Extraction of Fetal QRS Complex from Abdominal ECG Signals

International Journal of Computer Trends and Technology (IJCTT)          
© 2016 by IJCTT Journal
Volume-34 Number-1
Year of Publication : 2016
Authors : Mable Roshini, K. Palani Thanaraj


Mable Roshini, K. Palani Thanaraj "Extraction of Fetal QRS Complex from Abdominal ECG Signals". International Journal of Computer Trends and Technology (IJCTT) V34(1):29-33, April 2016. ISSN:2231-2803. www.ijcttjournal.org. Published by Seventh Sense Research Group.

Abstract -
Background: Extraction of Fetal ECG signal from non-invasive abdominal ECG signal is an important clinical application. Fetal ECG signal provides significant and valuable information about the fetal heart growth and health condition. Objective: Abdominal signals are usually corrupted by high amplitude maternal ECG signals and often found superimposed with the Fetal ECG signal. Suppression of maternal peaks for proper Fetal ECG signal extraction is attempted in our work. Method: A multichannel Fetal ECG signal extraction procedure is proposed in this work using Multivariate Empirical Mode Decomposition (MEMD) and Singular Value Decomposition (SVD). Observation: Patient dataset from three pregnant women is used for evaluating our procedure. The proposed method produced an average detection accuracy of fetal heart rate of 85.33% (min: 75 and max: 100).

1. Sameni R, Clifford GD. A Review of Fetal ECG Signal Processing; Issues and Promising Directions. The open pacing, electrophysiology {&} therapy journal [Internet]. 2010 Jan;3:4–20. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3 100207{&}tool=pmcentrez{&}rendertype=abstract
2. Van Mieghem T, DeKoninck P, Steenhaut P, Deprest J. Methods for prenatal assessment of fetal cardiac function. Prenatal diagnosis [Internet]. 2009;29(13):1193–203. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19816885
3. Hasan M a., Reaz MBI, Ibrahimy MI, Hussain MS, Uddin J. Detection and processing techniques of FECG signal for fetal monitoring. Biological Procedures Online. 2009;11(1):263– 95.
4. Clifford G, Sameni R, Ward J, Robinson J, Wolfberg AJ. Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors. Am J Obstet Gynecol [Internet]. 2011 Jul;205(1):47. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3 145045{&}tool=pmcentrez{&}rendertype=abstract
5. Camargo-Olivares JL, Martín-Clemente R, Hornillo-Mellado S, Elena MM, Román I. The maternal abdominal ECG as input to MICA in the fetal ECG extraction problem. IEEE Signal Processing Letters [Internet]. 2011 Mar;18(3):161–4. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumb er=5682394
6. Sameni R, Jutten C, Shamsollahi MB. Multichannel electrocardiogram decomposition using periodic component analysis. IEEE transactions on bio-medical engineering [Internet]. 2008 Aug;55(8):1935–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18632355
7. Liu G, Luan Y. An adaptive integrated algorithm for noninvasive fetal ECG separation and noise reduction based on ICA-EEMD-WS. Medical {&} biological engineering {&} computing [Internet]. 2015 Oct; Available from: http://www.ncbi.nlm.nih.gov/pubmed/26429348
8. Niknazar M, Rivet B, Jutten C. Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings. IEEE transactions on bio-medical engineering [Internet]. 2013 May;60(5):1345–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23268377
9. Kotas M, Jezewski J, Horoba K, Matonia A. Application of spatio-temporal filtering to fetal electrocardiogram enhancement. Computer methods and programs in biomedicine [Internet]. 2011 Oct;104(1):1–9. Available from: http://www.sciencedirect.com/science/article/pii/S016926071 0001781
10. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation [Internet]. 2000;101(23):E215–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10851218
11. Huang NE. Review of empirical mode decomposition. In: Proceedings of SPIE [Internet]. 2001. p. 71–80. Available from: http://link.aip.org/link/?PSI/4391/71/1{&}Agg=doi
12. Rehman N, Mandic DP. Multivariate empirical mode decomposition. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences [Internet]. 2009;466(2117):1291–302. Available from: http://rspa.royalsocietypublishing.org/cgi/doi/10.1098/rspa.2 009.0502
13. Park C, Looney D, Ur Rehman N, Ahrabian A, Mandic DP. Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2013;21(1):10–22.
14. Martín-Clemente R, Camargo-Olivares JL, Hornillo-Mellado S, Elena M, Roman I. Fast technique for noninvasive fetal ECG extraction. IEEE transactions on bio-medical engineering [Internet]. 2011 Feb;58(2):227–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20643598
15. Isha V Upganlawar, Harshal Chowhan. Pre-processing of ECG Signals Using Filters. International journal of computer trends and technology. 2014 May;11(4):166-168. Available from: http://www.ijcttjournal.org/archives/ijctt-v11p135
16. Rashid Ahmed, John A. Avaritsiotis MCA Learning Algorithm for incident signals estimation. International journal of computer trends and technology.2014 Feb; 8(1): 5- 9. Available from: http://ijcttjournal.org/archives/ijctt-v8p102

Abdominal ECG, Multivariate Empirical Mode Decomposition, Singular Value Decomposition, Fetal ECG