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Abstract- Text mining is referred as text data mining 

or knowledge discovery from textual databases. The 

organization of text is a natural practice of humans 

and a crucial task for today’s vast databases. 

Clustering does this by assessing the similarity 

between texts and organizing them accordingly, 

grouping like ones together and separating those with 

different topics. Clusters provide a comprehensive 

logical structure that provides exploration, search and 

interpretation of current texts documents, as well as 

organization of future ones. Side information is 

available along with the text documents and may be of 

different kinds, which are embedded into the text 

document. However this side-information may be 

difficult to estimate. In such cases, it can be risky to 

include side-information into the mining process, 

because it can either increase the quality of the 

representation for the mining process. Therefore, so 

as to maximize the advantages from using this side 

information, to minimize the time complexity of 

clustering process and to remove impurity of clusters 

partition based text clustering techniques are used like 

k-means &k-Windows algorithm. Experimental results 

show that, K-Windows clustering technique is giving 

better results as compared to K-means clustering 

technique and also shows that side information is 

effectively used for mining the data.  

 
Key Words: Clustering algorithms, Text Mining, Data 

Mining. 
I. INTRODUCTION 

 

Mining is the process of inferring for patterns within a 

structured or unstructured data. There are various 

mining methods out of which they differ in the context 

and type of dataset that is applied. The process of 

extracting knowledge from unstructured text led to the 

need for various mining techniques for useful pattern 

discovery. Data Mining (DM) and Text Mining (TM) 

is similar in that both techniques ―mine‖ large 

amounts of data, looking for meaningful 

patterns.Some of the mining types are data, text, web, 

business Process and service mining. DM is the 

process of retrieving information from large amounts 

of data to view the hidden knowledge and facilitate 

the use of it to the real time applications. DM consists 

of data analysis algorithms. Some techniques of Data 

Mining used for analysis are Clustering, Association, 

and Classification etc. Text mining is referred as text 

data mining or knowledge discovery from textual 

databases, it refers to the process of extracting 

interesting and non-trivial patterns or knowledge from 

text documents as shown in figure 1. TM starts with a 

collection of documents; which would retrieve a 

particular document and preprocess it by checking 

format and present text in proper format. Then it 

would go through a text analysis phase, sometimes 

repeating techniques until information is extracted. 

Three text analysis techniques are shown in figure 1, 

but many other combinations of techniques could be 

used depending on the goals of the organization. The 

following figure explores the detail processing 

methods in Text Mining. 

 

 
 

Fig 1: Text Data Mining process 

 

The problem of text clustering arises in the 

context of many application domains such as the web, 

social networks, and other collections. The rapidly 

increasing huge amounts of text data in the context of 

these large online collections has led to an interest in 

creating scalable and effective mining algorithms. The 

huge amount of work has been done in recent years on 

the problem of clustering in text collections in the 

database and information retrieval communities. 

However, this work is primarily designed for the 

various problems of pure text clustering, in the 

absence of other attributes. In many application 

domains, a tremendous amount of side information is 

also present along with the documents. This is because 

text documents occur in the context of a various 

applications in which there may be a large amount of 

other kinds of database attributes or Meta information 

which is useful for the clustering process. Examples of 

side-information are: 

● In an application in which we track user access 
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behavior of web documents, the user-access 

behavior is captured in the form of web logs. For 

each document, the auxiliary information may 

correspond to the browsing behavior of the 

different users. Such logs can be used to enhance 

the quality of the mining process and also 

application-sensitive. This is because the logs 

can often pick up subtle correlations in content, 

which cannot be picked up by the raw text alone 

[1].  

● Many text documents contain links among them, 

which are also considered as attributes. Such 

links are useful for mining purposes.  

● Many web documents have supporting 

information associated with them like the source 

of the document. In other cases, data such as 

ownership, location, or even temporary 

information may be informative for mining 

purposes. In many network and user-sharing 

applications, documents may be associated with 

user-tags, which may also be quite informative 

[1]. 

Side-information can sometimes be useful in 

improving the quality of the clustering process. 

Therefore, we will use an approach which carefully 

ascertains the correlation of the clustering 

characteristics of the side information along with the 

text content. This helps in purifying the clustering 

effects of both kinds of data.  

Clustering is an effective technique for data 

analysis. Clustering is a widely studied data mining 

problem in the context of text domains. The problem 

finds various applications in customer segmentation, 

classification, collaborative filtering, visualization, 

document organization, and indexing [2]. Text 

Clustering is one of the most important research areas 

in the field of data mining. Data are grouped into 

clusters those having same data and those in other 

groups are dissimilar. It intends to decrease intra-class 

similarity while to increase interclass dissimilarity. 

Clustering is an unsupervised learning technique. 

Clustering is useful to obtain required patterns and 

structures from a large set of data. Clustering can be 

applied in many areas, such as marketing studies, 

DNA analyses, city planning, text mining and web 

documents classification.  

Most existing methods of clustering can be 

categorized into: distance based clustering algorithms 

like agglomerative and hierarchical, Distance-based 

Partitioning Algorithms like k-means, K-medoid, K-

Windows etc., A Hybrid Approach for clustering like 

scatter/gather technique etc. Partition based clustering 

generates a partition of the data such that objects in a 

cluster are more similar to each other than dissimilar 

objects in other clusters. Clustering is a technique to 

search hidden patterns from the existing datasets [3].In 

order to overcome the problems of pure text clustering 

for mining the data, side information avail with text 

data is used for mining the data. So, firstly 

preprocessing is applied on the dataset, and then 

distance measures are calculated. Text mining 

technique i.e. text clustering algorithms (k-means &k-

Windows) is applied on similarity measures values. 

Then using side information results are evaluated. 

 

II. RELATED WORK 

 

Literature review in the area of mining indicates that 

there are several ways of mining text data so that 

efficient clusters should be formed and better results 

should be achieved. Database community has studied 

lots about the problem of text-clustering [2], [15] and 

[16]. In [15] they represent the novel algorithm termed 

as CURE which is more robust to outliers, and 

identifies clusters having non spherical shape and 

variance in size. In [16] proposed a method termed as 

BIRCH, which demonstrate especially for very large 

databases. Scalable clustering of multidimensional 

data of different types is discussed in [2], [15], and 

[16].  

D.Cutting, D. Karger, J. Pedersen, and J. 

Tukey 1992 [3] explains the Scatter/Gather method 

which demonstrates that document clustering can be 

effective information access tool in its own right. 

They presented a document browsing technique that 

employs document clustering as its primary operation, 

they also presented fast clustering algorithms that 

support this interactive browsing paradigm. It uses a 

combination of agglomerative and partition based 

clustering.  

Matrix-factorization techniques for text 

clustering are stated in [17]. In this technique words 

from the document based on their relevance to the 

clustering process are selected and to refine the 

clusters an iterative EM method is used.  

R. Angelova and S. Siersdorfer  2006 [5] 

focus towards the problem of automatically 

structuring linked documents by using clustering. In 

contrast to traditional clustering, they studied the 

clustering problem in the light of available link 

structure information for the data set (e.g., hyperlinks 

among web documents). Their approach was based on 

iterative relaxation of cluster assignments, and which 

could be built on top of any clustering algorithm. That 

technique results in higher cluster purity, better overall 

accuracy, and made self-organization more robust.  

The methods discussed in the above are 

focuses on the pure text data, these methods does not 

work for the text data which united with the other 

form of data. So, Charu C. Aggarwal, Yuchen Zhao 

and Philip S. Yu 2014 [1] designed an algorithm 

which combines classical partitioning algorithms with 

probabilistic models in order to create an effective 

clustering approach. They then show how to extend 

the approach to the classification problem. They 

presented methods for mining text data with the use of 

side-information. Many forms of text databases 

contain a large amount of side-information can be 

used in order to improve the clustering process. In 

order to design the clustering method, they combined 

an iterative partitioning technique with a probability 

approach which computes the importance of different 
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kinds of side-information. This general approach is 

used in order to design both clustering and 

classification algorithms. They presented results on 

real data set which shows the effectiveness of their 

approach. The results showed that the use of side-

information can increase the quality of text clustering 

and classification, while maintaining a high level of 

efficiency. They have used k-means clustering 

technique. k-means is computationally very expensive 

for the very large sets of patterns met in real life 

applications. On the other hand, k-means often 

converges to a local minimum.  

M. N. Vrahatis, B. Boutsinas, P. Alevizos, 

and G. Pavlides 2002 [13] has presented an 

improvement of the k-means clustering algorithm, 

aiming at a better time complexity and partitioning 

accuracy. This approach reduces the number of 

patterns that need to be examined for similarity, in 

each iteration, using a windowing technique. The 

latter is based on well-known spatial data structures, 

namely the range tree, which allows fast range 

searches.  

Bentley, J. L. (1975) has developed the 

multidimensional binary search tree (or k-d tree, 

where k is the dimensionality of the search space) as a 

data structure for storage of information to be 

retrieved by associative searches. The k-d tree is 

shown to be quite efficient in its storage requirements. 

 

III. METHODOLOGY 

 

Figure 2 shows the general architecture of system 

model. The dataset is an unstructured dataset of 

documents which are pre-processed using the 

following three rules: 1) Tokenize the file into 

individual tokens using space as the delimiter. 2) 

Removing the stop word which does not convey any 

meaning. 3) Use porter stemmer algorithm to stem the 

words with common root word. Stop Word Removal: 

Sometimes a very common word, which would appear 

to be of little beneficial in helping to select documents 

matching user‘s need, is completely excluded from the 

selected documents. These words are treated as ―stop 

words‖ and this technique is called stop word 

removal.  

 
 

Fig 2: Working of Text Clustering System model 

 

The general strategy for determining a ―stop list‖ is to 

sort the terms by collectionfrequency and then to 

make the most frequently used terms are treated as 

stop list, the members of which are discarded during 

indexing. Some of the examples of stop-word are: a, 

an, the, and, are, as, at, be, for, from, has, he, in, is, it, 

its, of, on, that, the, to, was, were, will, with etc. Here 

the input stop word file contains 641 words.   

Stemming: Stemming is an analytical process in 

which the end of the words or the affixes of the 

derivational words are truncated to receive the base 

form of the word. Here, porter stemmer is used.  

Then distance measure like cosine similarity is applied 

to find the similarity between the documents using the 

formula given in equation (3.1). 

Cosine measure: When the angle between the two 

vectors is a meaningful measure of their similarity, the 

normalized inner product may be an appropriate 

similarity measure. 

Similarity S(di, dj) = cos(θ) = 
𝑑𝑖 .𝑑𝑗

||𝑑𝑖 ||.||𝑑𝑗 ||
 

 (3.1) 

Using this cosine similarity formula, similarity 

between every document in dataset with other 

documents is calculated [5]. Then partition based 

clustering algorithms (i.e. k-means &k-Windows) are 

applied on this cosine similarity. Here K-means take 

1-dimensional input as cosine similarity of each 

document while k-Windows take 2-dimensional input 

as cosine similarity and document number. Both these 

algorithm are described in section IV. 
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IV. PARTITIONAL BASED CLUSTERING 

ALGORITHMS 

 

There are several partitional based clustering 

algorithms available like k-means, k-medoids, 

CLARANS, k-Windows etc. Here we have used k-

means and k-Windows for text clustering explained as 

follows: 

 

1. K-means Algorithm 

K-means is one of the simplest unsupervised learning 

algorithms to group similar data objects. It was 

developed by J. MacQueen (1967) and then by J. A. 

Hartigan and M. A. Wong around 1975 K-means 

forms clusters for n objects based on the attributes into 

k partitions where k<n [5]. The k-means is a very 

popular algorithm particularly suited for implementing 

the clustering process because of its ability to 

efficiently partition huge amounts of patterns. The 

latter is true even in the presence of noise. Although 

direct K-means is defined over numerical continuous 

data, it is the basic framework for defining variants 

capable of working on both numerical and categorical 

data. The K-means consists of two main phases. 

During the first phase, a partition of patterns, in k 

clusters is calculated, while during the second phase, 

the quality of the partition is determined. K-means is 

implemented by an iterative process that starts from a 

random initial partition. The latter is continually 

recalculated until its quality function reaches an 

optimum. In particular, the whole process is built upon 

four basic steps: 

(1) Selection of the initial k centroid as a 

seed, 

(2) Assignment of each pattern to a cluster 

with nearest mean or centroid, 

(3) Recalculation of k centroids for clusters, 

and 

(4) Computation of the quality function. 

The steps 2, 3, 4 are performed iteratively until 

convergence. Most clustering algorithms which are 

variants of k-means have been proved convergent [5]. 

On the other hand, k-means-type algorithms often 

terminate at a local minimum. Formally, let i1, ... in be 

the input patterns. Each of them is represented by a d-

tuple {(an1, av1), ..., (and, avd)} where anj, avj, 1 ≤ j ≤ d 

denote, respectively, the name and the value of the jth 

numerical attribute, whose domain is the set of reals 

R. Let the k first means be initialized to one of n input 

patterns im1,...,imk. These k means define the set C of 

clusters C= {Cj |1 ≤ j ≤ k}. The goal of the algorithm 

is to minimize the following quality function: 

E=  𝑞(𝑖𝑙 , 𝑖𝑚𝑗 )𝑖𝑙∈𝐶𝑗
𝑘
𝑗=1    (4.1) 

In direct k-means q is defined by the squared 

Euclidean distance, thus q(y, z) = ||y-z||2, where 

||·||determines the Euclidean norm. The k-means 

algorithm is computationally very expensive for large 

sets of patterns. It requires time proportional to the 

product of the number of patterns, the number of 

clusters and the number of iterations. More 

specifically, in the algorithm above, the first loop, for 

each iteration, has a time complexity O(ndk), the 

second O(nd) and the quality function is calculated in 

O(nd). Thus the whole algorithm has a time 

complexity O(ndkt), where t is the number of 

iterations [5]. Improvement of the computational 

complexity is achieved either by sophisticated 

initialization methods (e.g., [6, 7, 10]) or by reducing 

the number of (dis)similarity calculations (e.g., [8, 9, 

11]). The k-Windows algorithm is based on the latter 

approach. 

 

2.K-Windows Algorithm 

K-Windows algorithm deals with this problem by 

using a windowing technique, which reduces 

significantly the number of patterns that need to be 

examined at each iteration. Moreover, the basic 

operation in the first loop is the assignment of patterns 

to clusters, by performing arithmetic comparison 

between two numbers. The key idea behind this 

technique is to use a window in order to determine a 

cluster. The window is explained as an orthogonal 

range in the d-dimensional Euclidean space, where d 

is the number of numerical attributes. Here, 2-

dimensional data is used. The magnitude of A depends 

on the density of the data set. Which is define, across 

each different direction i, 

Ai = 
(mean  distance  among  patterns  in  i)

(𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑤𝑖𝑛𝑑𝑜𝑤𝑠 )
 ×0.5  (4.2) 

 
 

Fig 3: Movements and enlargements of a window. 

 

Intuitively, we try to fill the mean space between two 

patterns with non-overlapping (thus we scale by 0.5) 

windows. Every pattern that lies within a window is 

treated as belonging to the corresponding cluster. 

Repeatedly, each window is moved in the Euclidean 

space by centering itself on the mean of the patterns 

included. This takes place till further movement 

results in an increase in the number of patterns that lie 

within it which is shown by solid lines in figure 3. 

After this step, we can determine the means of clusters 

as the means of the corresponding windows. However, 

since only a limited number of patterns are considered 

in each movement, the quality of a partition may not 
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be optimum. The quality of a partition is calculated in 

a second phase. At first, we enlarge windows in order 

to contain as many patterns from the respective 

cluster. The quality of a partition is determined by the 

number of patterns contained in any window, with 

respect to all patterns.  

The k-Windows clustering algorithm is as follows:  

ALGORITHM  K-Windows.  

Input k, A, t  

initialize k means jn1, ..., jnk along with their  

k d-ranges wn1, ..., wnk each of area A 

repeat 

for each input pattern i, 1 ≤ p ≤ m  

do 
assign il to wi ,  

so that il lies within wi 

for each d-range wi 

do 

calculate its mean ini=  
1

|𝑤 𝑖 |
 𝑗𝑝𝑗𝑝∈𝑤 𝑖

 

 (4.3) 

and recalculate d-ranges  

until no any pattern has changed d-ranges  

enlarge d-ranges up to no significant  

change exists in their initial mean  

compute the ratio r = 
1 

𝑛
 |𝑖𝑝 ∈ 𝑤𝑗 |
𝑘
𝑗=1  

 (4.4) 

if r < t  

do reexecute the algorithm  

At first, k means are selected (possibly in a random 

way). Initial d-ranges (windows) have as centers these 

initial means and each one is of area a. Then, the 

patterns that lie within each d-range are found. As 

here the data is 2 dimensional, an orthogonal range 

search [11] is used. An orthogonal range search is 

based on a preprocess phase where a range tree i.e. 

here binary tree is constructed. Patterns that lie within 

a d-range can be found by traversing the binary tree, 

in polylogarithmic time. In the third step, the mean of 

patterns that are present within each range is 

calculated. Each such mean defines a new d-range that 

is considered a movement of the previous d-range. 

The last two steps are executed repeatedly, until no d-

range includes a significant increment of patterns after 

a movement [13]. 

 

3. Kd Tree Search 
Kd Tree (short for k-dimensional tree) is a space-

partitioning data structure for organizing points in a k-

dimensional space. k-d trees are a useful data structure 

for several applications, such as searches involving a 

multidimensional search key (e.g.range searches and 

nearest neighbor searches). k-d trees are a special case 

of binary space partitioning trees invented by Jon 

Louis Bentley in 1975 for multidimensional data. The 

k-d tree is a binary tree in which every node is a k-

dimensional point. Every non-leaf node can be 

thought of as implicitly generating a splitting 

hyperplane that divides the space into two parts, 

known as half-spaces. Points to the left of this 

hyperplane are represented by the left subtree of that 

node and points right of the hyperplane are 

represented by the right subtree. The hyperplane 

direction is chosen in the following way: every node 

in the tree is associated with one of the k-dimensions, 

with the hyperplane perpendicular to that dimension's 

axis. So, for example, if for a particular split the "x" 

axis is chosen, all points in the subtree with a smaller 

"x" value than the node will appear in the left subtree 

and all points with larger "x" value will be in the right 

subtree. In such a case, the hyper plane would be set 

by the x-value of the point, and its normal would be 

the unit x-axis. 

Let us consider the procedure for constructing the kd-

tree.  

It has two parameters, a set of points and an integer. 

The first parameter is set for which we want to build 

kd-tree, initially this the set S. The second parameter 

is the depth of the root of the sub tree. Initially the 

depth parameter is zero. The procedure returns the 

root of the kd-tree. 

 

Procedure name BUILDKDTREE(S,depth)  
Input: A set of points S and the current depth.  

Output: The root of the kd-tree storing S. 

if S contains only one point  

then return a leaf storing this point  

else if depth is even  

then Split S into two subsets with a vertical 

line l through the median x-coordinate  

of the points in S.  S1 be the set of points to 

the left of l or on l, and let S2 be the  

set of points to the right of l.  

else Split S into two subsets with a horizontal line l 

through the median y-coordinate  

       of the points in S. Let S1 be the set of points to the 

below of l or on l, and let S2 be  

       the set of points above l.  

vleft←BUILDKDTREE(S1, depth +1).  

vright←BUILDKDTREE(S2, depth +1).  

Create a node v storing l, make vleft the left child of v, 

and make vright the right child of v. 

return v. 

As the kd-tree is binary tree. So, kd-tree for a set of n-

points uses O(n) storage and and can be constructed in 

O(n logn) [11]. 

 

V. EXPERIMENTAL RESULTS 

 

Experimental results have been evaluated on an Intel 

core2 DUO CPU with 2GBRAM under 64-bit 

Windows 8 operating system. This system is 

implemented in java using jdk 1.8. 20 NewsGroup 

Dataset [14] is used for experiments which a 

collection of approximately 20,000 newsgroup 

documents, partitioned among 20 different 

newsgroups like graphics, hardware, politics etc. It 

was originally collected by Ken Lang. Now a day, The 

20 newsgroups collection has become a popular data 

set for experiments in text applications, such as text 

classification and text clustering.But this data may be 

https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Space_partitioning
https://en.wikipedia.org/wiki/Space_partitioning
https://en.wikipedia.org/wiki/Space_partitioning
https://en.wikipedia.org/wiki/Point_%28geometry%29
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Range_search
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Binary_space_partitioning
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noisy so data preprocessing is carried out to get the 

clean data. Data preprocessing consists various steps 

like tokenization, stop words removal, Stemming etc. 

We have used 641 stop words for stop word removal 

process and porter stemmer is used for stemming. 

Then vector space model is generated using tf-idf 

values. Using these vectors, cosine similarity is 

calculated between documents. This is given as input 

to the K Means & K Windows clustering. K Means 

works on single dimensional data. So, here it works on 

cosine similarity scores of documents.  But K 

Windows works on 2 dimensional or 

multidimensional data. But, Data is 2 Dimensional. 

This is given as input to the K Windows i.e. (Cosine 

Similarity Scores, Document number). Both 

algorithms are tested for different size of cosine score 

values as 5, 10, 15, 20, 25, 30 and 35. According to 

that, it‘s running time in milliseconds, number of 

clusters generated by both algorithms & memory 

usage by both these algorithms in kilobytes is 

tabulated in the following Table 1. Using this 

information, graphs are generated which shows the 

comparison between K Means & K Windows 

algorithm.  

 

Table I: Results of K Means & K Windows 

 

 

Figure below shows experimental results on dataset of 

different data size as no. of cosine scores applied on 

both K Means & K Windows. 

 

Fig 2:Comparison of running time required vs. 

data size for both algorithms 

 

Fig 3: Comparison of number of cluster generated 

vs. data size for both algorithms 

 

Fig 4: Comparison of memory utilized vs. data size 

Cosine Similarity 

Scores( Data Size) 

Running Time (in 

Milliseconds) 

Number of clusters 

generated 
Memory Utilized in KB 

 k-Means k-Windows k-Means k-Windows k-Means k-Windows 

5 7 1 2 2 1587 848 

10 9 1 3 4 1959 696 

15 9 2 3 7 1778 682 

20 9 2 3 9 1985 533 

25 9 2 3 11 1972 682 

30 9 2 3 13 1978 696 

35 10 3 3 14 1962 848 
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for both algorithms 

The quality of a clustering result is evaluatedusing 

evaluation measure like purity is widely used to 

evaluate the performance of unsupervisedlearning 

algorithms [1].To begin with, each cluster is labeled 

with the majority category that appears in that cluster. 

Moreover, if a categorylabel has been assigned to a 

cluster, it still can be assigned toother clusters if it is 

the dominant category in that cluster.Based on the 

cluster labels, the purity and entropy measures are 

computed as follows. Thepuritymeasure evaluates the 

coherence of a cluster, thatis, the degree to which a 

cluster contains documents from asingle category. 

Given a particular clusterCiof sizeni, thepurity ofCiis 

formally defined as 

P(Ci) =
1

𝑛𝑖
𝑚𝑎𝑥ℎ(𝑛𝑖

ℎ)  (5.1) 

Where, 𝑚𝑎𝑥ℎ(𝑛𝑖
ℎ) is the number of documents that 

are fromthe dominant category in 

clusterCiand𝑛𝑖
ℎ represents thenumber of documents 

from clusterCiassigned to categoryh. Purity can be 

interpreted as the classification rate underthe 

assumption that all samples of the cluster are 

predictedto be members of the actual dominant class 

for the cluster.For an ideal cluster, which only 

contains documents from asingle category, its purity 

value is 1. In general, the higherthe purity value, the 

better the quality of the cluster is[1]. 

 Here, overall purity of clusters for both 

algorithms is listed in Table II and which graphically 

in fig 5. 

Table II: Results of Purity Of Clusters of both k-

Means & K-windows Algorithm 

 K-Means K-windows 

Overall Purity 

of clusters 

0.044 0.4145 

 

 

Fig 5: Cluster Purity Comparison between k-

Means & K-windows 

VI. CONCLUSION 

Text mining is performed using side information and 

clustering is performed using K-mean &K-Windows. 

Many forms of text data is gathered from databases 

contain a large amount of side information or meta 

information, which may be used in order to improve 

the quality of clustering results. Experimental results 

show that use of side information can enhance the 

quality of text clustering and performance is evaluated 

in terms of memory utilization & running time. K 

Windows clustering technique is efficient as compared 

to K Means. So, the quality of searching the query is 

enhanced using side information. 
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