
International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 63

Software Maintainability and Reusability using

Cohesion Metrics

Adekola, O.D
#1

, Idowu, S.A
*2

, Okolie, S.O
#3

, Joshua, J.V
#4

, Akinsanya, A.O
*5

, Eze, M.O
#6

,

EbiesuwaSeun
#7

 #1Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria

*2
Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria

#3
Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria

#4
Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria

*5
Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria

#6
Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria

#7
Faculty, Computer Science Department, Babcock University,Ilishan-Remo, Ogun State, Nigeria

Abstract - Among others, remarkable external

quality attributes of interest to software practitioners/

engineers include testability, maintainability and

reusability.Software engineers still combat
softwarecrisis and even chronic software affliction

not because there is no standardized software

development process but because enough attention is

not given to seemingly insignificant but crucial

details of internal design attributes such as cohesion

and coupling especially in object-oriented systems.

Consequently, the aftermath is increased

maintenance cost, effort and time which negatively

plague both the developers and users community.

Also, reusability being an important part of quality

design and time-to-market is equally affected.

This work addresses how to use internal attribute as

cohesion could improve software maintainability and

reusability. This research also addresses general

design principles of object-oriented and other reuse-

oriented systems.

Keywords: Testability, Maintainability, Reusability,

Cohesion, Coupling, Software Affliction

I. INTRODUCTION

Maintainability in software constitutes effort and ease

required to modify, correct or improve the quality of

a design or product. Maintenance could be done as a

result of a need to add new features or functionalities,

fix a bug or to increase the strength of the software.

Maintenance constitutes an essential part of

software’s lifetime. Ahn et al., (2003) estimated that

maintenance takes up to 80% of the total costof

producing software applications. Expectation of

achieving more reliable, quicker time-to-market and

maintainable systems. A lot of research has gone into

the areas of software reuse and maintenance due to

the fact that these among other issues concern

intimately system developers/architects/engineers

rather than end-users. Therehas been enormous
growth in software reuse research from the days of

structured programming concepts to object-oriented

methods and beyond (e.g. component based

development) (Wang, 2000).

Most times, software developers have the capability

of creating or producing software that functionas

desired. Theirutmostchallengeis finding ways to

produce software quickly enough to meet up with the

growing demand for more products and at the same

time having to maintain increasingly thriving

software “crisis”. Pressman& Maxim, (2015) express
the phenomena as software affliction, a long-lasted

pain or distress. This work does not look in the

direction of software development life cycle or

process flow but rather seeks to consider internal

attributes such as source line of code (SLOC),

complexity, cohesion and coupling with a narrowed

focus on cohesion. The most important software

internal quality metrics are cohesion and coupling

(Chidamber&Kemerer, 1994). Generally, internal

attributes (such as size and cohesion) whether in

traditional or object orientedmethods are critical
indicators of external attributes which include

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 64

understandability, maintainability and reusability. A

clever but vital area to consider when it comes to
attempting to alleviate software afflictionis

toexamine what could be done with internalproperties

such as complexity, cohesion, coupling etc.Common

questions from literature include the following: are

highly cohesivemodulesorcomponentsmore readily

reusable, does attention to cohesion yield

maintainable systems, do wehave a one-size-fit-all

when it comes to software metrics to measure major

external attributes?A software metric is a quantifiable

measurement of some attributesor an attribute of a

software product or process (Frakes& Kang, 2005).

A mapping of empirical world to formal, relational

world is what is termed as measurement (Fenton

&Pfleeger, 2010). Therefore, a measure is regarded

as thenumber or symbol assigned to anentity bysuch

mapping in a bid to get an attribute characterized.

Cohesion implies the degree of relatedness among

class members while coupling simply connotes

theinterconnectedness of modules within a software

or a program. A class with high cohesion will be a
difficult candidate for refactoring, i.e. difficult to split

into separate classes (Dallal& Briand, 2009).From

their meanings, high cohesion and low

couplingshould implya good design as far as software

is concerned. High cohesion,which is ranged within

[0,1] shows good design as well as goodquality

software (Chidamber&Kemerer, 1994; Okike, 2010a;

Okike&Osofisan, 2008; Okike&Rapo, 2015).

Further, cohesion is a measure of the degree of

connectivity among a single class- suffice to say it

reveals or indicates the relationship within a module.

For coupling, it is in order to say it indicates
relationships between modules or components of a

software or system. Cohesion measures how one

function performed by an entity relate to another. It is

characteristic of most metrics to evaluate cohesion by

considering if methods of a class access similar sets

of instance variables (Mal &Rajnish, 2014).Coupling

connotes how much a component knows about the

inner workings (elements) of the other.

Fig 1: Simple illustration of cohesion and coupling; the thick

lines indicate cohesion and the dotted lines indicate

coupling(Source: Adapted from Dhanvani, 2013)

There are many cohesion metrics in literature but the

metric to employ for a particular instanceneeds to be

found out. Mal andRajnish, (2014), discussed a

number of metrics which were empirically validated

against notable open source software projects.

II. METHODOLOGY

This research embodies case studies, systematic

literature reviews and surveys. Important

requirements were identified in related papers. The

relevant documents obtained were qualitatively

analyzed for convergence, and relevant details were
extracted using inductive approach. Existing

measures were evaluated. This work leveraged on

Chidamber and Kemerer metrics and Rajnish and

Mal metrics and made proposition on inclusion of

method-method interaction as part of consideration

for cohesion measures.

III. LITERATURE REVIEW

In software engineering, qualities such as

maintainability, reusability, flexibility, writeability
and demonstrability are described as developer-

orientedquality attributes (Berander, Damm,

Eriksson, Gorschek, Henningsson, Jönsson,

Kågström, Milicic, Mårtenssonn, Rönkkö,

&Tomaszewski, 2005). While these are external

software quality attributes, internal qualities are the
likes of size, complexity, cohesion and coupling. The

internal versus external quality attributes relationship

could be fashionably intuitive, for example the more

complex a code is the more difficult it is to maintain.

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 65

But,the exact functional form of the relationship is

not very lucid. Therefore, this is connotes a subjectof
serious research issue.

IV. COHESION
Using class illustration, cohesion means the extent or
degree which a class carries a single, well-focused

purpose. By implication, a better design should own

high cohesion.It means a class encapsulates only

properties and operations that are closely related.

Interestingly, high cohesion is a desirable property of

a program in that it positively impacts

understandability, maintenance and reuse (Girish,
2014). An intimate example could be to illustrate

cohesion as communication between father, mother,

and child within a family while its counterpart called

coupling could be communication in between two

different families.

Consider the following unified modeling

language(UML) class example:

Staff

+checkMail()

+sendMail()

+validateMail()

+printLetter()

Figure: 2. A class design with cohesion.

Note: These functionalities might be appear

logical but might not belong together

Staff

- salary

-emailAddress

+setSalary(empSalary)

+getSalary()

+setEmailAddress(empEmail)

+getEmailAddress()

Fig 2: A class design with high cohesion

In Figure 2, the Staff class should not

consistcheckMail, validate emails or sendMail. These

functions could go into a supposed E-mail class,

hence, high cohesion would be feasible. In Figure 3,

the Staff class has only actual information for setting

and getting Staff related data. It does not include

operations that should be handled by or separated to
another class.

A. Types of Cohesion

The following are the variousclassifications of

cohesion that require research attention:

1. Functional Cohesion: This means the

various constituent elementsthat make up

the module or component are grouped

together simply because each or almost

everyone in the group contributes to the

module’s single responsibility or well-

focused task.

2. Informational cohesion: Here,the entity is

said to represent a cohesive body of data and
a set or group of independent actions or

behaviours on the particular body of data.

3. Sequential Cohesion: This grouping occurs

when parts of the modules output represent

the input to the other.

4. Communication Cohesion: This is when

parts of the module are organized in a group

because they use or work on the same data.

5. Procedural Cohesion: This is when parts of

the module are grouped together because

they followa certain sequence or order of

execution.

6. Logical Cohesion: This is whenparts of the

module are put in the same group because

they are logically grouped to do the same

task but might have different nature.

7. CoincidentalCohesion: This is when

modules have nothing really in common

except for something like convenience.

8. Temporal cohesion: This is when sometime

a component is used to initialize a system or

set variables.

Generally, the fewer the quantity of instance

variablesthe higher the strength of cohesion. The

more the variables a method operates upon the more

the likelihood of cohesiveness that method would

exhibit to its class; this is a positive virtue

(Okike&Rapo, 2015).Highly cohesive classes or

modules, in general, are easier to maintain and are

less frequently in need of changes.Such classes or

modules are more usable than others simply because

their design follows a well-focused purpose.

V. COUPLING

While cohesion is interaction between two or more

elements within a module, coupling is interaction /

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 66

relationship between two modules. Coupling means

the degree to which one class or component knows
about another classor component (Beck & Diehl,

2011). Considering two classes named X and Y,

given that X knows Y through its interface only, that

is, Xinteracts or relate with Y through its application

programming interface (API) then both classes are

loosely coupled. But if class X, other thaninteracting

class Y through itsinterface also interacts or relates

through the non-interface property of class Y then

one can say they are regarded as tightly coupled. If

the designer decides to change class Y’s non-

interface part for a positive reason, class X breaks

because of this tight coupling. Tight coupling makes
writing tests harder.

Holub (2005) stated that the main problem with

inheritance implementation is that it introduces

unnecessary coupling in the form of fragile base class

problem (i.e. when changes made to a base class

impacts the functionality of many derived classes and

spread throughout the system). Most practices of

object-oriented programming recommend keeping

the inheritance graph as shallow as possible. Overuse

of inheritance worsens coupling, leading to less
flexible and reusable classes. The use of composition

instead of inheritance is also preferred.

B. Types of Coupling:

The following include the different types of cohesion:

1. Content Coupling: This israted highest and

occurs when one of the module or

componentdepends or relies on the internal

workings of the other module. Invariably,

when you make changesto the second

module you will automatically need to make

changes to the one that is dependent.

2. Common Coupling: This occurs when more

than one modules share the same global
data. Consequently, a change in the shared

(common) resource engenders changes in

those modules.

3. External Coupling: This is when more than

one modules share an externally imposed

data format and communication protocol.

4. Control Coupling: This is whena module

controls or dictates the flow another and

passes information from one to the other.

That is, one component passes parameters to

control the activity of another component.
5. Message Coupling: This is come about

though state decentralization. This is seen as

the loosest form of coupling, suchthat

components communication is carried outvia

message passing.
6. Data Coupling: This is recorded if only data

are passed between modules.

7. Stamp Coupling: This is when data structure

is used in transferring information from

onemodule to another.

Fig 3: Illustration of degree/hierarchy of coupling(Source:

Chawla, n.d)

The goal of a good design is to eliminate unnecessary

coupling. This makes maintenance of the system
much easier. Loosely coupled systems are made up of

components which are independent or almost

independent.

VI. MAINTAINABILITY ATTRIBUTES AND

BENEFITS
Maintainability refers to the degree to which

asoftware or component of a software can be easily

modified in order to correct bugs, add quality

attributes or adjustthe operating environment andthen

improve the efficiency of the entire

software.Generally, software maintenance phase

demands that needed changes are made to the

existing system (Michura, Capretz, & Wang,

2013).As a result of inevitable increases in the size

and complexity of software products,software

maintenance duties have also become increasingly

herculean.Therefore, an urgent concern in the
computing industry is the need to maintain and

enhance software productsas cost effective as

possible and within a short time. To meet this

objective, concepts and techniques which lead

todesigning more maintainable solution should be

given serious consideration. In short, software

Content coupling
Common coupling
Control coupling
Stamp coupling
Data coupling
Uncoupled

High coupling

Loose coupling

Low coupling

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 67

maintenance should no longer be a design

afterthought; that is, it should beeasy for software
maintainers to enhance the quality of the product

withoutcompulsorily tearing down and rebuilding the

substantial parts of the code. And one should be able

to predict what happens to a system if change is

required. This is the reason, from design

perspectives, to consider paying attention to internal

attributes that could improve maintainability.

The following illustrates maintainability and the

external versus internal attributes:

Fig 4: Framework for software measurement validation
(Source: Garcia, 2014)

VII. REUSABILITY ATTRIBUTES AND

BENEFITS
There is a continuing effort in taking the advantage of

reusing knowledge or artefacts right from procedural

techniques to object-orientedsystem development,

component oriented development and beyond.

Prominent in this area are program library,

application product lines, component based

development, service oriented systems, legacy

systems, program generator, aspect-oriented software
development, design patterns, and commercial off the

shelf software integration. These are categorised as

systematic reuse areas where the full benefit of

software reuse can only be achieved (Bhatnagar&

Kumar, 2014). A potent weapon in the design of

reuse elements or reusable components is how to
reduce dependency and increase cohesion

(Wang,2000). Properly designed components can be

easily customized or replaced which in the end could

facilitate maintenance (Crnkovic& Larsson, 2002).

A reusable software component is a software system,

subsystem, module or program chunk that can be

easily integratedinto newsoftware or program directly

or after somenecessary changes have been made.

Basili, Briand, &Melo, (1996) indicated that error

density (that is, errors per thousand lines of code)

dropped from 6.11 for systemsdeveloped without

employing reuse to 0.12 for systems built from
reusable components. It has also been discovered that

40% to 60% of code is truly reusable from one

application to another application, 60% of design and

code are reusable in when it comes to business

applications, 75% of program functions are common

in two or more programs, and only about 15% of the

code found in most software is unique to

Maintainability

Separation of

concern

Internal

Attributes

Size

Coupling

Cohesion

Metrics

CDC, Concern Diffusion over components

CDO, Concern Diffusion over operations

CDLOC, Concern Diffusion over LOC

LOC, Line of code

NOA, Number of Attributes

WOC,Weighted Operations Per component

CBC, Coupling between components

DIT, Depth of inheritance Tree

LCOO, Lack of Cohesion in operations

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 68

oneparticular application (Ezran et al., 2002).

Maximizing the reuse of tested, certified and
organized artifacts can generate improvements in

cost, time and quality (Basili et al., 1996). The U.S.

Department of Defencewas able to save $300 million

annually by increasing its reuse level by only 1%

(Computerworld, V27(49)). This presents a good

case to venture into research that can improve

software reuse.

Effective reuse is not a simple addition toexisting

software development processes; it puts strong

demandson development methods in order to be

successful. Key issues to considerhere is to define
models and metrics which can measuresoftware

reusability (Antovski&Florinda, 2013). A metric is a

quantitative indicator of an attribute of a thing while

a model specifies relationships among metrics

(Frakes& Kang, 2005).

VIII. DESIGN PRINCIPLES

Another subject of concern is design principles which

have intertwined relationship with giving
consideration to known internal attributes. Some of

the commonest examples of design principles include

striving for a clearly defined, single purpose per

component, striving for loosely coupled and highly

cohesivecomponents, developing components with

overall future use in mind and also putting extra

effort into error handling andmaking components

robust (Suresh, (2011).

The software-intensive industry is relentless in

finding ways to develop software faster, cheaper,

more predictably, with requested functionality and
quality and with sufficient maintainability. The key

thing is to improve the process for developing and

maintaining the appropriate software (Sommerville,

2010).

Robert C. Martin, from his research experience,

compiled and proposed different object-oriented

design principleswith a common acronym called

SOLID Design principles (Martin, 2012). The

meaning of the acronym is:

S- Single Responsibility Principle - A class should
have one, and only one, reason to change

O- Open Close Principle- A class should be open for

extensionand closed for modification

L-Liskov Substitution - Derived classes must be

substitutable for their base

I-Interface Segregation Principle - Make fine grained

interfaces that are client specific

D- Dependency Inversion Principle- Depend on

abstractions, not on concretions

IX. FOCUS ON OBJECT ORIENTED METRICS

SUITES

There are many traditional metrics found in literature

which had been applied to measure many quality

criteria like size, complexity, comment percentage

and so on. Metric as cyclomatic complexity
(McCabe, 1976) proved to be one of the best

indicators to test reliability in a system. However,

these traditional software measures would not scale

well scale when it comes to handling object-oriented

systems (Goldberg & Rubin, 1995).This is simply

because basic object-oriented characteristics like

polymorphism, inheritance, classes and object are

notincorporated in their design (Kaur & Kaur, 2015).

In object-oriented programming, much of the explicit

branching statements, e.g. if, while and

casestatements, have been replaced by implicit
branching due to inheritance andevent-driven

programming. This implies that cyclomatic

complexity metric alonecannot decipher the

complexity of an object-oriented program. The

following are some OOD metrics but the more or less

commonest is the CK metrics suite

(Chidamber&Kemerer metrics) (Suresh, Pati& Ku,

2012).

X. CK METRICS SUITE

This suite is referred to as being best indicators for

fault proneness. It is a convenient tool to predict the

reliability of a system. The metric suite helps

developers to make better design decision and at the

same time estimate testing effort(Suresh, Pati, & Ku,

2012).

The ChidamberandKemerer metrics suite originally

consists of six metrics created to test some specific
system characteristics. They are highlighted as

follows:

1)WMC (Weighted Method per Class)

This is one of the metrics that has been

remarkedaseffective in predicting testing and
maintenanceeffort. It could perform better when

complemented or combined with other metrics.

If there exists a Class C1, having methods as

m1,m2,…, mndefined as members of a class. Let c1,

c2,...,cn be labeled as the complexity of the methods,

then WMC is illustrated with the following simple

equation:

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 69

WMC = ci𝑛
𝑖=1 , for i 1 to n. (1)

Such that ci is regarded as the complexity of the

methods or functionsassociated in the ith class.

If every method’s complexity is unity, then that

implies the value of WMC will become n, meaning

the number of methods involved.

2) Depth of Inheritance Tree (DIT)

Thisis calculated as the maximum length of path

from a class to the root class in the inheritance

(hierarchy) tree. The higher depth shows more
complexity in predicting its behavior.

3)NOC (Number of Children)

This connoted the quantity of immediate sub-classes

that are subordinate to a known class in the class

hierarchy. This shows the influence of a class on

either the system or the design.

4)CBO (Coupling between Objects)

Coupling between Objects metric for a known class

is the sum total of the quantity of other classes to

which it is coupled. This helps in determining the

complexity of testing on the design.

5) Response for a Class (RFC)

This is the set of methods that have the likelihood of

being executed as a result of response to a message
received by an object of that class. RCF is also a

measure of the possible communication between the

class and other classes. Large RFC showstendency of

more fault.

6) Lack of Cohesion in Methods (LCOM)

LCOM attempts to find the degree of methods

similarity and is theoretically grounded upon

ontology of objects according to Bunge, (1972). The

ontology defines the set of characteristics or

properties thatobjects share.
If there existsClass C1 having n methods M1, M2,

…Mn. Then{ Ii } is the set of instance variables that

are accessed by method Mi. There are n such set {I1

},…,{I n }.

Then the following two disjoint sets are defined:

 A ={ (Ii, Ij) | Ii Ij =  },
 (2)

 B = { (Ii, Ij) | Ii Ij ≠  }
 (3)

If all n sets { I1}…{ In } are  then A =

LCOM is defined from the cardinality of the sets as

follows:

 LCOM = |A| - |B| , if |A| > |B| or

zero (0) otherwise (4)

LCOM is described as an inverse cohesion measure.

When LCOM is (0) then a class is cohesive.

Eg. If class C has methods M1, M2, and M3,

let { I1} = (a,b,c,d,e} be set of instance variables in

class C used by method M1

{ I2} = {a,b,e} for method M2

{ I3} = {x,y,z} for method M3

Then { I1}  { I2} ≠ 

{ I1} { I3} = 

{ I2} { I3} = 
.
LCOM = the number of null intersections – number

of non-empty intersections.

The result is one in this example LCOM = 2 –1 = 1;

So, the larger the number of similar methods, the

more cohesive the class is.

If none of the methods of a class display any instance

variables, they have no similarity and the LCOM

value for the class is zero (0). LCOM is intimately

tied to methods and instance variables of a class,

therefore, it is described as a measure of properties of

an object.

Having a high value of LCOM means low cohesion

and then the class might be in a better design if

broken into two or moreseparate classes.Poor

cohesion also means high complexity which can

increase error tendency during system development.

XI. ROBERT C. MARTINS METRIC SUITE

Ideal models of dependency and abstraction are

reflected by these metrics. It captures some good
design principles and also representsa lucid

description of stability in software.This metrics is

commonly known as package metrics (Martin, 1994).

It consists of the following:

a) Efferent Coupling (Ce): n(classes) outside the

package that depend on classes within the package.

b) Afferent Coupling (Ca): n(classes) inside the

package that depend upon classes outside the

package.

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 70

c) Instability(I) =Ce / (Ce + Ca). (5)It implies

the adaptability to of package to change.
It ranges within [0-1],such that when I = 0we

haveabsolutely or completely stable package,and

when I = 1 we have absolutelyinstable package.

d) Abstractness: This is the comparison of quantity of

abstract classes (and also interfaces) to the total

numberof classesin thepackage under consideration.

Abstractness (A) = abstractClasses / totalClasses.

(6)

The range is [0-1];when A = 0 we have absolute

concrete package; when A = 1 we have absolute
abstract package.

e) Normalized Distance from Main Sequence (D)

D connotes the perpendicular distance of a package

from the idealized line given by:

D = A+ I-1. (7)

Where D = 0depicts a package which coincides with

the main sequence and
D = 1 depicts a packagethat is said to be far away

from the main sequence.

XII. OTHER RELATED WORKS:

The following is a review of related works that

indicated efforts in promoting parallel programming

and supporting frameworks:

Shumway, (1997)carried out a empirical research on

the relationship between class cohesion and size and

concluded that there is no significant relationship

between cohesion and class size as measured in
number of byte code. Also, the data set used did not

exhibit high reuse properties which could aid

investigating the relationship between reuse and

cohesion.

Badri&Badri (2004) proposed a class cohesion

measures which attempted to consider other criterion

that are characteristic of object orientation in

assessing the relatedness of class elements. The

researchers stated that class cohesion should not

exclusively be based on common instance variables

usage criteria.
Michura, Capretz, & Wang (2013) also stated that

some system characteristics are essential to deal with

issues of system complexity and its associated

maintainability. The paper identifies factors that are

responsiblefor difficulties in performing changes

during maintenance, and also the necessary effects

that may come with those changes especially object-

oriented systems. However, the experimentation

revealed that large systems would benefit more from
the proposed metrics compared to small ones.

Rajnish& Mal, (2014) discussed the relevance of

cohesion as a key design property in object oriented

software as used in measuring connectivity within

subsystems. While LCOM searches for absence of

cohesion, their proposed work attempts to seek the

degree of presence of cohesion. This research mainly

modeled the interaction between global variables and

methods within a program. Their experiment shows

correlation between lines of code, LOC, compared to

some existing cohesion metrics.

XIII. MEASURING FUNCTIONAL COHESION

As object-orientation requires a new way of thinking

and a different way to design, measuring design

elements also demands a different approach beyond

traditional measures. Due to the complexity of

object-oriented software,there is no single, simple

measure of software quality for all cases (Michura,

Capretz, & Wang, 2013).

The well-known metrics proposed by Chidamber and

Kemerer (described as the CK metrics) can be used to
measure some object oriented characteristics and can

be used to predict defects during maintenance but do

not give enough information as regards the difficulty

in executing such changes (Michura, Capretz, &

Wang, 2013). Also, the proposed metrics of Mal

&Rajnish, (2014) emphasized on predicting system

reusability.

XIV. LACK OF COHESION METRICS

One of the most common lack of cohesion metrics is

that of Chidamber and Kemerer.This has been

worked upon over the years to ensure improvement

and to see to its application specificity.

XV. COHESION PRESENCE METRICS

Mal &Rajnish., (2014) proposed a cohesion metrics

which shows correlation with Number Line of Code
Property, NLOC. It is also said to be a good indicator

of reusability. This work principally considered

variable-method interactions (Mal &Rajnish., 2014).

XVI. PROPOSED METRICS

Figure 6 is a model of the proposed metrics which (in

addition to variable-method) consider method-

method interactions which is an extension or

adaptation of Mal &Rajnish, (2014) metrics.Notably,

boththe Chidamber and KemererLCOM metrics and

Mal and Rajnishshare in common the concept of

variable-method interaction but the former measures

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 71

(12)

the absence of cohesion while the latter measures its

presence.

Fig5: Illustration of class cohesion measure indicating

variable-method interaction and method-method interaction.

The i, j, k and l represent the variables while M1, M2

and M3 are the methods.

The mathematical model of the model is described as

follows:

Let class C consists of a set of instance variables V =

{v1, v2,…,vn} and a set of methods M = {m1, m2,

…, mn}.

Then Proposed Class Cohesion, PCC is evaluated

based on ith instance variable of a class (CVi) for

method-data interaction and invoked methods in the
class (CMi) for method-to-method interaction.

CVi= Numberof methods sharing the instance

variable i of a class

Number of all methods in the class

CVi = n(M(Vi)) (8)

 n(M)

CMi = number of methods invoked by other methods

in the class

Number of all methods in the class

CMi= n(M(mi)) (9)

n(M)
PCC =CVi + CMi(10)

Then the mean CVi, andCMi cohesion count of a

class of n instance variable is computed as follows:

Cohesion PCC = (CVi
𝑛

𝑖=1
+ CMi) (11) n ≥ 1

n

Then, to evaluate a system’s cohesion comprising r

classes, the following applies:

SysCo = Cohesion PCC𝑟
𝑖=1

XVII. DISCUSSION

The cohesion measurement discussed and proposed is

a predictive approach to designing OO software. This

informs the designer of the system status and helps to

determine what proactive step to take in ensuring a

system with less future problems. This work

evaluates existing metrics, design principles,

importance of maintainability and reusability

properties, cohesion and coupling and most

importantly considers how to improve cohesion

measures for the benefit of software developers.

XVIII. CONCLUSION AND RECOMMENDATION
Software engineering is a disciplined approach

towards creating quality software products. To get

value for effort put into software design some subtle

but critical underlying characteristics need to be

given serious attention by knowledge engineers,

software developers and practitioners. Remarkable

quality attributes such as maintainability and

reusability are part of external properties of a system.

The fulcrum of these is not far from the internal

attributes. And two amongthose rated most important
are cohesion and coupling attributes. During

maintenance for example, these have direct impacts

on what the designer of software will go through let

alone if such solution were to be maintained by a

different developer. This report discussed the

relevance of these internal attributes as they relate to

reusability and maintainability. Existing works on

cohesion metrics were evaluated, design principles

were discussed and a narrowed focus was given to

cohesion measures. Most works reviewed focused on

the important characteristic of cohesion which
models the relationship between instancevariables

and methods within a class. This work considers

additionalbehaviour as method-method interaction.

Future recommendation is the consideration or

addition of other class characteristics (e.g.

discrimination anomaly) that could improve cohesion

measurement as exhibited by different designs.

REFERENCES

1. Ahn, Y., Suh, J., Kim, S., & Kim, H. (2003).

The Software Maintenance Project Effort

Estimation Model Based on Function Points.

Journal of Software Maintenance Evolution:

Research and Practice, 15, 71-85.
2. Allen, H. (2005). Introduction to Object-

Oriented Analysis and Design. Best

i l k j

M1 M3 M2

Such that n = number of instance variables of a class

The range of PCC is [0,2]

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 72

Software Canada Ltd. Printed in Canada

8920 Woodbine Ave. Suite 400.
3. Antovski, L., &Florinda, I. F. (2013).

Review of Software Reuse Processes.

IJCSI,International Journal of Computer

Science Issues, www.IJCSI.org, 10(6), 83-

88.

4. Badri, L., &Badri, M., (2004). A Proposal of

a New Class Cohesion Criterion: An

Empirical Study. Journal of Object

Technology, Published by ETH Zurich,

Chair of Software Engineering, JOT, 3(4).

5. Basili, V. R., Briand, L. C., &Melo, W. L.,

(1996). How Reuse Influences Productivity
in Object-Oriented Systems. Communication

of the ACM, 39(10), 104-116.

6. Beck, F., & Diehl, S., (2011). On the

Congruence of Modularity and Code

Coupling. Proceedings of the 19th ACM

SIGSOFT symposium and the 13th

European conference on Foundations of

software engineering, ACM, NY, USA, 354-

364

7. Berander, P., Damm, L., Eriksson, J.,

Gorschek, T., Henningsson, K., Jönsson, P.,
Kågström, S., Milicic, D., Mårtenssonn, F.,

Rönkkö, K., &Tomaszewski, P. (2005).

Software quality attributes and trade-offs.

Blekinge Institute of Technology.

8. Bhatnagar, V., & Kumar, A., (2014).

Prospective of Software Reusability.

International Journal of Application or

Innovation in Engineering & Management

(IJAIEM),3(1), 411-414.

9. Bunge, M. (1972). Treatise on Basic

Philosophy: Ontology II: The World of

Systems. Riedel, Boston, USA.
10. Chawla, J. (n.d.). Cohesion and Coupling.

Retrieved from

https://www.slideshare.net/jagneshchawla/c

ohesion-coupling.

11. Chidamber, S. R., &Kemerer, C. F., (1994).

A Metrics suite for object Oriented Design.

IEEE Transactions on Software

Engineering,20(6), 476-493.

12. Computerworld, Software Reuse Plans

Bring Pay backs, Computer world, 27(49),

73-76. Anthes, Gary I.
13. Crnkovic, I., & Larsson, M. (2002). Building

Reliable Component-Based Software

Systems. Boston, London: ArtechHouse.

14. Dallal, J. A., & Briand, L., (2009). A

Precise Method-Method Interaction-Based

Cohesion Metric for object-oriented classes.

ACM Transaction on Software Engineering

and Methodology (TOSEM). TR, Simula

Research Laboratory.
15. Dallal, J. A. (2011). Measuring the

Discriminative Power of Object-Oriented

Class Cohesion Metrics. IEEE Transactions

on Software Engineering,37(6), 788-804.

16. Dhanvani, J. (2013). Difference between

Cohesion and Coupling. Retrieved from

http://freefeast.info/difference-

between/difference-between-cohesion-and-

coupling-cohesion-vs-coupling/

17. Ezran, M., Morisio, M., & Tully, C. (2002),

Practical Software Reuse. Springer, 374.

18. Fenton, N., &Pfleeger, S. (2010). Software
metrics: A rigorous and practical approach

(2nd ed.). Boston, MA: PSW Publishing.

19. Frakes, W. B., & Kang, K. (2005). Software

Reuse Research: Status and Future. Journal

IEEE Transactions on Software

Engineering, 31(7), 529-536.

20. Garcia, A. (2014). Framework for Software

Measurement Validation. Departamento de

Informática PUS research group.

21. Girish, K. K. (2014). Conceptual Cohesion

of Classes (C3) Metrics. International
Journal of Science and Research (IJSR)

ISSN (Online) 2319-7064.

22. Goldberg, A., & Rubin, K. S. (1995).

Succeeding with objects: Decision

frameworks for project management.

Boston, MA, USA: Addison-Wesley.

23. Kaur, M., & Kaur, R. (2015). Improving the

Design of Cohesion and Coupling Metrics

for Aspect Oriented Software Development.

International Journal of Computer Science

and Mobile Computing, IJCSMC, 4(5), 99 –

106.
24. Liskov, B. &Guttag, J. (2000). Program

development in Java: Abstraction,

specification, and object-Oriented design

(1st ed.). Addison-Wesley Professional.

25. Mal, S., &Rajnish, K. (2014). New Class

Cohesion Metric: An Empirical View.

International Journal of Multimedia and

Ubiquitous Engineering,9(6), 367-376.

26. Martin, R. C. (2012). Clean code: A

handbook of agile software craftsmanship

(1st ed.). Upper Saddle River, NJ, Boston:
Prentice Hall.

27. McCabe T. J. (1976). "A Complexity

Measure". IEEE Transactions on Software

Engineering: 308–320.

28. Michura, J., Capretz, M, & Wang, S.

(2013). Extension of Object-Oriented

Metrics Suite for Software Maintenance.

https://www.slideshare.net/jagneshchawla/cohesion-coupling
https://www.slideshare.net/jagneshchawla/cohesion-coupling

International Journal of Computer Trends and Technology (IJCTT) – Volume 54 Issue 2-December2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 73

Hindawi Publishing Corporation ISRN

Software Engineering, 2013(276105), 14.
29. Okike, E. U., &Osofisan, A. (2008). An

Evaluation of Chidamber and Kermerer’s

Lack of Cohesion in Methods Metric Using

Different Normalization Approaches. Afr. J.

comp. & ICT,1(2), 35- 43.

30. Okike, E. U. (2010a). A Pedagogical

Evaluation and Discussion about the Lack of

Cohesion in methods (LCOM) Metric Using

field Experiment. International Journal of

Computer Science Issues, 7(2), 36-43.

31. Okike, E. U. (2010b). A Proposal for

Normalized Lack of Cohesion in Method
(LCOM) Metric Using Field Experiment.

IJCSI International Journal of Computer

Science Issues, 7(4), 5.

32. Okike, E. U., &Rapo, M., (2015). Using

Cohesion and Capability Maturity Model

Integration (CMMI) as Software Product

and Process Quality criteria: A case study of

Software Engineering practice in Botswana.

International Journal of Computer Science

and Information Security (IJCSIS),13(12),

140-149.
33. Pressman, R. S., & Maxim, B. R. (2015).

Software engineering: A practitioner's

approach (8th ed.). McGraw-Hil

34. Sommerville, I. (2011). Software

engineering (9thed.). New York: Addison

Wesley.

35. Shumway, M. F. (1997). Measuring Class

Cohesion in Java. (Masters dissertation,
Computer Science Department, Colorado

State University, Technical Report CS-97-

113.

36. Suresh, G. R., (2011). Strategies for

Deploying Reusable Software Components.

International Journal of Graphics & Image

Processing, www.ifrsa.org, 2(4), 264-273.

37. Suresh, Y., Pati, J., & Ku, R. S. (2012).

Effectiveness of Software Metrics for

Object-Oriented System.

SecondInternational Conference on

Communication, Computing & Security
[ICCCS-2012], Department of Computer

Science and Engineering, National Institute

of Technology, Rourkela, India, Procedia

Technology, 6(2012), 420–427.

38. Wang, J. A. (2000). Towards Component-

Based Software Engineering. Department of

Computer Science and Information Systems

Univ

39. Ersity of Nebraska, Kearney Kearney, NE

 68849,USA

