system is able

to complete before their deadline.

VII. Conclusion

Transactions in real time systems must be scheduled in

such a way that they can be completed before their

deadlines, the scheduler assigns a priority to each

transaction based on its deadline, in this dissertation we

proposed a new scheduling algorithm Conditional

Waiting High Priority (CWHP), for enhanced the

performance of the system by minimized the number of

transaction that is missed their deadline , the algorithm

checked transaction priorities at the time of the conflict

and it considered the waiting time for transaction that

request the lock of resources as same as the remaining

time for transaction that hold the data at conflict time.

We have used a simulation model for the purpose of

comparing the performance results of our algorithm

with other existing algorithms that are using the most

popular priority assignment schemes Earliest Deadline

First (EDF) policy.The performance of transactions

performed by comparison of transactions commit

percentages for each algorithm, our simulation result

showed that our proposed algorithm is effective and

used it decreased the numbers of transaction that missed

their deadline, therefor increase the overall system

performance.

A CKNOWLEDGEMENT

I would like to express my deepest gratitude to

myresearch supervisor Dr. Khalid Khanfer, for his

providing me with an excellent atmosphere I would like

to thank Dr. Ahmed Khalid, who let me experience and

supported my research, Special thanks to Dr. Aiz-Aldin

Who provided us with this opportunity and illuminated

our path.

I am extremely grateful to all my family for their love,

prayers, caring and sacrifices for educating and

preparing me for my future, always there cheering me

up and stood by me through the good times and bad.

References

[1] A. P. Buchmann. D. R. McCarthy. M. Hsu. and U. Dayal, Time-

Critical Database Scheduling: A Framework for Integrating
Real-Time Scheduling and Concurrency Control, Xerox

Advanced information Technoio, Four Cambridge Center,

Cambridge MA &!142, Feb ,1989 IEEE
[2] Abbott, R. and Garcia-Molina, H. Scheduling real-time

transactions with disk- resident data. Proceedings of the

Fifteenth International Conference on l, very Large Database
Systems, Amsterdam, 1989.

[3] Abbott, R., And Garcia-M• Lina, H, Scheduling real-time

transactions: A performance ACM Transactions on Database
Systems, Vol. 17, No. 3, September 1992.

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 111

[4] Abbott, R., and Garcia-Molina, H. Scheduling real-time
transactions. ACM SIGMOD Rec. (Mar. 1988), 71-81.

[5] ArezouMohammadi and Selim G. Akl, Scheduling Algorithms

for Real-Time Systems, Technical Report No. 2005-499,
supported by the Natural Sciences and Engineering Research

Council of Canada., July 15, 2005
[6] Azer BEST A VROS et. al., Real-Time Database Systems:

Issues and Applications, SPRINGER SCIENCE+BUSINESS

MEDIA, LLC, Copyright © by Springer Science Business Media
New York, 1997

[7] Ben Kao; and Hector Garcia-Molina, An Overview of Real-Time

Database System, 1994
[8] C. H. Papdimitriou: The Theory of Database Concurrency

Control. Computer Science Press (1986)

[9] E. D. Jensen, C. D. Locke, H. Tokuda: A Time-Driven
Scheduling Model for Real- Time Operating Systems. IEEE

Real-Time System Symposium. (1985) ,112-122

[10] Haritsa, J et al., Earliest-deadline scheduling for real-time
database systems. Proceedings of the Twelfth IEEE Real-Time

Systems Symposium, San Antonio, TX, 1991.

[11] Haritsa, J et al., "Data Access Scheduling in Firm Real-Time
Database Sys-tems," Journal of Real-Time Systems, vol. 4, Sept.

1992.

[12] HousineChetto& Marline Chetto , Some Result of the Earliest
Deadline Scheduling Algorithm,IEEE Transaction on software

Engineering vol.15,10 October 1989

[13] Huang, et al., Experimental evaluation of real-time transaction
processing. Proceedings of the Tenth IEEE Real-Time System

Symposium, Santa Monica, CA, 1989.

[14] ijzgiirUlusoy, A Study of Two Transaction-Processing
Architectures for Distributed Real-Time Data Base Systems, J.

Systems Software 1995; Systems Software 1995; by Elsevier

Science Inc 31:97-1080 1995.
[15] J. Huang & J. Stankovic& et, al., Real-Time Transaction

processing: Design, Implementation and Performance

Evaluation, COINS Technical Report 90-43. May,1990
[16] J.R. HARITSA et al, Data Access Scheduling in Firm Real-

Time, Academic Publishers. Manufactured in The Netherlands.

The Journal of Real-Time Systems, 4, 203-241 (1992).
[17] JAUHARI et al., Priority hints: An algorithm for priority based

buffer management. TR 911, Computer Sciences Dept., Univ. of

Wisconsin-Madisonj Feb. 1990
[18] Jayant R. Haritsa, et al., Value-Based Scheduling in Real-Time

Database Systems, Fred J. Maryanski, Editor, VLDB Journag2

117-152 (1993)
[19] JIA XU and DAVID LORGE PARNAS, Scheduling Processes

with Release Times, Deadlines, Precedence, and Exclusion

Relations, IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING, VOL. 16. NO. 3. MARCH 1990

[20] Jiandong Huang e.tal,” On Using Priority Inheritance in Real-

Time Databases”, National Science Foundation under Grant IRI-
8908693 and Grant DCR-8500332, and by the U.S. O ce of

Naval Research under Grant N00014-85-K0398., March, 1991

[21] K.Ramamrithm& et. Al., Efficient Scheduling Algorithm for
Real Time Multiprocessor systems, COINS Technical Report

89-37, April,1989

[22] Kam-yiu Lam & et. al., Performance Studies of Locking
Protocols for Real-time Databases with Earliest Deadline First,

Journal of Database Management, Vol. 6 No. 2, Manuscript

originally submitted November 10, 1993; Revised August 10,

1994; Accepted September 1, 1994 for publication.

[23] Kung, H. and J. Robinson, "On Optimistic Methods for
Concurrency Control," ACM Trans. on Data-base Syst., vol. 6,

no. 2, pp 213-226, June 1981.

[24] L. Sha, R. Rajkumar, and J. Lehoczky, "Concurrency Control for
Distributed Real-Time Databases," ACM SIGMOD Record, vol.

17, no. 1, Mar. 1988.

[25] ÖzgürUlusoy&Bilkent, Lock-Based Concurrency Control in
Distributed Real-Time Database Systems, Journal of Database

Management, Manuscript originally submitted November 10,

1992; Accepted March 3, 1993 Accepted publication March 3,
1993

[26] P. Yu, K. Wu, K. Lin, and S. H. Son, "On Real-Time Databases:
Concurrency Control and Scheduling," Proceedings of IEEE,

vol. 82, no. 1, January 1994, pp 140-157.

[27] Philip S. & et. al., “On Real-Time Databases: Concurrency
Control and Scheduling1994

[28] Rajendran M. et al., Priority assignment in real-time active
databases, The VLDB Journal (1996) 5: 19–34

[29] Ranjana Jhala1 et al., Concurrency Control Model for

Distributed Database, International Research Journal of
Engineering and Technology (IRJET) e-ISSN: 2395-0056,

Volume: 02 Issue: 01 | Mar-2015

[30] Robinson, J. Design of concurrency controls for transaction
processing systems, Ph.D. Thesis, Carnegie-Mellon University,

Pittsburgh, PA, 1982.

[31] S. C. Cheng, et al.: Scheduling Algorithms for Hard Real-Time
Systems | A Brief Survey. Hard Real-Time Systems, 150-173,

IEEE (1988)

[32] Sang H. Son and Seog Park, Scheduling and Concurrency
Control for Real-Time Database Systems, ONR, by DOE, by

IBM, and, by CIT. 1992

[33] Sang H. Son, & et. al., Real-Time Database Scheduling: Design,
Implementation, and Performance Evaluation, Database Systems

for Advanced Applications'91. Ed. A. Makinouchi @World

Scientific Publishing Co.,1991
[34] SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. P. Priority

inheritance protocols: An approach to real-time synchronization,

CMU-CS-87-181, Dept. of Computer Science, Carnegie-Mellon
Univ., Dec. 1987.

[35] Shiby et. al., Integrating Standard Transactions in Firm Real-

Time Database Systems.1996
[36] Sonia Takkar. B.Tech, Scheduling Real-Time Transactions in

paralle1 Database Systems, Carleton university Ottawa. Ontario.

Iugust 1. 1997
[37] ulHaque, Waqar, "Transaction processing in real-time database

systems " Retrospective Theses and Dissertations. (1993). Paper

10442.
[38] Yumnam Jayanta& Yumnam Somananda, Conflicting

Management of Transactions in Real Time Database System,

2011 First International Conference on Informatics and
Computational Intelligence,2011

