
International Journal of Computer Trends and Technology (IJCTT) – Volume54 Issue 1- December 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 24

A Recursive Code Generating Algorithm for

Automata Control
Monday O. Eze#1, Shade Kuyoro#2

#1,2Senior Lecturer, Department of Computer Science

Babcock University, Ogun State Nigeria

Abstract—Automata Theory involves the evolution,

study and application of abstract machines to solve

computational problems. A number of research

domains such as Compiler Construction, Robotics,

Logic Programming, and Linguistic Computing

make extensive use of automata theory. A key

component of the 5-tuple that constitute a finite

automata is the set of transition functions, which

gives rise to an evolutionary design tool called the

transition diagram. A transition diagram models the

movement of a machine from one state or location to

another. Usually, in cases where the number of

states covered by the transiting object is minimal,

generating a transition diagram may follow

sequentially, from entry till acceptance state through

separate invocations. However, as the number of

states grow from tens to hundreds or thousands, the

need for a computational solution becomes very

apparent. Suppose the movement of an automata

driven refuse collection robot which covers

hundreds of locations per day is modelled using a

transition diagram, such that each movement

represents a transition from one state to another.

Traditionally, this would require an invocation of a

separate transition function for every singular

transition, giving rise to a number of sequential

system calls equivalent to the total number of

separate transitions. Such a method could be very

tedious, time consuming, and error-prone. The aim

of this research is to evolve an algorithm that

generates a single line of recursive code that drives

an unlimited number of transition moves at once,

instead of maintaining separate invocations. A new

algorithmic technique termed quantum code

blocking was also evolved to test the output, to

ensure its correctness.

Keywords: Automata Theory, Abstract Machines,

Transition Diagram, Recursive Code Generation,

Mobile Robots, Algorithms.

I. INTRODUCTION

Computational research into recursive code

generation is of key importance for automata control.

This is particularly necessary as the size of an

automata-driven system grows with the expansion of

the number of transition states. The term automata is

the plural of automaton. It is an abstract

computational model [1] of a digital computer. An

automaton is a device that possesses the key features

of a digital computer [2]. In other words, it accepts

inputs, possesses some storage capability, and

produces outputs. It could also make some decisions

or take actions in order to produce the output. An

automaton could be deterministic or non-

deterministic [3]. The focus of this work is on

Deterministic Finite Automata (DFA), though with

some modifications, it could work for Non-

Deterministic Finite Automata (NDFA) [4]. A

research [5] defined DFA as composed of 5-tuple as

defined in equation (1):

𝐷𝐹𝐴 = 𝑄, 𝐴, 𝑆𝑜, 𝑇, 𝐹 (1)

where Q = Set of states; A=Finite set of symbols

known as alphabet; S0 = Start state, which is an

element of Q; T = Transition function; F=Set of

acceptance states.

A transition function (T) is defined [6] as a

mapping from the Cartesian Product Q × A into the

set of states Q. In representing a DFA pictorially as a

state diagram [7], a number of standard rules apply,

some of which will be outlined. First is that the state

diagram should be a directed graph [8], which

emanates from the source state, and points towards

the next state. Second is that the arcs or directed

arrows are labelled with the inputs which are

elements of the alphabet A as defined in equation (1).

Thus, a transition function T(A, g) = B, will

generate a segment of a transition diagram, with a

source state A, a destination state B, and an input

signal g. Third is that the start state is usually

recognized with an external arrow pointing towards

it, and the acceptance state is denoted with a double

circle [9]. The diagram in Fig. 1 clearly

demonstrates the start state S0 and acceptance state

Y respectively.

Fig. 1: A Transition Diagram

International Journal of Computer Trends and Technology (IJCTT) – Volume54 Issue 1- December 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 25

The theory of abstract machines find application

in diverse areas of computing such as Artificial

Intelligence [10], Computational Linguistics [11],

Compiler Construction [12], Robotics [13], Logic

Programming [14] among others. This work is

particularly necessary because the new concept and

resulting outcome demonstrated by this research will

no doubt be relevant in the study, design and control

of automata-driven machines such as mobile robots

[15], vending machines [16], among others.

II. PROBLEM STATEMENT

The necessity for a recursive code generator [17]

for automata-driven control as tackled in this

research cannot be overemphasized. Supposed a

mobile object such as an office assistant robot is

modelled using Fig. 1. The machine covers six

locations (states) labelled as S0, W, X, Y, Z and N,

where the start state is S0, and the acceptance state Y.

Let us assume that for a particular day, the automata-

driven robot is programmed to cover from S0 to the

rest of the other stations, as many times as possible.

Suppose also, that for any transition from an original

state KX to a next state KY, there is a transition

function defined as KX (i)


KY, where i is the input to

the machine. Let the following transition path

consisting of a number of component transition

functions be defined for the moving

object:So(a)W; W(b)W; W(a)Y; Y(a)Z;

Z(a)Z; Z(b)Z; Z(d)N; N(d)X; X(a)W;

W(a)Y; Y(b)Z; Z(c)W; W(a)Y; Y(b)Z;

Z(c)W; W(a)Y; Y(b)Z; Z(d)N; N(d)X;

X(b)Y.

A look at the movement of the robot [18] shows

that it covered a total of 20 transitions from start (S0)

till finish at Y. Going by such a sequential order,

there would be a total of 20 separate invocations of

the component transition functions. The implication

is that if the moving object is to cover a thousand

stations, then a total of one thousand separate

function calls would be required. Such a crude

method will no doubt be very tedious, time-

consuming and prone to errors. This research

therefore solves this problem by evolving a code

generating algorithm, whose main objective is to

generate a single recursive code equivalence of the

original series of codes. The three parameters

required by the code generator are, the Start State,

the End State, and a Transition String. The concept

of Transition String as used in this work will be

further explained and applied at a later section of

this paper.

III. RELATED WORKS

A research by Kenneth Rosen [19] presented a

mathematical conceptualization of automata

transitions model. Two mathematical equations were

stated that explain the concept of extending the

transition functions. However, the research did not

delve into the design of algorithms that could

generate the recursive code, and neither was any

further work presented on recursive execution. A

PhD work [20] discussed the theoretical foundation

for generation of sequence diagrams for risk

assessment of complex systems. The author however,

did not explore any computational algorithm for

recursive code generation or execution. A research

by [21] focused on the generation of automatic test

case in system development. The work treated UML

state charts, but was silent on any form of

algorithmic techniques for the generation of

transition diagrams for automata control. Based on

literature reviews, it is obvious that the issue of

generating a recursive code for automata control is a

gap that needs to be filled, hence the necessity for

the current research. Before going into the details of

the algorithm, a number of preliminary concepts will

be explained.

IV. PRELIMINARY CONCEPTS

A number of new concepts were developed as

part of this study. For a better understanding of the

subject matter, some of these concepts will be

outlined in this section.

A. Transition String

A Transition String (TS) is a string whose

component characters constitute all the input

characters accepted by the transition functions, and

needed for a moving object to transit from a

particular start state to an end state. In other words,

the formation of TS follows a chronological order

from the first input character to the last one.

Considering Fig. 2, a transition string TS = ‗axhdvf‘

will be necessary for an object to transit from state S

to H.

Fig. 2: Demonstrating a Transition String “axhdyf”

It follows that state S accepts input ‗a‘ in order to

transit to T. Similarly, state T accepts input ‗x‘ to

transit to U in that order, until state G takes input as

‗f‘ to transit to H.

B. Cardinality

The term cardinality refers to a numeric value that

signifies the number or count of items under

consideration [22]. For instance in Set Theory, the

cardinality of a set refers to the number of elements

of the set.

International Journal of Computer Trends and Technology (IJCTT) – Volume54 Issue 1- December 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 26

C. Recursive Transition Format

The term recursive transition format (RTF) refers

to a special format resulting from the code

generating algorithm. It is a key deliverables of this

research. It is a single logical code that could be

recursively executed in line with the movement of a

mobile object through the automata transition

diagram.

D. Quantum Code Blocking

This refers to the breaking of the RTF code into

blocks in a specialized manner, beginning from the

centre. This technique tests the accuracy of the

overall output as will be explained.

V. RECURSIVE CODE GENERATING

ALGORITHM

The algorithmic rule for generating the automata

control code is made up of eight fundamental steps -

labelled as STEP 1, STEP 2 … STEP 8 in the flow

diagram in Fig. 3.

 Fig 3: Flow Diagram of the Recursive Code Generating Algorithm

International Journal of Computer Trends and Technology (IJCTT) – Volume54 Issue 1- December 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 27

As earlier highlighted, the main aim of the

algorithm presented in this study is to generate a

single logical code that could be executed

recursively to model an automata-controlled moving

object. Given a transition function definition as

equation (2).

𝑇 𝑄, 𝑆 = 𝐸 (2)

where Q is the start state, S is a transition string,

and E is the end state.

As earlier stated, a transition string S is a

concatenation of the characters accepted by each of

the component transition functions. It is the

chronological batch of inputs necessary for the

object to successfully transit from state Q to state E

as shown in equation (3):

𝑆 = 𝑆0𝑆2𝑆3𝑆4 ……. 𝑆𝑁 (3)

where N is the cardinality of S and SK is the Kth

character in S.

The algorithmic steps are outlined as follows.

A. Initialization Operation

This is the first algorithmic step and involves the

initialization of important system parameters. The

first initialization is the Separator variable which is

initialized to pipe symbol ―|‖. The other ones are the

variable CountSep which is a counter, used to keep

track of the number of separators, and the variable N

which captures the cardinality of the transition string

S. Accordingly, CountSep is initialized to 0 while N

is set to the cardinality of S.

B. Separation Operation 1

This is the second algorithmic step. The major

action taken here is to separate all the characters that

make up the transition String S with the Separator

symbol ―|‖. Every two adjacent characters of S are

separated accordingly, followed by an increment of

CountSep by one until the total counter value of N-1

is reached at completion.

C. Padding Operation

This is the third algorithmic step. It involves

annexing the comma symbol ―,‖ after every of the

separator symbols already inserted during the latest

step.

D. T-Batching Operation

This is the fourth algorithmic step. The T-

Batching involves drawing N-1 number of more

transition function symbols ―T‖ at the Left Hand

Side (LHS) of the first Transition Symbol (T),

making a total of N number of Ts. During this

operation, system also keeps count of the number of

―T‘s drawn, to ensure completion.

E. Separation Operation 2

This is the second round of separation operation.

This algorithmic step takes place at the LHS of the

Transition Equation. Here, the ―T‖s are separated

with the pipe separator symbol ―|‖. A total count of

N-1 separator symbols are inserted at completion.

F. LHS Conversion Operation

This algorithmic operation takes place in the LHS

of the evolving Recursive Transition Format code.

At this point, all pipes symbols ―|‖ located at the

LHS are converted to left bracket symbol ―(―.

G. RHS Conversion Operation

This is the seventh algorithmic operation, and it

takes place in the RHS of the evolving Recursive

Transition Format code. The major action taken is to

convert all pipes symbols ―|‖ located at the RHS to

right bracket symbol ―)―.

H. Final Result

This is the final step, and culminates the

algorithm with the generation of the recursive

transition format (RTF). It is important to state that

these algorithmic steps itemized were implemented

sequentially through a series of procedural

formatting using a simple word pad.

VI. RESEARCH RESULT

The final output of this research is a recursive

transition format (RTF) generated to model the

movement of a transiting object through an automata

transition diagram. A sample output will be

demonstrated in this section. Given a Transition

String S= ‗abacba‘, the initial problem is set up as

T(Q,‘abacba‘). The generating algorithm follows

sequentially to arrive at the RTF given by

T(Q,‘abacba‘) = T(T(T(T(T(T(Q, a), b), a), c), b), a) .

A total of eight passes were involved to arrive at the

final result as detailed in Fig. 4.

Fig. 4: Generating a Sample RTF Code in 8 Passes

The transition diagram that accommodates the

RTF, and models the movement of the transiting

object is shown in Fig. 5. As shown in the diagram,

the paths through which the moving object traverses

are marked with red dots.

International Journal of Computer Trends and Technology (IJCTT) – Volume54 Issue 1- December 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 28

Fig. 5: Transition Diagram Modelled by RTF Code

VII. RESULT CHECKS

A procedural technique known as quantum code

blocking was developed for testing the final output.

This technique is a process that executes the whole

RTF code through a series of breakout and execute

operations. The process emanates from the middle of

the RTF code.

Each chunk of the code is executed, and the

preliminary result resubmitted into the original code

as shown in Fig. 6. This series of breaking,

executing, re-submitting of results takes place until

recursive execution of the whole code is completed.

This is one way of testing the accuracy of the

generated code.

As shown in Fig. 6, the first block of code

―T(Q,a)‖ is at the center of the RTF code. It is

shown with two arrows as the block of code that

starts from the rightmost transition symbol ―T‖ up to

the next closing bracket ―)‖. After executing the first

chunk, the generic result designated as Q1 is

resubmitted, giving rise to T(Q1,b) which forms the

next code block. The recursive execution continues

in that manner until completion. The last code block

T(Q5,a) leads to the final transition state Q6, thus

confirming that the final RTF code is syntactically

accurate.

VIII. CONCLUSION

This work has demonstrated how to generate a

single recursive code T(T(T(T(T(T(Q, a), b), a), c),

b), a) that simulates the object movement across a

transition diagram. The resulting recursive code was

also successfully tested through the simple technique

of quantum code blocking. While the test case was

purposely chosen to be simplistic, the importance of

this work will be realized as the size of

transitionsystem expands into hundreds or thousands

of states or functions. It is no doubt that the result

and overall techniques developed in this research

will find relevance in diverse areas of automata

control, especially in the study of the mobility of

robots. Oneof the proposed future extension of this

work is in the area of integration to robotics

movement.

Fig. 6: Demonstrating the use of Code Blocking on the output RTF code

International Journal of Computer Trends and Technology (IJCTT) – Volume54 Issue 1- December 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 29

REFERENCES

[1] J. Starzyk (2011). "A Computational Model of Machine

Consciousness", International Journal of Machine

Consciousness, Vol. 3, Issue 02, pp255-281

[2] P. Linz. (2012). "An Introduction to Formal Languages and

Automata", 5th Ed, Jones & Bartlett Learning, Ontario

Canada.

[3] B. Melnikov (2002). "A New Algorithm of Constructing

the Basis Finite Automaton", Informatica, Vol. 13,

No. 3, pp299–310.

[4] M. John (2011). "Introduction to Languages and the

Theory of Computation", 4th Ed, McGraw-Hill, New York..

[5] A. James (2006). "Automata Theory with Modern

Applications", Cambridge University Press, Cambridge,

UK.

[6] A. Maheshwari & M. Smid (2014). ―Introduction to

Theory of Computation‖, School of Computer Science,

Carleton University, Ottawa, Canada.

[7] A. Alrehily, R. Fallatah and V. Thayananthan (2015).

"Design of Vending Machine using Finite State Machine

and Visual Automata Simulator", International Journal of

Computer Appl., Vol. 115, No. 18,pp37-42

[8] D. Harel & Y. Koren (2002). "A Fast Multi-Scale Method

for Drawing Large Graphs,Journal of Graph Algorithms

and Applications Vol. 6, No. 3, pp. 179-202

[9] A. Clark & F. Thollard (2004). "PAC-learnability of

Probabilistic Deterministic Finite State Automata", Journal

of Machine Learning Research 5, pp473-497.

[10] S. Singh &S. Sukhvinder (2010). "Artificial Intelligence",

International Journal of Computer Applications, Volume

6– No.6, pp 21-23

[11] M. van Zaanen & C. de la Higuera (2009). "Grammatical

Inference and Computational Linguistics", Proceedings of

the EACL 2009 Workshop on Computational Linguistic

Aspects of Grammatical Inference, Athens, Greece, pp1-4

[12] S. Aastha, S. Sinha, and A. Priyadarshi (2013). "Compiler

Construction", International Journal of Scientific and

Research Publications, Volume 3, Issue 4,pp1-6

[13] P. Sapaty (2015). "Military Robotics: Latest Trends and

Spatial Grasp Solutions", Int. Journal of Advanced

Research in Artificial Intelligence, Vol. 4, No.4, pp1-10

[14] A. F. Abbas (2014). ―Comparison Between Programming

Languages Prolog , C ++ , Pascal", Mathematical Theory

and Modeling", Vol.4, No.14,pp27-40

[15] S. Nurmaini, and A. Primanita (2012). "Modeling of

Mobile Robot System with Control Strategy Based on

Type-2 Fuzzy Logic", International Journal of Information

and Communication Technology Research, Volume 2 No.

3, pp235-242

[16] R. M. Varkey and J. M. Sunny (2014). "Design and

Implementation of Multi Select Smart Vending Machine",

International Journal of Computer Networks and Wireless

Communications, Vol.4, No1, pp42-45

[17] H. Li (2016). "Binary Tree‘s Recursion Traversal

Algorithm and Its Improvement", Journal of Computer and

Communications, Vol 4, pp42-47

[18] J. Iovine(2004). "PIC Robotics A Beginner‘s Guide to

Robotics Projects Using the PICmicro", McGraw-Hill,

New York

[19] K. Rosen (2007). ―Discrete Mathematics and Its

Applications‖, 7th Ed, McGraw-Hill, NewYork, NY

[20] S. Hamed (2007). "Automatic Generation of Generalised

Event Sequence Diagrams for Guiding Simulation-Based

Dynamic Probalitlistic Risk Assessment of

ComplexSystems", A PhD Dissertation submitted to the

Faculty of the Graduate School of the University of

Maryland, USA,

[21] R. Swain1, P. Kumar, and D. Prasad (2012). "Automatic

Test case Generation From UML State Chart Diagram",

International Journal of Computer Applications, Vol. 42,

No. 7,pp26-36.

[22] M. Dhar (2013). Cardinality of Fuzzy Sets: An Overview‖,

International Journal of Energy, Information and

Communications, Vol. 4, Issue 1, February, pp15-22

