
International Journal of Computer Trends and Technology (IJCTT) – Volume 47 Number 3 May 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 189

New Fuzzy Techniques for Real-Time Task

Scheduling on Multiprocessor Systems
Matthew T. Ogedengbe

1
, Moses A. Agana

2

1Department of Mathematics/Statistics/Computer Science, University of Agriculture

Makurdi, Nigeria.
2Department of Mathematics/Statistics/Computer Science, University of Agriculture

Makurdi, Nigeria.

Abstract - Real-time computing is rapidly gaining

more technological advancement whereby real-time

tasks were been scheduled and programmed on

computer systems within a time constraint. In this

paper, a new fuzzy scheduling algorithms (NFSA)

for real-time tasks was proposed which comprises of

Arrival time, Computation time, and Deadline as the

input scheduling parameters. The proposed NFSA

was compared with the Existing Fuzzy Algorithm
(EFA) algorithm for performance evaluations. The

FEDF algorithm comprises of two inputs scheduling

parameters which are deadline and external

priority. Tasks were scheduled on multiprocessor at

higher system load using fuzzy techniques for both

(NFSA and EFA) algorithms. The outputs (runtime

priorities) of the simulation were used to schedule

tasks in an internal priority (ready) queue for

execution on multiprocessor. Results show that the

NFSA has a better performance compare to EFA at

higher system load. The following performance
metrics were considered for the evaluation;

minimum response time, turnaround time and

number of deadline missed.

Keywords — Fuzzy Logic, membership

function, Real-time systems, task,

multiprocessor scheduling.

I. INTRODUCTION

 In modern world of computing, real-time

systems play a vital role without which human daily

activities can not be carried out conveniently or

successfully [1]. We make use of various household

real-time devices in our daily activities but know

little or nothing about them. From mobile to missile,

medical imaging systems, industrial control systems,
display systems, Space Shuttle avionics system,

traffic control, automated factory, military systems

and various scientific experiments [2] require real-

time communication and computation. In real-time

systems scheduling has more critical role than non-

real-time systems because in these systems having

the right answer too late is as bad as not having it at

all [3]. Such a system must react to the requests

within a fixed amount of time which is called

deadline. Modern embedded computing systems are

becoming increasingly complex. Scheduling real-

time systems involves allocation of resources and

CPU-time to tasks in such a way that certain

performance requirements are met.

 Categorically, real-time systems can be

categorized into two important groups: hard real-

time systems and soft real-time systems. In hard

real-time systems, all deadlines must absolutely be
met or the system will be considered to have failed

(system failure might be disastrous), while in soft

real-time systems some deadlines maybe at least

occasionally missed with only a degradation in

performance but not a complete failure (i.e. missing

some deadlines is tolerable) [4]. In both cases, when

a new task arrives, the scheduler is to schedule it in

such a way that guaranties the deadline to be met.

These tasks can be classified as periodic or

aperiodic. Periodic tasks are type of tasks that occur

at regular intervals, and aperiodic tasks occur
unpredictably. The length of the time interval

between the arrivals of two consecutive requests in a

periodic task is called period.

 The multiprocessor based scheduling have

more computational complexity in practical

algorithm which are unknown to most researchers,

this open floor for new area of research in operating

systems [5]. Multiprocessor scheduling techniques in

real-time systems fall into two general categories:

partitioning and global scheduling. Under

partitioning, each processor schedule tasks
independently from a local ready queue. Each task is

assigned to a particular processor and is only

scheduled and executed on that processor. While in

global scheduling all ready tasks are stored in a

single queue. The highest priority task is selected to

execute whenever the scheduler is invoked. It has

been proved that finding a minimal schedule for a

set of real-time tasks in multiprocessor system is

NP-hard [6]. However, in both cases researchers

have made some significant contributions by those

results in better multiprocessor scheduling
algorithms.

The scope of this paper is limited to the scheduling

of periodic task scheduled on multiprocessors in a

International Journal of Computer Trends and Technology (IJCTT) – Volume 47 Number 3 May 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 190

soft real-time environment with fuzzy parameter

constraints. In section 2 related works were reviewed

while section 3 discussed the common scheduling

algorithms used in real-time systems. Section 4

discussed the fuzzy inference system, the proposed

model and proposed algorithm. Section 5 discussed
the results and performance evaluation. Finally,

section 6 comprises of conclusion and future work.

II. RELATED WORKS

 Many Researchers have employed various

fuzzy techniques to schedule tasks in the recent

years in order to obtain an optimal performance, but

this area of scheduling on multiprocessors is still an

open problem [6].

Mahdi et al., proposed in [7] a fuzzy scheduling

approach to arrange real-time periodic and non-

periodic tasks in multiprocessor systems. Their

approach successfully balanced task loads on

multiprocessor by using fuzzy scheduler. They

stated that higher priority tasks have higher running
probability. Their results show that the proposed

fuzzy scheduler creates feasible schedules for

homogeneous and heterogeneous tasks. Shatha et al.,

[8] presents a paper; A fuzzy-based CPU scheduling

algorithm. Their work applied fuzzy logic in the

design and implementation of a rule-based

scheduling algorithm to solve the shortcoming of

priority scheduling algorithms. Task priority and

execution time was used as the input parameter for

the fuzzy engine while shortest job first only

considered the execution time. Their results
demonstrate that the average waiting time and the

average turnaround time in their proposed algorithm

are better than that obtained using priority

scheduling, and closed to that obtained from

shortest-job-first (SJF) scheduling. Sheo et al., [6]

propose a fuzzy approach to multiprocessor real-

time scheduling. Their fuzzy model consists of two

input parameters, priority and deadline. Their

algorithms were examined based on load factor and

other performance metric (such as deadline miss,

CPU utilization, response time and turnaround time)
for system performance evaluation. Their results

show that using deadline as a fuzzy parameter in

multiprocessor real-time scheduling is more

promising than laxity under normal load. The work

of Bashir, [9] solved the two major round robin’

problems (i.e. choosing optimal time quantum (TQ)

and context switching). Number of tasks (N) and

average burst time of all tasks (ABT) are taken as

fuzzy inputs and generate TQ as the output. The TQ

to schedule the tasks based on round robin policy to

solve the first problem. Another fuzzy Inference

system was later introduced with two inputs, Laxity
and N, and one output (Preemption Status) to solve

the second problem. When his proposed model was

compared with standard round robin, result shows

that his approach outperformed the existing round

robin. Mohammed and Mostafa [10] proposed a

fuzzy approach to perform real-time scheduling in

which the scheduling parameters are treated as fuzzy

variables. They chose priority and laxity as the input

linguistic parameters. They also consider another

case of priority and deadline. Both cases had runtime

priority as the output. Assigning priority to tasks
according to their deadlines is simple yet successful

strategy for uniprocessor real-time scheduling [10].

The two cases were simulated with some fuzzy rules

using centroid defuzzification method of Mamdani

inference to generate the output priority. The

simulation results show that the output priority based

on deadline is much better than the output priority

based on laxity, knowing that the initial priority is

the same for the two cases.

III. REAL-TIME SCHEDULING

ALGORITHMS

 There are various standard scheduling
algorithms used in CPU scheduling but most of this

algorithms are mostly implemented on uniprocessor

such as first come first serve (FCFS), shortest job

first (SJF), priority and round robin (RR) scheduling

algorithms. In this paper we examined two basic real

time algorithms, they are rate monotonic (RM) and

earliest deadline first (EDF).

i. Rate monotonic (RM) algorithm: is a

uniprocessor static-priority preemptive scheme.

The algorithm is static-priority in the sense that
all priorities are determined for all instances of

tasks before runtime [11]. The priority of a task

is been determined by the length of it period.

Tasks with short period times are assigned higher

priority. RM is used to schedule periodic tasks.

The following are preconditions for the rate

monotonic algorithm formalized by Liu and

Layland [12].

a. Periodic tasks have constant known

execution times and are ready for execution

at the beginning of each period (T).

b. Deadlines (D) for tasks are at the end of
each period: (D = T)

c. The tasks are independent, that is, there is

no precedence between tasks and they do

not block each other.

d. Scheduling overhead due to context

switches and swapping are assumed to be

zero.

ii. Earliest deadline First (EDF): is a

dynamic priority driven scheduling algorithm

which gives tasks priority based on deadline

[10]. Some of the preconditions for RM are also
valid for EDF. The task with the currently

earliest deadline during runtime is assigned the

highest priority. That is if a task is executing

with the highest priority and another task with an

earlier deadline becomes ready it receives the

highest priority and therefore preempts the

currently running task and begins to execute.

International Journal of Computer Trends and Technology (IJCTT) – Volume 47 Number 3 May 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 191

EDF is an optimal dynamic priority driven

scheduling algorithm with preemption for a real-

time system on a uniprocessor. EDF is capable of

achieving full processor utilization [12].

IV. FUZZY INFERENCE SYSTEM

 A Fuzzy Inference System (FIS) derive answers

from a knowledgebase by using a fuzzy inference

engine. This engine provides the methodologies for

reasoning around the information in the

knowledgebase and results formulations. Fuzzy logic

deals with the concept of partial truth which denotes

the extent to which a proposition is true. In classical

logic everything can be expressed in binary terms (0

or 1, black or white, yes or no). Fuzzy logic replaces

Boolean truth values with the truth’s degree. Truth’s

degree is often employed to capture the imprecise

modes of reasoning that play an essential role in the
human ability to make decisions in uncertain and

imprecise environment. The membership function of

a fuzzy set is analogous to the indicator function of

the classical sets. Curves are used to express the

membership functions [13]. Curve shape defines

how each point in the input space is mapped to a

membership value or a truth’s degree between 0 and

1. Fuzzy Inference Systems (FIS) consists of three

stages namely input, processing and output. In input

stage the task parameters (such as deadline,

execution time and arrival time) are mapped to the
appropriate membership functions and truth values.

 In processing stage each appropriate rule is

invoked and each of them generates a result [14].

The results of the rules are then combined. Finally,

in the output stage the combined result is converted

back into a specific output value [15]. The

processing stage, called the inference engine, works

with the help of a collection of logic rules in the

form of IF-THEN statements, where the IF part is

called the “antecedent” and the THEN part is called

the “consequent”. Fuzzy inference systems have
several rules, Knowledgebase stores these rules. An

example of fuzzy IF-THEN rules is: IF Deadline is

critical then priority is high, in which Deadline and

priority are linguistics variables. There are two

common inference processes [15]. First is called

Mamdani's fuzzy inference method proposed by

Ebrahim Mamdani [16] in 1975 and the other is

Takagi-Sugeno-Kang, method of fuzzy inference

introduced in 1985 [17]. These two methods are the

same in many respects, such as the procedure of

fuzzifying the inputs and fuzzy operators. The main
difference between these two methods is that the

Sugeno output membership functions are either

linear or constant but Mamdani’s inference expects

the output membership functions to be fuzzy sets. In

this paper Sugeno method was used.

V. THE PROPOSED (NFSA) MODEL

The proposed model; new fuzzy scheduling

algorithm (NFSA) consists of three inputs

scheduling parameters (arrival time, computation

time and deadline) as shown in fig.1.

Fig. 1: The proposed NFSA Inference Model

These scheduling parameters were considered

because they could guarantee scheduling fairness.

The output of the system is the runtime priority

which determines the order of tasks execution in a

global ready (internal priority) queue. Fuzzy rules

combine these parameters as they are connected in

real worlds.

 The input variables were mapped into the fuzzy

sets as illustrated in fig. 2, fig.3 and fig. 4

respectively. The triangular shape for the

membership function was used for each linguistic

term. It is very difficult for the expert to adjust these

membership functions in an optimal way. However,

there are some techniques for adjusting membership

functions. Those techniques were not considered in

this research work. They can be further studied in

the future work.

Fig. 2: Membership Function for Arrival Time

Arrival

Time

Computation

Time

Deadline

Fuzzy
Inference
Engine

27 Rules

Runtime

Priority
(Output)

International Journal of Computer Trends and Technology (IJCTT) – Volume 47 Number 3 May 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 192

Fig. 3: Membership Function for Computation-Time

Fig. 4: Membership Function for Deadline

This research work consists of twenty-seven fuzzy
rules but few of these rules are mentioned here:

 If (arrival is early) AND (computation_time

is short) AND (deadline is critical) THEN

(priority is high)

 If (arrival is intermediate) AND

(computation_time is short) AND (deadline

is sufficient) THEN (priority is normal)

 If (arrival is early) AND (computation_time

is long) AND (deadline is sufficient) THEN

(priority is low)

 If (arrival is late) AND (computation_time

is short) AND (deadline is critical)

THEN (priority is high)

However, for the EFA algorithm, the

arrival-time parameter was removed and

the computation-time was replaced with

External priority. Both algorithms has the

procedure in the design of their

membership function and the output

(runtime priority).

VI. THE PROPOSED ALGORITHM

NFSA Algorithm

The Fuzzy Inference Scheduler do the followings as

depicted in fig. 5:

Loop
i. Initialize a task pool N in an arrival queue

with task parameter Ti() at .

Where (i=1,2,3,…..,n).

ii. For each ready task, feed in task parameter

 into fuzzy inference engine

at Consider the fuzzy inference engine

output as the runtime priority for each

task execution.

iii. Sort all tasks in descending order of

runtime priority into the priority (ready)

queue at

iv. Since all processors are idle at the initial

stage,

 Assign processor to

the first set of tasks

with highest runtime priority

and execute at For).

 Search through all the processor

with the least

computation weight ().

If ,

Assign to and execute

Else,

Assign to and execute.

v. Update the system states.

End Loop.

VII. NEW FUZZY SCHEDULER

ARCHITECTURE

 As illustrated in fig. 5, the new fuzzy scheduler

loads the set of tasks from the arrival queue into
fuzzy inference engine by fuzzifying each task

parameters. The fuzzy inference engine then applied

fuzzy (AND) operators, fuzzy rules stored in the

knowledge base and implication methods to generate

the aggregate values which are finally defuzzified as

output (runtime priority). The Scheduler follows the
NFSA algorithm to schedule the task and execute in

the order of internal/runtime priority

International Journal of Computer Trends and Technology (IJCTT) – Volume 47 Number 3 May 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 193

Fig 5: The Architectural View of the Proposed Model (NFSA)

VIII. CASE ASSUMPTION

 In a real-time processing environment, tasks of

different characteristics are submitted to the

multiprocessor by the fuzzy scheduler as described

in the previously, this research simulate a fuzzy

system comprising of 5 to 25000 real-time tasks,

which were assigned to multiprocessor based on the

EFA and NFSA algorithm. In order to facilitate the

feasibility analysis of this research, the following
assumptions were made:

Let represents a periodic task, and U

represents a set of periodic tasks;

i. A task cannot suspend itself (i.e. no

pre-emption).

ii. All tasks are independent (i.e. there

is no relation between the tasks from

the same set U).

iii. All tasks have deadline equal to

their next request time (period), [12].

iv. All the processors are identical.

v. All tasks evacuate the arrival queue

at the same time into fuzzy inference

engine.

vi. All tasks are activated in the

runtime priority (ready) queue.

Therefore, all tasks in runtime priority

queue arrive at the processors node at

time t = 0.0ms

IX. RESULTS AND PERFORMANCE

EVALUATION

 The performance of NFSA was compared with
EFA which only consists of external priority and

deadline as it scheduling parameters. The

performance metrics used were carefully chosen in

order to reflect the real characteristics of a real-time

system. As stated in the previous sections, the

performance metric considered are; average
turnaround time (ATAT), average response time

(ART) and number of deadline missed which is an

influential metric in scheduling algorithms for soft

real-time systems.

 However, the numbers of processors considered

in this research are 3, 10 and 100 as the

multiprocessor for the simulation. Computation time

ranges from 1 – 25ms were applied across the

processors and 5 – 25000 tasks were randomly

generated with different load factor. The task

parameters arrival time was generated using Poisson

distribution while computation time and deadline
were generated using uniform and normal

distribution. In this research several test cases were

simulated and the behaviours of both algorithms

were compared with each other to determine the

strength of the proposed algorithm.

Arrival Queue

New Tasks

Arrives

T0

T1

T2

T3

|

Tn

Multiprocessor

Fuzzy

Inference

Engine

27 Rules

Processor1

Processor2

Processor

n

Dispatching Tasks

T2 T0 T3 T1 - - - Tn

Runtime

Priority Queue

Arrival Time

Computation

Time

Deadline

International Journal of Computer Trends and Technology (IJCTT) – Volume 47 Number 3 May 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 194

The proposed NFSA outperformed the EFA as

shown in the fig. to 6 to fig. 8 in term of the average

response time.

 Fig. 6: Average Turnaround Time for 3 processors

Fig. 7: Average Turnaround Time for 10 processors

Fig. 8: Average Turnaround Time for 100

processors

 As shown in fig.9 to fig. 11, it was observed

that the load factor is far less than one (i.e. system

under normal load), both algorithms have similar

performance for processor 3 and 10. However, as the

load factor approaching one and above (when the

system becomes overloaded), the response time of

NFSA is much tardier than EFA. As the load factor

and number of processors increases NSFA algorithm
show more better performance. These results have

proved that our objectives have been achieved by

minimizing the average turnaround time and average

response time.

Fig. 9: Average response time for 3 processors

Fig.10: Average response time for 10 processors

Fig. 11: Average response time 100 processors

 When a system load factor is less than one,

there is tendecy for all realtime tasks to meet their

deadline [12]. Fig. 12 to fig. 14 show that, tasks

meet their deadline in both EFA and NFSA when

load factor approaching 1 in 3 and 10 processors but

as the system load goes beyond 1, NFSA performaed

better. In 100 processors, the graph clearly show the

performance difference of both algorithms at 0.5

NFSA is tardier in number of deadline missed. Thus,

for the correctness of the proposed algorithm, NFSA

have shown that deadline missed is minimized on all

the three multiprocessors compare to EFA

algorithm.

International Journal of Computer Trends and Technology (IJCTT) – Volume 47 Number 3 May 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 195

Fig. 12: Deadline missed on 3 processors

Fig. 13: Deadline missed on 10 processors

Fig. 14: Deadline missed on 100 processors

X. CONCLUSION AND FUTURE WORKS

 In this paper we have successfully mapped

fuzzy inference engine on multiprocessor and the

results show that, the processors are better utilized

thereby improved the system by minimizing the
turnaround time, response time and number of

deadline missed. In the future, for improving the

time complexity of the system, rule reduction

techniques will be applied to the system. Also, to

improve performance, adjusting membership

functions with adaptive methods of inference is

required.

ACKNOWLEDGMENT

We wish to acknowledge the contributions and the

tireless efforts given to me by my supervisors and

my lectures; Prof. Sahalu S. Junaidu and Dr. Saleh E.

Abdullahi.

REFERENCES
[1] G. Sagar, A. Neha and D. Kamal, A Fuzzy Approach

 For Task Scheduling in a Real Time Distributed

 System. International Journal of Research in

 Engineering and Applied Sciences. 2(2), pp. 1740-

 1742, ISSN: 2249-3905, 2012.

[2] W. Stallings, Operating Systems Internals and Design

Principles. Prentice-Hall, 5th Ed. ISBN:0-13-147954-7,

Englewood Cliffs, 2004.

[3] K. Ramamritham and J. A. Stankovic, Scheduling

 Algorithms and Operating Systems Support for Real-

 Time Systems. Institute of Electrical and Electronic

 Conference, 82(1):55-67. Jordan, 1994.

[4] M. Sabeghi, M. Naghibzadeh and T. Taghavi,

 Scheduling nonpreemptive periodic tasks in soft

 realtime systems using fuzzy inference. 9th Institute

 of Electrical and Electronic Engineers. International

 Symposium, ISBN:0-7695-2561-X,

 doi:10.1109/ISORC.2006.70, Korea, 2006.

[5] B. Shahzad and M. Afzal, Optimized Solution to

 Shortest Job First by Eliminating the Starvation. The

 6th Jordanian International Electrical and Electronics

 Engineers Conference. Jordan, 2006.

[6] D. Sheo, G. Payal and K. Kawaljeet, A Fuzzy

 Approach Scheduling on More Than One Processor

 System in Real Time Environment. International

 Journal of Scientific Research Engineering &

 Technology (IJSRET), 1(5):289-293, ISSN 2278 –

 0882, 2012.

[7] H. Mahdi, M. Sied and L. Caro, Soft Real-Time Fuzzy

 Task Scheduling for Multiprocessor Systems.

 International Journal of Intelligent Technology. 2(4):

 ISSN 1305-6417, 2007.

[8] J. Shatha and A. Kasim, Design and Evaluation of a

 Fuzzy-Based CPU Scheduling Algorithm.

 Information processing and Management: 45-52,

 Springer-Verlag International Journal, Berlin, 2010.

[9] A. Bashir, Fuzzy Round Robin CPU

 Scheduling Algorithm. Journal of Computer Science,

 doi:10.3844/jcssp.2013.1079.1085, 1079-1085, 2013.

[10] M. Blej and M. Azizi, Task Parameters Managing and

 System Accuracy in Fuzzy Realtime Scheduling.

 International Journal of Engineering Sciences and

 Research Technology (IJESRT); ISSN:2277-9655,

 5(7):60-64, 2016.

[11] J. Strosnider, J. Lehoczky and L. Sha, The Deferrable

 Server Algorithm for Enhanced Aperiodic

 Responsiveness in Hard Real-Time Environments.

 Institute of Electrical and Electronic Engineers,

 Transactions on Computers, 44(1), 1995.

[12] C. Liu and J. Layland, Scheduling algorithms for

 multiprogramming in a hard real-time environment.

 Journal of the Association for Computing Machinery

 (ACM), 20 (1): 46–61,doi: 10.1145/321738.321743,

 1973.

[13] N. Thai, Real-time scheduling in distributed systems.

 Parallel Computing in Electrical Engineering,

 International Conference, Warsaw, Poland, 165- 170,

 2002.

[14] G. William, An Optimization Approach to Employee

 Scheduling Using Fuzzy Logic. (MSc. Thesis,

 California Polytechnic State University, San Luis

 Obispo), 2011.

[15] C. Bindi, Fuzzy Logic Membership Function.

 Retrieved March 13, 2014, from

International Journal of Computer Trends and Technology (IJCTT) – Volume 47 Number 3 May 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 196

 http://www.bindichen.co.uk/post/AI/fuzzy-inference-

 membership-function.html

[16] E. Mamdani and S. Assilian, An experiment in

 linguistic synthesis with a fuzzy logic controller.

 International Journal of Man-Machine Studies. 7(1):1-

 13. 1975.

 [17] A. Zadeh, Fuzzy Sets. Journal of Information and

 Control. Vol 8,338-353, 1965.

