Novel Design and Implementation of Topology and Orchestration Specification for Cloud Applications to enable Portability

K. Vikram Reddy1, N. Naveen Kumar2
1M.Tech CS Student, SIT, JNTU Hyderabad A.P. India
2Assistant Professor, CSE, SIT, JNTU Hyderabad, A.P. India

ABSTRACT: In this paper we provide a novel design and implementation of topology and orchestration specification for cloud applications to enable portability.

Keywords – Topology, Orchestration, Cloud Applications, Portability

I. System Analysis Design Model

Figure 1 below provides the novel design and implementation case study of our application.

Figure 2 above provides sequence diagram of the proposed model.

Figure 3 below provides class diagram of the proposed model.
CONCLUSION

Future Enhancement: water marking:

An appreciable number of watermarking schemes have been developed, wherein the watermark is embedded into the DWT coefficients of the image. The most commonly used detector for these watermarking schemes is the correlation detector which is optimal only if the data samples follow the Gaussian distribution function. Since the DWT coefficients of an image are non-Gaussian, such a Gaussian detector is neither optimal nor robust. In order to obtain an optimal detector that is also robust, an appropriate approach is to treat the watermark detection as a statistical detection problem, wherein a binary hypothesis test is formulated using a more accurate probability density function (PDF) of the DWT coefficients of the image. Various types of binary hypothesis testing have been used for image watermark detection, and some of these are the Bayesian log-likelihood ratio test, locally most powerful test and Rao test. The choice of the test depends on various factors, such as the number of data samples, availability and mathematical tractability of the prior function, and strength of the watermark signal. The Bayesian log-likelihood ratio test shows an asymptotically optimal performance that is equivalent to that of the Rao test, when the number of data samples is large, the prior probability distribution function of the signal is known, and the signal to be detected is weak.

REFERENCES