Mann-Kendall Test - A Novel Approach for Statistical Trend Analysis

  IJCTT-book-cover
 
International Journal of Computer Trends and Technology (IJCTT)          
 
© 2018 by IJCTT Journal
Volume-63 Number-1
Year of Publication : 2018
Authors : Neel Kamal, Dr.Sanjay Pachauri
  10.14445/22312803/IJCTT-V63P104

MLA

MLA Style: Neel Kamal, Dr.Sanjay Pachauri "Mann-Kendall Test - A Novel Approach for Statistical Trend Analysis" International Journal of Engineering Trends and Technology 63.1 (2018): 18-21.

APA Style: Neel Kamal, Dr.Sanjay Pachauri (2018).Mann-Kendall Test - A Novel Approach for Statistical Trend Analysis. International Journal of Engineering Trends and Technology, 63(1), 18-21.

Abstract
Trend Analysis is aimed at projecting both current and future movement of observations through the use of time series data analysis which involves comparison of data over a sequential period of time to spot a pattern or trend. Mann-Kendell test is one of the most popular non-parametric trend test based on ranking of observations. The current paper describes Mann Kendall Test in the context of time series data analysis. It also presents a case study to demonstrate the implementation and advantage of using Mann Kendall Test over other trend analysis techniques

Reference
[1]. Aziz, O.I.A. and Burn, D.H., 2006. Trends and variability in the hydrological regime of the Mackenzie River Basin. Journal of hydrology, 319(1-4), pp.282-294.
[2] Belle, G. and Hughes, J.P., 1984. Nonparametric tests for trend in water quality. Water resources research, 20(1), pp.127-136.
[3] Berryman, D., Bobée, B., Cluis, D. and Haemmerli, J., 1988. Nonparametric tests for trend detection in water quality time series 1. JAWRA Journal of the American Water Resources Association, 24(3), pp.545-556.
[4] Cannarozzo, M., Noto, L.V. and Viola, F., 2006. Spatial distribution of rainfall trends in Sicily (1921–2000). Physics and Chemistry of the Earth, Parts A/B/C, 31(18), pp.1201-1211.
[5] Chandler, R. and Scott, M., 2011. Statistical Techniques for trend detection and analysis in the environmental sciences. John Wiley & Sons.
[6] Harcum, J.B., Loftis, J.C. and Ward, R.C., 1992. Selecting trend tests for water quality series with serial correlation and missing values 1. JAWRA Journal of the American Water Resources Association, 28(3), pp.469-478.
[7] Hirsch, R.M., Slack, J.R. and Smith, R.A., 1982. Techniques of trend analysis for monthly water quality data. Water resources research, 18(1), pp.107-121.
[8] Hirsch, R.M. and Slack, J.R., 1984. A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), pp.727-732.
[9] Hirsch, R.M., Alexander, R.B. and Smith, R.A., 1991. Selection of Techniques for the detection and estimation of trends in water quality. Water resources research, 27(5), pp.803-813.
[10] Kendall, M.G., 1975. Rank Correlation Techniques, Charles Griffen. London ISBN, 195205723.
[11] Kendall, M.G., 1955. Further contributions to the theory of paired comparisons. Biometrics, 11(1), pp.43-62.
[12] Lettenmaier, D.P., 1988. Multivariate nonparametric tests for trend in water quality 1. JAWRA Journal of the American Water Resources Association, 24(3), pp.505-512.
[13] Loftis, J.C., 1996. Trends in groundwater quality. Hydrological processes, 10(2), pp.335-355.
[14] Mann, H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, pp.245-259.
[15] McLeod, A.I., Hipel, K.W. and Comancho, F., 1983. Trend assessment of water quality time series 1. JAWRA Journal of the American Water Resources Association, 19(4), pp.537-547.
[16] Shoab, M., Jain, K. and Shashi, M., 2013. GNSS Based Real Time Train Monitoring: A Web Approach. International Journal of Computer Applications, 73(14).
[17] Sneyers, R., Vandiepenbeeck, M., Vanilierde, R. and Demarée, G.R., 1990. Climatic changes in Belgium as appearing from the homogenized series of observations made in Brussels–Uccle (1933-1988) In: SCHIETECAT, GD. Contributions à l’etude des changements de climat. Bruxelles: Institute Royal Meteorologique de Belgique, Publications Série, 124, pp.17-20.
[18] Tiwari, A. and Jain, K., 2017. Concepts and Applications of Web GIS. Nova Publications, USA.
[19] Tiwari, A., Suresh, M. and Rai, A.K., 2014. Ecological Planning for Sustainable Development with a Green Technology: GIS. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 3(3), pp.2278-1323.
[20] Wilks, D.S., 2006. On “field significance” and the false discovery rate. Journal of applied meteorology and climatology, 45(9), pp.1181-1189.
[21] Yue, S. and Hashino, M., 2003. Long term trends of annual and monthly precipitation in Japan 1. JAWRA Journal of the American Water Resources Association, 39(3), pp.587-596.
[22] Zetterqvist, L., 1991. Statistical estimation and interpretation of trends in water quality time series. Water Resources Research, 27(7), pp.1637-1648.
[23] Zetterqvist, L., 1988. Asymptotic distribution of Mann's test for trend for m-dependent seasonal observations. Scandinavian journal of statistics, pp.81-95.
[24] Zhang, X., Vincent, L.A., Hogg, W.D. and Niitsoo, A., 2000. Temperature and precipitation trends in Canada during the 20th century. Atmosphere-ocean, 38(3), pp.395-429.

Keywords
Neel Kamal, Dr.Sanjay Pachauri