
International Journal of Computer Trends and Technology (IJCTT) – Volume 36 Number 3 June 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 119

Design and Application ofConcurrent

Double KeySurvey Data Structures
C. P. E. Agbachi

Department of Mathematical Sciences, Kogi State University

Anyigba, Kogi State, Nigeria

Abstract— It is often the case in software

development to find model solutions in generic data

structures and algorithms. Even more common in

rapid development programmes, is the use of

libraries and incorporation of database engines.

However, there are instances where none of these

options provides a matching model to formats and

methodology, for instance, in field of data collection.

Neither are the workarounds perfect, the result of

which is both an inadequate as well as

unsatisfactory resolution. This paper examines

linear data structures and adaptation to intelligent,

concurrent double key models to meet requirements

in Geomatic Engineering.

Keywords—Lists, Pointers, Objects, Levelling,

FieldBook, Knowledge Engineering.

I. INTRODUCTION

Survey Data Structures is a subject of data

organization and arrangement in the field of

Surveying and Geoinformatics. It has origins in the

abstract data types in Computer Science [1]. These

are fundamental and provide the foundations for

building blocks that lead to designs of program

modules in data acquisition and processing. A

primary data type is the record, comprising of fields

of information where a particular handle may have a

key status, in order to serve the purpose of sorting.

And while they could be many such sort fields, only

one usually is processed at a time. Records are

normally held in a database, storage file medium,

ranging in order of hundreds and millions depending

on application.

A. Lists

Fig. 1 Linear model of memory

A List is defined as an ordered data sequence [2].

It is family of linear data structures, where the

relationship between the records in the sequence and

locations in memory are linear, Fig 1. As such, a

data sequence conveys the impression of contiguous

locations in physical memory. In such allocations,

the relationship generally is of the form Y = MX + C,

where C is the base address, for example,

AC5D:00C8H. X is the node while M, is the byte

size per node.An instance is Array data type, defined

in many programming environments and that can

hold thousands of elements. Other examples include

Queues and Stacks. In reality though, the apparent

sequence of records results from modifications in the

structure to address non-contiguous allocations, from

the memory heap.

B. Linked Lists

A linked list is characterised by linked allocation.

This is in contrast, to keeping a linear list in

sequential memory locations.

Fig. 2 Sequential and Linked Allocation

A comparison between the two models for the

records, from StnA to Stn F, is shown in Fig. 2. But

whileaddresses in Sequential Allocation are

contiguous, in the linked model there is additional

row, Next Location thatpoints to the memory

address of the next item.

In a more generalized format, the linked table

above is best represented as a Singly Linked List,

Fig.3a, where the arrows are pointers to the next

record.

International Journal of Computer Trends and Technology (IJCTT) – Volume 36 Number 3 June 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 120

Fig. 3a Linked List

The advantage is obvious, in that the order of the

sequence can be changed simply by redirecting the

pointers. For instance, StnA may point to C, and C

to E etc. Therefore, insertions and deletions are

easily implemented by this arrangement in

comparison with sequential allocation. However,

there is the constraint of having to move only in the

right direction. At StnC, for example, there is no

information regarding the previous node. The result

is that moving in the opposite direction is not

possible and random insertions are fraught with

difficulties. This however can be overcome with

double links between the records.

1. Doubly Linked List:

Fig. 3b Doubly Linked List

A doubly linked list, Fig 3b, comprises of two

pointers, one in each direction to indicate next or

preceding link in the chain. By this procedure

traversing can occur in both directions. Insertions

and deletions are not beset with starting from the

beginning or end of the list.

Fig. 3c Doubly Linked Circular List

It is common in some applications to be able to

navigate freely within the database without the

bounds of end or beginning of the dataset. In such a

case, the pointers are redirected from head to tail,

and vice versa, to form a doubly linked circular list,

Fig 3c.

There are also other variants such as multiply

linked list. However, this is mainly a case of two or

more sort fields in each node. Given this feature,

traversing the data set may be based at a time, on

surname, or alternatively town, date of birth, etc.

C. Pointers

Pointers are unique in variable data types, in that

whereas a standard variable contains the data, a

pointer type holds instead, the address of the data for

storage and retrieval. It has its roots, among

addressing modes, in the form of indirectsystem.

Fig. 4a Computer Instruction

Generally, a computer instruction comprises of

the instruction bit and the memory reference bit, Fig.

4a. In a 16-bit architecture, each may occupy 8-bit

space.Then the memory bit can address at most, up

to 256 locations [0-255].That is, whereas an

instruction LOAD A [255] is valid, STORE A [256]

is not, as it exceeds 8-bit space.

Fig. 4b Computer Program

This restriction can besurmounted by indirect

addressing, Fig. 4b. As seen in the diagram, LOAD

A [255] points to location 255 where contents,

65535, is the address destination. Thus, when the

instruction executes, 100 is loaded into A, the

register.It is observed that at address [255], the entire

16-bit space is available, and as such,the range can

extend up to 65535. Therefore, the limitation in 8-bit

memory reference address space is overcome [3].

1. Arrays:

Arrays are characterized by indexed addressing

modes and whencombined with indirect mode add

even greater flexibility and dynamism to a data

structure. This leads to emergence of pointers to

Arrays, and where every index is a pointer reference.

In the discussions so far, the strength of linked

lists include:

International Journal of Computer Trends and Technology (IJCTT) – Volume 36 Number 3 June 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 121

 Dynamic Allocation

 Ease of Insertion and Deletion

This is in contrast to the standard array which is

fixed in size, without the ability to remove or add

items. Nevertheless, there are strong meritsin using

Arrays[4], [5], given the following observations:

 Random access mode of operation

 A rating of O(1) performance

 Locality of reference, such that adjacent

cells tend to be on the same page during

virtual memory management.

Overall, if there are ways through which Arrays

can be modified for dynamic allocation, ease of

insertion and deletion, it would be a data structure of

choice. In fact, in some programming languages

such as BP Pascal [6], this appears to be the position

regarding library options in available data structures.

D. Objects

Object oriented programming have been the norm

for over a decade. Within this period many

otherwise intractable problems have found solutions.

Actually Objects or Class have origins in the concept

of Frames in Artificial Intelligence. A frame is

therefore one of the options available in models of

Knowledge Representation [7]. The key

characteristics and advantages are as follows:

 A frame is a data structure with typical

knowledge about a particular object of

concept.

 Every frame has its own name and a set

of attributes or slots associated with,

thus providing means of organising

knowledge in slots to describe various

attributes and character of the object.

 Frames are often used in production

rules and provide a natural way for the

structured and concise representation of

knowledge.

 Inheritance is an essential feature of

frame based systems, and is the process

by which all characteristics of a parent

frame are manifest and defined in the

child.

 Frames have Methods and Demons,

procedures associated with attributes

and executed whenever so requested.

Typically, there are two types of

Methods, WHEN CHANGED and

WHEN NEEDED. On the other hand,

Demons have IF-THEN structure.

Given the antecedent, the consequence

is triggered whenever there are changes

in the attribute.

In the foregoing, Object Oriented Programming

(OOP) is characterised by polymorphism and data

encapsulation [8]. They thus, provide foundations on

which to build and develop intelligent data structures.

1. Intelligent Data Structures:

Intelligent data structures provide a model on

which to modify an Array data type. A typical

example is TCollection, in then RTL of Borland

Pascal, and in present rebirth TList as in [9],

[10].TCollection is derived from TObject with

attributes, data fields, and methods as illustrated

below:

{ TCollection types }

PItemList = ^TItemList;

TItemList = array[0..MaxCollectionSize - 1] of Pointer;

{ TCollection object }

PCollection = ^TCollection;

TCollection = object(TObject)

 Items: PItemList;
 Count: Integer;

 Limit: Integer;

 Delta: Integer;
 constructor Init(ALimit, ADelta: Integer);

 constructor Load(var S: TStream);

 destructor Done; virtual;
 function At(Index: Integer): Pointer;

 procedure AtDelete(Index: Integer);

 procedure AtFree(Index: Integer);
 procedure AtInsert(Index: Integer; Item: Pointer);

 procedure AtPut(Index: Integer; Item: Pointer);

 procedure Delete(Item: Pointer);
 procedure DeleteAll;

 procedure Error(Code, Info: Integer); virtual;

 function FirstThat(Test: Pointer): Pointer;
 procedure ForEach(Action: Pointer);

 procedure Free(Item: Pointer);

 procedure FreeAll;
 procedure FreeItem(Item: Pointer); virtual;

 function GetItem(var S: TStream): Pointer; virtual;

 function IndexOf(Item: Pointer): Integer; virtual;
 procedure Insert(Item: Pointer); virtual;

 function LastThat(Test: Pointer): Pointer;
 procedure Pack;

 procedure PutItem(var S: TStream; Item: Pointer); virtual;

 procedure SetLimit(ALimit: Integer); virtual;
 procedure Store(var S: TStream);

end;

Starting with TCollection types, of note is

PItemList, a pointer to array of pointers.Then the

method, Init initialises the list to ALimit, while the

second variable ADelta, allows dynamic expansion

of the list by this margin. With this facility, the size

of the container is limited only by 16-bit architecture.

Given that 4 bytes is allocated to each pointer, this

translates to 16,384 items.However though, there are

means to by pass this limit, conceptually by two

dimensional array definitions in TItemList.

Of note are the several methods defined in the

object, such as Insert, Delete and Free. The virtual

International Journal of Computer Trends and Technology (IJCTT) – Volume 36 Number 3 June 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 122

methods allow child objects to redefine inherited

procedures for the purpose of custom adaptation.

With this facility, objects could be taught how to

adapt to meet the necessities of field data collection

in Geomatic Engineering.

II. ANALYSIS

In designing an intelligent system, the best

approach is to start from a generic model.

Fig. 5 Development Team

As the diagram, Fig. 5, illustrates, development

comprises of a team, namely:

 Domain Expert

 Knowledge Engineer

 Programmer

 Project Manager

Domain Expert refers to and is a description of an

expert in the field. In this application, a Surveying

Engineer who is very knowledgeable and with

considerable field experience is perfect for this task.

He can then list and describe the areas requiring

computer process. In other words, this wealth of

experience would form the base knowledge in the

mind of the machine.

Knowledge Engineering as described in [11], is

the process of integrating knowledge into computer

systems in order to solve complex problems

normally requiring a high level of human expertise.

Thus, the Knowledge Engineer takes the skill of the

Domain Expert and formulates the best model of

representation for the machine.

Programming involves translating the model into

a working system, and requires competence and

expertise in programming languages, and

familiaritywith the environment of the operating

system.

The job of the Project Manager is to oversee the

progress, ensuring that milestones are met and work

done is satisfactory.

III. FIELD MODEL

Surveyors carry out measurements in the field to

determine horizontal and vertical positions [12], [13].

The latter known as height measurements is by

process of levelling. In brief, an instrument is set up

and levelled between two points, A and B, to read

staff measurements as shown in Fig.6.

Fig. 6 Levelling Process: A → D

The height difference ∆H between the two points,

with BS and FS readings, is given by hA – hB where

a rise or fall is indicated by sign of the quantity. It is

a cumulative process that starts from a known

position and closes at another control point. The

survey can involve a network of level runs over

several kilometres and comprising of a huge data set.

It could also be in a dynamic environment such as

construction site.

The key issues then are as follows:

1) The computability and reliability of

results depend on strict adherence to the

cumulative order in survey topology.

2) However, a large project often involves

several parties, each of which may be

following a different regime. Also,

access may be restricted, such as in

construction sites, meaning deviation

from the planned order of survey.

3) Loss of stations and errors mean that

repeats are common

4) In the event of 2) and 3), during a large

survey, computation of results can often

becomeburdened with at times,

insurmountable difficulties.

Given the above observations, the following are

recommendations:

1) A survey can start from and end at any

point in the network, in any order.

2) It is vital that measurements of the

network are comprehensive, fully

descriptive, without any omissions.

International Journal of Computer Trends and Technology (IJCTT) – Volume 36 Number 3 June 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 123

3) Every point should have unique name

identification.

4) The sorting and re-arrangement of

observations into survey topology should

be handled by software.

IV. FRAMEREPRESENTATION

In translating the grasp of field model into a

computer compatible format, Knowledge Base, the

recommendations are critical in assessing the result.

By taking these into account, the following scene

emerges:

Fig.7a

In day 1, as in Fig. 7a, only two setups, A and D,

were observed in the course of the survey. Possibly

due to access, no measurements are recorded for

setups at B and C. On the second day, the survey is

completed.

Fig.7b Survey Topology

The reconstruction that takes place after the

survey sees the data set reflecting survey topology,

Fig. 7b. Additional level runs emanating or joining

the network are equally sorted and appended.

Furthermore, repeats in the survey automatically

supersedeany previous or erroneous observations in

the database. In order to achieve this,the appropriate

data structures and objects have to be formed.

A. Frames

There are three models to consider, namely the

work at each setup, the database and the interface

representing the traditional recording of data in a

field book.

1. Setup Record:

type

 PSet_UpRecord = ^TSet_UpRecord;

 TSet_UpRecord = record
 BackSightStn: array [0..5] of char;

 BackSightReading: array [0..10] of char;

 BackSightDistance: array [0..10] of char;
 BackSightCircle: array [0..10] of char;

 ForeSightStn: array [0..5] of char;

 ForeSightReading: array [0..10] of char;
 ForeSightDistance: array [0..10] of char;

 ForeSightCircle: array [0..10] of char;

 Diff: array [0..10] of char;
 SumDiff: array [0..10] of char;

 SumDistance: array [0..10] of char;

 Remarks: array[0..250] of Char;
 Counter: array[0..15] of Char;

 Link : Boolean;

end;

The Setup record is by definition such that all the

information about the setup is represented. Critical

for the description are the sight station names, BS

and FS, and corresponding readings. The attributes

are as described above.

PSet_UpObj = ^TSet_UpObj;

 TSet_UpObj = object(TObject)
 Set_UpRecord: TSet_UpRecord;

 constructor Load(var S: TStream);

 procedure Store(var S: TStream);
end; Fig.8a Set_UpObj

Next, the record structure is consolidated into an

object data type, Fig. 8a, as a slot inside the object.

With this arrangement, the observations at each

setup constitute an object that can be dropped into a

container database, Fig 8b.

Fig. 8b Container of Observations

2. Container:

type

PSet_UpCollection = ^TSet_UpCollection;

TSet_UpCollection = object(TCollection)
 function Found(Item: Pointer): Boolean; virtual;

 functionSearchForPosition(Item: Pointer):

Integer;virtual;
 procedure Filter(Item: Pointer); virtual;

 procedure Insert(Item: Pointer); virtual;

 procedure Error(Code, Info: Integer); virtual;
end;

Container, in this instance, is a database and an

object derived from TSet_UpCollection. As such it

International Journal of Computer Trends and Technology (IJCTT) – Volume 36 Number 3 June 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 124

inherits TCollection data type, the base object,

providing the foundation for modifications to match

required descriptions.

There are five methods, such as Found,Filter, and

Insert, but the function, SearchForPosition stands out

as it is responsible for determining where to slot the

observation in line with survey topology, Fig 8c.

Fig. 8c Sorted Data Set

3. Interface:

PFieldBook= ^TFieldBook;

TFieldBook= object(TDlgWindow)
Remarks, Counter: PEdit; Data: Array[0..6,0..3] of PEdit;

ref_Id:integer;

NewDat,SaveDat,XDat,DelDat,ISight:PButton;
FbkScroller:PScrollBar;

 EditBrush,RefBrush,StatBrush:HBrush;

 constructor Init(AParent: PWindowsObject; AName:PChar);
 procedure SetUpWindow; virtual;

 procedure WMControlColor(varMsg: TMessage);

 virtualwm_First + wm_CtlColor;
 constructor Load(var S: TStream);

 procedure Store(var S: TStream); virtual;

 procedure LoadNaSet_Ups;
 procedure AddDeltaH;

 procedure TransferInfo(Direction:Byte);

 procedure NewSet_Up(varMsg:TMessage);
 virtualid_First + 151;

 procedure Save_Input(varMsg:TMessage);

 virtual id_First + 152;
 procedure Cancel_Input(varMsg:TMessage);

 virtual id_First + 153;

 procedure DelSet_Up(varMsg:TMessage);
 virtual id_First + 154;

 procedure I_SightCollection(varMsg:TMessage);

 virtual id_First + 155;
 procedure Response(varMsg: TMessage);

 virtual id_First + 156;

 procedure ShowSet_UpHeader(NaSet_UpRecNum: Integer);
 procedure Restore;

 procedure InitializeSet_Ups;
 destructor Done; virtual;

 function GetClassName: PChar; virtual;

 procedure GetWindowClass(varAWndClass: TWndClass);
virtual;

end;

Interfaceis thefield book, derived from

TDlgWindow object, and providing means of

communicating with the container, database.

Normally, data collection is automated computer

process and this interface enables the

surveyor/engineer to review data in traditional

environment. Input can be manual, with editing

options. Besides the editing forum, there is also the

option of list review and printing of pages from the

field book.

V. PROGRAMMING

The key challenge here is to implement the

methods of TSet-UpCollection. A starting point is an

examination of the input object, TSet_UpObj.

Looking at Fig 8a, it is obvious that two keys BS and

FS have to be considered in order to locate where to

insert an observation. Furthermore, it isclear the

evaluations would have to be in tandem. Hence, the

required outline of program steps.

A. Algorithm

procedureTSet_UpCollection.Insert(Item: Pointer);
begin

Filter(PSet_UpObj(Item));

 If not Set_UpDuplicate then
AtInsert(SearchForPosition(PSet_UpObj(Item)),

PSet_UpObj(Item));

end;

The key issue is insertion and sorting of survey

objects, and the heart of it lies in a review of the

above method, TSet_UpCollection.Insert. Hence, the

first call in the procedure is Filter. And if there is no

duplication of observation, an insertion is carried out

at the desired location. These routines would now be

examined in further detail.

1. Filter:

Filter performs a number of checks on the input

object. These are:

 Validation of data, to ensure that key

fields, BS and FS are valid entries.

 Determine if the record already exits in

the database and overwrite if input is in

file mode.Checking for duplication

requires concatenating the two fields,

such that Search_Key = BSName +

FSName

 It is also important to check for

instances of double levelling in the

network and reduce as such.

After filter routine has executed, the

statement, If_not_Set_UpDuplicate, returns a

Boolean answer before the next process can

commence.

2. Searching:

The searching process for position that a new

objet occupies is best illustrated with reference to

Fig 7a. A follow up is the equivalent location in

the TSet_UpCollection, container database, Fig 9.

International Journal of Computer Trends and Technology (IJCTT) – Volume 36 Number 3 June 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 125

Day 1

Day 2

Fig. 9 Profile of Database

In Day 1, work comprises of twodistinct level

runs, [1-2] and [4-5]. However, in Day 2, with

insertions of the day’s work, the database assumes

a profile representation of survey topology.

The required program steps may be formulated

as follows:

1) Given a new input of observations, X-Y,

where X is the BS and Y is the FS, take

the pair:

a) Locate a previous set of

observations where the FS, and

BS in the input object are one

and the same station, X.

b) Locate a previous set of

observations where the BS, and

FS in the input object are one

and the same station, Y.

2) Case Found of:

 Either

1a: True: Insert the new object X-

Y after Found location, n+1.

 Or

1b: True: Insert the new object X-

Y at Found location, n.

 Else

 Append new object to last count

3. Implementation:

Implementation process is through the method,

SearchForPosition, outlined below. Note the two

variables, Key1 and Key2. The first two lines

ofinstructions fetch and assign the BS and FS,

respectively.

The functions MatchKey1 and MatchKey2, as

defined in the method, perform Program Step 1),

through iterating process, LastThat and FisrtThat,

returning pointers F1 and F2, respectively.

functionTSet_UpCollection.SearchForPosition(Item: Pointer):

Integer;

var I : integer ; KeyName2, KeyName1: string; F1, F2:
PSet_UpObj; ANode: Boolean;

function MatchKey1 (Readings: PSet_UpObj): Boolean; far;

var A: string;
begin

 A :=StrPas(Readings^.Set_UpRecord.ForeSightStn);

 MatchKey1 := (A = Key1) ;
end;

function MatchKey2 (Readings: PSet_UpObj): Boolean; far;
var B: string;

begin

 B :=StrPas(Readings^.Set_UpRecord.BackSightStn);
 MatchKey2:= (B = Key2) ;

end;

begin

 Key1 := StrPas(PSet_UpObj(Item)^.Set_UpRecord.

 BackSightStn);
 Key2 := StrPas(PSet_UpObj(Item)^.Set_UpRecord.

 ForeSightStn);

 F1:=LastThat(@MatchKey1);

 F2:= FirstThat(@MatchKey2);

 if (F1 <> nil) then

 SearchForPosition :=IndexOf(F1)+1

 else if (F2 <> nil) then
 SearchForPosition :=IndexOf(F2)

 else
 SearchForPosition := Count ;

end;

Program Step 2) is then executed in an IF-

THEN-ELSE block to make a decision.

The routine, SearchForPosition, returns an integer,

Index, to the calling program. Hence an insertion is

carried out by the last call in the Insert method,

outlined above, such as AtInsert(Index, NewObject).

VI. APPLICATION

The object, TSet_UpCollection, is the foundation

of the data collection module in LMS, Level

Monitoring System [14]. Evolving into SMS, Survey

Management System, it was further acclaimed for its

innovation and use in industry [15].

Fig. 10 Field Book Interface

A typical field book, interface to database, is

shown in Fig. 10. Object input is emphasised as well

as orientation to network modality. There is also

International Journal of Computer Trends and Technology (IJCTT) – Volume 36 Number 3 June 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 126

adequate support and provision for intermediate

sight observations. These are database objects

defined inside each setup, and accessible through the

ISight button.

Further applications of the data structure, finds a

place in derivates that lead to the construction of

Traverse data types. There are also edge definitions,

lists and sort in graphs, to provide survey network

descriptions. It is thus an important innovation.

VII. CONCLUSION

On reflection, the accomplishment in this project

is attributable to the development team, comprising

of the Domain Expert, Knowledge Engineer and

Programmer. This concept is very important in the

success of any such venture.

A number of hands may be desirable, but the size

of the personnel is less important than the degree of

overlap, communication and understanding among

the team. Indeed, ideally the team should operate as

a one-man team. That is without the need for bridges

or interpreters in order tobe in touch. This is because,

often milestones are not met, and projects fail due to

the fact that just when it is thought that developers

have understood what is supposed to be done the

opposite, more often than not,turns out to be the case.

As a result, the need for a common language among

development team cannot be overemphasised.

No less and very important in application

development is methodology, hence as in this

instance, the concept of concurrent double key data

structures. As pointed out in [16], whatonce were

intractable problems tend to find solutions in new

concepts such as AI [17], [18] and techniques of

Knowledge Processing [19], [20].

REFERENCES

[1] Jean-Paul Tremblay, Paul G. Sorenson, ―An Introduction to
Data Structures With Applications‖, McGraw Hill

Computer Science Series 2nd Edition

[2] Donald E. Knuth, ―The Art of Computer Programming,
Vol. 1 (3rd Edition): Fundamental Algorithms‖, Addison

Wesley Longman Publishing Co.

[3] P. C. Pittman, ―Design of Digital Systems: Book 6
Computer Architecture‖, Cambridge Learning Enterprises,

1974.

[4] Niklaus Wirth, ―Algorithms and Data Structures‖, © N.
Wirth 1985.

[5] Julian Bucknall, ―The Tomes of Delphi: Algorithms and

Data Structures‖, © 2001, Wordware Publishing, Inc.
[6] Borland, ―Borland Pascal with Objects User’s Guide‖,

Copyright 1983, 1992 Borland International.

[7] Olubusayo Dare, ―Artificial Intelligence: Concepts,

Methodology and Application‖, Bachelor’s Thesis, Kogi

State University, Anyigba, 2012

[8] Tom Swan, ‖Borland Pascal 7.0 Programming for

Windows‖, Borland Bantam, 1993
[9] Tom Swan, ‖Foundations of Delphi Development for

Windows 95‖, IDG Books Worldwide, Inc 1995

[10] Lazarus/Free Pascal Compiler, http://www.lazarus-ide.org/
[11] Edward A. Feigenbaum, Pamela McCorduck, ―The Fifth

Generation 1st Edition
[12] R. E. Davis, F.S. Foote, J. M. Anderson, and E. M. Mikhail,

― Surveying Theory and Practice‖, McGraw-Hill, 1968

[13] W. Schofield, ‖Engineering Surveying, Vol. 2.‖,
Butterworth and Co. (Publisher) Ltd., 1974

[14] C. P. E. Agbachi, ―Design and Implementation of a Level

Monitoring System, APC Presentation, Royal Institution of
Chartered Surveyors (RICS) 1995

[15] Leica Report(UK), http://www.pecaconsult.com/Leica_

report.pdf

[16] C. P. E. Agbachi, ―Surveying Software‖, Chartered

Institution of Civil Engineering Surveyors ICES, October

2011, http://mag.digitalpc.co.uk/fvx/ces/1110/?pn=44
[17] George F. Luger, ―Artificial Intelligence, Structures and

Strategies for Complex Problem Solving‖, 4th Edition 2001

[18] Negnevitsky, Michael, Artificial Intelligence: A Guide to
Intelligent Systems‖, Pearson Education 2002

[19] Rudi Studer, V. Richard Benjamins, Dieter Fensel,

―Knowledge Engineering: Principles and Methods‖,
https://www.researchgate.net/profile/V_Richard_Benjamin

s/publication/222305044_Knowledge_engineering_principl

es_and_methods._Data_Knowl_Eng_25%281-2%29161-
197/links/0fcfd50c3673c0368e000000.pdf

[20] Franz J Kufess, ―Knowledge Processing‖, Computer

Science Department, California Polytechnic State
University, San Luis Obispo, CA

