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Abstract: Recently there has been many works on adaptive 
subspace filtering in the signal processing literature. Most of them 
are concerned with tracking the signal subspace spanned by the 
eigenvectors corresponding to the eigenvalues of the covariance 
matrix of the signal plus noise data. Minor Component Analysis 
(MCA) is important tool and has a wide application in 
telecommunications, antenna array processing, statistical 
parametric estimation, etc. As an important feature extraction 
technique, MCA is a statistical method of extracting the 
eigenvector associated with the smallest eigenvalue of the 
covariance matrix. In this paper, we will present a MCA learning 
algorithm to extract minor component from input signals, and the 
learning rate parameter is also presented, which ensures fast 
convergence of the algorithm, because it has direct effect on the 
convergence of the weight vector and the error level is affected by 
this value. MCA is performed to determine the estimated DOA. 
Simulation results will be furnished to illustrate the theoretical 
results achieved. 
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I. INTRODUCTION 
 

   Neural networks (NNs) have been applied to a wide 
variety of real–world problems in many applications. The 
attractive and flexible characteristics of (NNs), such as their 
parallel operation, learning by example, associative 
memory, multi-factorial optimization and extensibility, 
make them well suited to the analysis of biological and 
medical signals [1,2,3]. A neural network is an information–
processing system that has certain performance 
characteristics in common with biological neural networks. 
Many methods for the estimation of the Direction of Arrival 
(DOA) have been proposed including the Maximum 
Likelihood (ML) technique [4], the minimum variance 
method of capon [5],the minimum norm method of Reddy 
[6],Multiple Signal Classification (MUSIC),[7], Estimation 
of Signal Parameters Via Rotational Invariant Techniques 
(ESPRIT)[8,9]. The minor component is the direction in 
which the data have the smallest variance. Although 
eigenvalue decomposition or singular value decomposition 
can be used to extract minor component, these traditional 
matrix algebraic approaches are usually unsuitable for high-
dimensional online input data. Neural networks can be used 
to solve the task of MCA learning algorithm.Other classical 
methods involve costly matrix inversions, as well as poor 
estimation performance when the   

 

 

 

 

 
 
 
 
signal to noise ratio and number of samples are small and 
too large, respectively [10]. 
In many practical applications, a PCA algorithm 
deteriorates with decreasing signal to noise ratio[11]. For 
this reason, we need to handle this situation in order to 
overcome the divergence problem. In this context, we 
present a MCA learning algorithm that has a low 
computational complexity and allows extracting the 
smallest eigenvalue and eigenvector from input signals, 
which can be used to estimate DOA. 
The paper is organized as follows. In Section II, we discuss 
the array signal model, and we also describe a theoretical 
review of some existing Principal Component Analysis 
(PCA) and Minor Component Analysis (MCA) algorithms. 
In Section III, we present the model for the DOA 
measurements. Simulations of results are included in 
Section IV to evaluate the convergence of the algorithms 
and some simulation results are presented to illustrate the 
theoretical results achieved. Finally, conclusions are drawn 
in Section V. 
 

II. SIGNAL MODEL and LEARNING                   
ALGORITHMS FOR PCA AND MCA 

 
A. Signal Model  
 

Consider an array of omnidirectional sensors. The medium 
is assumed to be isotropic and non-dispersive. Since far-
field source targets are assumed, the source wave front scan 
be approximated by plane waves. Then, for narrowband 
source signals, we can express the   sensor outputs as the 
sum of the shifted versions of the source signals. 
Consider a Uniform Linear Array (ULA) of (m) 
omnidirectional sensors illuminated by l narrow-band 
signals (l<m). At the l’th snapshot the output of the i’th 
sensor may be described by [12] 

ܺ =  cos ݈݀ߨ2 ݂ exp(√−1 ∗ (݅ − 1) ∗ ߂ߨ2 sin(ߨ − (ߠ
ௗ

ୀଵ

						(1) 

Where ߂is the space between two adjacent sensors, ߠthe 
angle of arrival, d signals incident onto the array, 
݀ ݂normalizes frequency. The incoming waves are assumed 
to be planned. The output of array sensors is affected by 
white noise which is assumed to be uncorrelated with the 
incoming signals. In vector notation, the output of the array 
results from l complex signals can be written as: 
 

(݊)ݔ = (݊)ݏ(ߠ)ܿ + ܰ(݊) 
Where the vectors 
:(݊)ݏ signal	vector	,ܰ(݊):	a	noise	vectorare defined as: 
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(݊)ݔ = ,ଵ(n)ݔ] … … … … … … . , x(n)]×ଵ
்  

(݊)ݏ = ,ଵ(n)ݏ] … … … … … … . , s(n)]×ଵ்  

ܰ(݊) = [ ଵܰ(n), … … … … … … . , N(n)]×ଵ
்  

And	(ߠ)ܥis the matrix of steering vectors,  

is the target DOA parameter vector, 

(ߠ)ܥ = ,(ଵߠ)ܥ] … … … … … … .  ×[(ߠ)ܥ,

Moreover, 

(ߠ)ܥ = ߠ݊݅ݏ݅ߨ2݆−]ݔ݁ ⁄ݒ ]																																																	(2) 

ݒ =  ݐℎ݈݃݅݀݁݁ݏ

 
B. Learning Algorithm for PCA  
 

Consider the linear neural unit described by  
(ݐ)ݕ = ்ݓ ܺ	݁ݎℎ݁ݓ(ݐ)ܺ. ∈ ܴ 

Where the input vector, ݓ ∈  represents the weight ܴܫ
vectors and y denotes the neuron’s output. The unit is used 
for extracting the first principal component from the input 
random signal, that is (ݐ)ݕshould represent ܺ(ݐ)in the best 
way, in the sense that the expectation error should be 
minimized. 

୶ܧ ቈ
∥ ݔ − ݓݕ ∥ଶ

ݓ
 

Here	ܧ୶[./ݓ]denotes mathematical expectation with respect 
to ݔ under the hypothesis ݓ.The problem may be expressed 
as, 
Solve: minܧ୶[∥ ݔ ∥ଶ−ܧ୶ ቂ

௬మ

௪
ቃ ்ݓݓ		ݎ݁݀݊ݑ = 1						(4) 

 
Consider the feed forward network shown in Fig.1. The 
following two assumptions of a structural network are 
made: 

 Each neuron in the output layer of the network is 
linear. 

 The network has m inputs and l output, both of 
which are specified .Moreover the network has 
fewer outputs than inputs (i.e. l<m). 

The only aspect of the network that is subject to training is 
the set of synaptic weights ݓconnecting source nodes i, in 
the input layer to computation nodes j in the output layer, 
where ݅ = 0,1, … … ,݉		ܽ݊݀		݆ = 0,1, … . ݈  . 
The output ݕ(݊)of neuron j at time, produced in response 
to the set of inputs  
ୀଵ{(݊)ݔ} , is given by  

(݊)ݕ = ݓ



ୀଵ

 (5)																																																						(݊)ݔ(݊)

The synaptic weight ݓis adapted in accordance with a 
generalized form of Hebbian learning [13] according to 
PCA as shown by: 

(݊)ݓ߂ = ߟ ݕ(݊)ݔ(݊) (݊)ݕ− ݓ(݊)ݕ(݊)


ୀଵ

			(6)	 

Where ݓ߂(݊), is the change applied to the synaptic 
weightݓ(݊) at time, and ηis the learning rate parameter, 
greater than zero. 
 

   This principal component analysis algorithm has been 
found very useful for extracting the most representative 
low-dimensional subspace from a high–dimensional vector 
space. It is widely employed to analyze multidimensional 
input vector of hundreds of different stock prices, however 
when used in signal processing this algorithm deteriorates 
with decreasing signal to noise ratio[11]. 

 

 

 

 

 

 

 
 

 

 

Figure.1: Oja’s single-layer linear neural network. 

 

C. Learning Algorithm for MCA  
 

The opposite of PCA is Minor Component Analysis (MCA), 
is a statistical method of extracting the eigenvector 
associated with the smallest eigenvalue of the covariance 
matrix of input signals. As an important tool for signal 
processing and data analysis, MCA has been widely applied 
to: total least squares (TLS) [14], clutter cancellation [15], 
curve and surface fitting [16], digital beamforming [17], 
bearing estimation [18], etc. One single linear neuron can be 
used to extract minor component from input signals 
adaptively and the eigenvector associated with the smallest 
eigenvalue of the covariance matrix is called Minor 
Component, where one seeks to find these directions that 
minimize the projection variance. These directions are the 
eigendirections corresponding to the minimum eigenvalue. 
The applications of MCA arise in total least square and 
eigenvalue-based spectral estimation methods [19,20]. It 
allows the extraction of the first minor component from a 
stationary multivariate random process based on the 
definition of cost function to be minimized under right 
constraints. The extraction of the least principal component 
is usually referred to as MCA. For first Minor Component, 
what must be found is the weight vector that minimizes the 
power ܧ୶ ቂ

௬మ


ቃof neurons output.  

For convenience, we produce a cost function for minor 
component estimation, that the problem is minimizing the 
cost function  
 

min
௪

൜J(w) =
1
୶ܧ2

w	ଶ/ݕ] + λ/2((ݓ	ݓ − 1	)]ൠ												(7)				 

=
1
୶ܧ2

[(wݔ)ଶ/	w + λ/2((ݓ	ݓ − 1	)] 
With respect to the weight vector, its gradient has the 
expression,  

݆݀
ݓ݀

= ݔݕ]௫ܧ ⁄ݓ ] +  ݓߣ
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Thus the optimal multiplier may be found by 
vanishing		்ݓ ௗ

ௗ௪
 , that is by solving, 

 

݆݀
ݓ݀ = ݔݕ]௫ܧ ⁄ݓ ] + ்ݓݓ	ߣ = 0 

Now the main point is to recognize that from an 
optimization point of view the above system is equivalent 
to: 

ௗ
ௗ௪

= ݔݕ]௫ܧ ⁄ݓ ] + ்ݓݓ)ߚߣ − 1) = ்ݓݓ , 0 = 1 
Where ߚ > 0, is a constant. It can be proven that the first 
minor converges to the expected solution providing that the 
constantβ is properly chosen. This is the way to compute the 
optimal multiplier to obtain the stabilized learning rule [16]. 
The most exploited solution to the aforementioned problems 
consists of invoking the discrete–time versions of first 
minor, as 
ݓ߂ = ݔݕ]ߟ− − [ݓଶݕ − ்ݓݓ)ߚߟ − (0)ݓ,		ݓ(1 =  (8)			ݓ
Whereη, is the learning rate and it’s a common practice to 
makeηa sufficiently small value which ensures good 
convergence in a reasonably short time which represents the 
discrete time stochastic counterpart of first minor rules. 
Neural networks MCA learning algorithms can be used to 
adaptively update the weight vector and reach convergence 
to minor component of input data. In the first order the 
linear MCA will be: 
݊)ݓ + 1) = (݊)ݓ − (݊)ݔ	](݊)ݕߟ +  (9)						(݊)]ݓ(݊)ݕ

For a multiple output (neuron) the output ݕ(݊)of neuron 
j,is produced in response to the set of input, 

,	(݊)ݔ	 ݅ = 0,1, … . ,݉ 
And is given by, 
(݊)ݕ  = ∑ (݊)ݔ(݊)ݓ

ୀଵ 																																	(10) 
The synaptic weight ݓ is adapted in accordance with the 
generalized form of Hebbian, where the target of MCA is to 
extract the minor component from the input data by 
updating the weight vector ݓ(݊)adaptively, 
for all ݓ(݊) ≠ 0, as,   
(݊)ݓ߂ = (݊)ݔ	(݊)ݕൣߟ− + ∑(݊)ݕ (݊)ݕ(݊)ݓ

ୀଵ ൧							(11)
  

Whereݓ߂(݊), is the change applied to the synaptic weight 
 (݊)ݔ(݊)ݕߟ,(݊)at time, and Examining Eq.11, the termݓ
on the right-hand side of the equation is related to Hebbian 
learning. As for the second term,
∑(݊)ݕߟ  (݊)ݕ(݊)ݓ

ୀଵ  
Is related to a competitive process that goes on among the 
synapses in the network. Simply put, as a result of this 
process, the most vigorously growing (i.e,fittest) synapsesor 
neurons are selected at the expenses of the weaker ones. 
Indeed, it is this competitive process that alleviates the 
exponential growth in Hebbian learning working by itself. 
Note that stabilization of the algorithm through competition 
requires the use of a minus sign on the right-hand side of 
Eq.11. The distinctive feature of this algorithm that it 
operates in a self-organized manner. This is an important 
characteristic of the algorithm that befits it for on-line 
learning. The generalized Hebbian Form of Eq.11, for a 
layer of neurons includes the algorithm of Eq.9, as 
 

݊)ݓ + 1) = (݊)ݓ −  (12)																																															ݓ߂
Hence that, 
݊)ݓ + 1) = (݊)ݓ − (݊)ݔ(݊)ݕൣߟ + (݊)൧(13)ݓ(݊)ݕ

    

 
III. DOA MEASURMENT MODEL  

 
A. DOA Model  
 
This algorithm uses measurements made on the signal 
received by an array of sensors. The wave fronts received 
by m sensors array element are linear combination of 
incident waveforms d and noises. The MCA begin with the 
following model of the received input data vector which is 
expressed as: 


ଵܺ
.
ܺ

൩ = ,(ଵߠ)ܥ … … . (ௗߠ)ܥ, 
ଵܵ
.
ܵௗ
൩+ 

ଵܰ
.
ܰ

൩																	(14) 

Where S, is the vector of incident signals, N is the noise 
vector and ܥ(ߠௗ) is the array steering vector corresponding 
to the DOA of the i'th signal. The received vector X and the 
steering vector ܥ(ߠௗ)as vector in m dimensional space, the 
input covariance matrix R୶୶can be expressed [21] : 

ܴ௫௫ = [்ܺܺ]ܧ = ்ܥܥ	[்ܵܵ]ܧ +  (15)													[்ܰܰ]ܧ
   In many practical applications, the smallest eigenvalue of 
the matrix R of input data is usually larger than zero due to 
the noisy signals. The column vectors of steering vectors ,is 
perpendicular to the eigenvector corresponding to the noise. 
The MCA spectrum may be expressed as, 

ெܲ(ߠௗ) = 1 ⁄(16)																													[(ௗߠ)்ܥே்ݓேݓ(ௗߠ)ܥ]  
The matrix ݓேݓே் is a projection matrix onto the noise 
subspace. For steering vectors that are orthogonal to the 
noise subspace, the denominator of Eq.16, will become very 
small and thus the peaks will occur in 
ெܲ(ߠ)corresponding to the angle of arrival of the signal. 

Where the ensemble average of the array input matrixR is 
known and the noise can be considered uncorrelated and 
identically distributed between the elements [22]. 
 

Table.1.A summary of different DOA algorithms 

 Method Power spectral as 
function of,ߠ 

 

1 PCA ܥ(ߠௗ)ܴ௦௦ିଵܥ(ߠௗ) 
Signal subspace 

2 MCA ܥ(ߠௗ)ܴேேܥ(ߠௗ) 

 

Noise subspace 

 

C. Learning Rate Parameter  
 
The learning rate parameter has a direct effect on the 
convergence of the algorithm and the learning rate can have 
a significant effect on the accuracy. 
The learning rate should be quite small0 < ߟ < 1	, 
otherwise the learning will become unstable and diverge. 
This may bring some problems[23,24], such as, 

 A small learning rate gives a low learning speed. 
 One should pay efforts on selecting a suitable 

learning rate in order to prevent learning 
divergence. 

 The degree of fluctuation and thus the solution's 
accuracy will also be affected by an 
inappropriately predefined learning rate. 

 

   The learning rate correlated to be time-varying [25,26]. 
For this purpose, the learning rate usually should be set at a 
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suitable value to reach the optimum solution of the 
algorithm and to move the algorithm too close in the 
“correct” direction. 

IV. SIMULATION RESULT 
 
In this section we describe our simulation and results. 
Programs were written for DOA estimation in Matlab. A 
general test example is used for this purpose two sources, 
signal located at the far field at (60,100) degree with 
normalized frequencies of (0.35,0.36) fs  respectively were 
used. A ULA of five snapshots (L), eight sensors and sensor 
spacing equaling half wave length (߂ =  spacing was,(ߣ	0.5
used to collect the data. 
 
A.  Effect of varying the learning rate parameter 
 
In this simulation, we show the effect of varying the 
learning rate parameter has a direct effect on the 
convergence of the weight vector. When the learning rate 
has a large step size that is shown in Fig.2, it allows the 
algorithm to update quickly, and may also cause the 
estimate of the optimum solution to wander significantly 
until the algorithm reaches convergence and the error 
reaches zero. When learning rate has a small step size that is 
shown the convergence will be painfully slow typically. 
Therefore, it should be selected a suitable learning rate in 
order to prevent learning divergence, because this 
unsuitable value will make the algorithm deviate 
drasticallyfrom the normal learning, which may result 
indivergence or an increased learning time. 
 
 
Β. Effect of Changing the Number of Snapshots  
 

 Figures (4,5) show the estimated DOA of incoming 
signal. It’s apparent that the spectral peaks of 
proposed MCA multiple sources become better 
when the number of snapshots increases, as shown 
in Fig.5, when the number of snapshots equal to 
five. 

 Figures (6,7)show the estimated DOA of  two 
sources for incoming signals, with changing 
number of snapshot. It also is apparent the spectral 
peaks of PCA become sharp and the resolution 
increases when the number of snapshots is 
increased, as shown in Fig.7, when the number of 
snapshots equals five. 

 
2.Effect of added white noise vector 
 
   Figures(8,9)show the estimated DOA of two sources for 
incoming signals in PCA and proposed MCA, respectively, 
in order to compare a proposed MCA performance with 
PCA when the input vector is affected by white noise 
vector. Fig.9, shows the proposed MCA estimate a right 
angles, where the spectral has better accuracy than the PCA 
spectral plotted as shown in Fig.8.  

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure.2. Learning rate step when η= (0.01 and 0.1) 
 
 

VI. CONCLUSION 

This paper presented a prototype direction of arrival 
estimation. During this study, a MCA learning algorithm is 
presented to extract minor component from input, and the 
learning rate parameter ensures fast convergence of the 
algorithm. Clearly, this shows that the MCA has converged 
to the minor component of input signals.  
Also, this demonstrate shows the MCA algorithm achieves 
to produce a correct angle for the DOA, when the input 
vector is affected by white noise vector better than  the PCA 
algorithm, that fails to produce a value for the DOA above 
certain level of noise. The main advantage of this 
algorithm is it can better tolerate noises signals to extract 
the minimum eigenvalue. 
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