
International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 30

Improved Real-Time Data Elasticity on

Stream Cloud
Mr. Chetan A. Joshi

#1
, Mr. Rohit N. Devikar

*2

#
M,E.I.T Second Year. Information Technology Dept.

#2
Assistant Professor, AVCOE, Sangamner, Information Technology Department

Dist Ahmednagar. Maharashtra, India

Abstract — Most of the applications in cloud

domains such as online data processing, Fraud

detection, large scale sensor network etc. where

large amount of data should processed in real time.

Earlier, for data stream processing, the centralized

system environment was using with store and then

process paradigms. After that some advancement

has been introduced with distributed environment

for data stream processing. Data Stream processing

using novel computing paradigm which take query

as input and splits that query into multiple sub

queries and process the data on multiple sub clusters

in such a way that reduces the distribution

overheads. This kind of application generates very

high input data which needs to process with the

available clusters So High availability and elasticity

are two key characteristics on the cloud computing

services. High availability ensures that the cloud

applications are sensible to failure. Elasticity is a

key feature of cloud computing where availability of

resources are related with the runtime demand. So

in this paper we present a comprehensive framework

for obtaining elasticity and scheduling technique for

highly availability.

Keywords — Scalability, Elasticity, High

availability, Load balancing, Reliability.

I. INTRODUCTION

Number of real time applications in which large

amounts of data should process continuously. But

there are some limitation comes with the traditional

store the process paradigm [1]. So for overcoming

this issue, some advancement has been presented in

the stream process engines. Stream process engines

are computing systems which are designed to

process continuous stream of input data with the

minimum time delay. Instead of store then process,

in this system data streams are process on the fly

using continuous queries. This is due to the amount

of input data which discourage persistent storage and

the prompt result requirement. Here the query is

continually standing in streaming tuple and produces

continues output

Here in this system there is substantial

development in the stream processing engine. Earlier

it was running on the centralized stream processing

engine [2]. Centralized engine using store then

process paradigm which causes unnecessary value

storage and other limitations. But now it’s also

running on the distributed environment. With

distributed environment stream process engine

distributes different queries among a cluster of nodes

which we is called it as interquery parallelism or

distributing different operators of the query across

different nodes which is called as interoperator

parallelism [3]. Most of the applications for scalable

stream processing engine which need to aggregate

the computing power of hundreds which need to

process the millions of tuples per second. Here for

obtaining higher scalability and avoiding the single

node bottleneck problem stream process engine need

to lies in distributed stream process engine with intra

operator parallelism [4].

While doing the query parallelization, this

requires to addressing additional number of

challenges. Query parallelization should be

semantically and syntactically transparent. Semantic

transparent means query should produce exact the

same output like non parallel queries. Syntactically

transparency means the query should get

automatically parallelized. It should be oblivious to

the user. While doing parallelization, usage of

resources should also be the cost effective. The

parallel stream process engine should be elastic and

it should manage the amount of its resources to the

workload. The elasticity also combined with the

dynamic load balancing technique. It should able to

manage load across available nodes or the clusters.

In this paper we are presenting as inproved real

time data elasticity on stream cloud [6] and elastic

stream process engine which provides a transparent

query parallelization. That is stream processing

engine will accept the input query which is

automatically paralyzed. This query will splits in

multiple sub query and process individual sub query

on clusters of nodes [6]. Stream process engine

handles the stream of tuples. A stream is potentially

infinite sequence of tuples which is sharing a given

schema. All tuples having a time stamp attribute

which sets at the data source [7]. The data source has

clocks which are synchronized with the other system

nodes. When clock synchronization is not feasible

tuple can be time stamped at the entry point of the

data streaming system. In SPE, query is defined as a

cyclic graph where as node is an operator and edges

defines the data flow. Here focus has given on

stateless and steteful operators [8]. Stateless operator

International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 31

does not keep any state across tuples and perform

computing operation only based on input tuple. (eg.

Map,union and filter. Stateful operators perform

computation operations on sliding windows of tuple

defined over a fixed time period (eg. Aggregate,

cartision product and join).

So in the proposed system stream cloud gives

high scalability, reliability for stream processing

engines. The input queries which are executing are

automatically and all tuples provide transparent

parallelization. System gives high scalability by

giving interoperator parallelism.

System also contains load balancing, task

assignment and scheduling for the execution nodes

which executes its operation based on available

execution information. Additionally system

calculates the execution power capacity of each

node. So execution task assignment can be

performed efficiently System also uses heart bit

technology which gives node alive status with

transferring the signals in between each others for

informing the live status.

II. LITRATURE SURVEY

A literature survey includes related work in the

data stream processing in the stream line cloud for

real time data processing which shows the system

reliability and scalability. Some of legacy

applications and most of the real time applications

data processing should be continuous. So for such

applications we need to use stream process engines.

There has been advancement from centralized to

distributed environment. There is a substantial

change from store then process to tuple-on-the fly. It

is also called as continues queries in which queries

are continuously standing with a streaming data for

real time processing. while doing the parallel stream

processing, attention must be given at stateful

operators (Aggregate, joins and Cartesian products)

and stateless operators (map unions and filters) .Also

here the basically two factors has for number of hops

performed by each tuple and communication fan out

0f each node has considered. Here there are different

strategies for parallelization such as,

A. Operator cloud strategy

In the operator cloud strategy, the query

parallelization unit is a single operator. So each of

input data deployed on different subset of node. We

can also called it as a subclustor. If we will consider

that there are 15 nodes presented and 5 operators are

presented. Communication happens from every

subclustor to all its peers in the next presented

subclustors. So total number of hopes is 5 and fan

out for every node is 15.

B. Operator set cloud strategy

The above operator cloud strategy has been

exhibits the trade-off in-between the distribution cost

and number of hopes. The operator set cloud

strategy introduced for minimizing both things at the

same time. Here for guarantee semantic transparency

the communication is required to be done with

stateful operators. Here each input query is splits in

between the multiple sub queries as stateful

operators plus an additional one. Sub query consists

of stateful operators followed by stateless operators

which are connected to its output [6].

Here these both strategies minimize the number of

hopes and fan out.

For the effective tuple distribution and parallel

query processing, we are using some special

operators which is called as LB (ie Load balancers)

and IM (ie Input mergers).

Load balancers are basically using for distribution

the input tuple from one local sub query to all its

downstream peers to guarantee that tuple should be

joined together are indeed received by the same

instance. For performing the load balancing it is

using join operators, CP ie. General join operators

and aggregate operators [9].

Input mergers is simply forwards tuple which

comes from its upstream load balance might lead to

incorrect result. This is basically using for physically

merging streams which are processed by different

instances.

III. IMPLEMENTATION OF PROPOSED

SYSTEM

In the proposed system, we have focused on the

Load balancing, HA and elasticity with the help of

operator cloud strategies and operator set cloud

strategies with some modified algorithms and

concepts. These steps are as follows,

A. Proposed System Algorithm

 Input: Query data Output: Result files.

1. Data € Query data.

2. Split data using split criteria

3. BuildTasks() -> task

4. GetClientStatus ()

5. Check busy Bit of the individual client.

6. Check client Attribute -> RAM, Processor,

Memory

7. While(checkBusyBit())

8. Start

9. If (allTaskCompleted)

10. Break;

11. Client feasibility

checking for associated task.

International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 32

12. Schedule task to client

13. TaskTssign() -> Client

14. End

15. Contribute Results ()

16. Display Results ()

 End.

B. Result Analysis

In the presented Real-time data streaming system,

we have checked the scenario and it has been

observed that some changes in original and

presented system readings in operation execution

time. We have calculated with multiple data size and

multiple datasets. We have tested different cases

while doing the analysis.

Case I: Data size Vs. Time required

Data set file size Original

system time

Contribution

system time

Data 1 (100 Files) 3154 MS 3115 MS

Data 2 (200 Files) 6162 MS 6141 MS

Data 3 (300 Files) 9176 MS 6141 MS

Fig. 1 Data size Vs. Time required graph.

Case II: Base/Existing system with multiple

clients

Data set File size Client 1 Client 2

Data 1 (100 Files) 54 MS 60 MS

Data 2 (200 Files) 51 MS 55 MS

Data 3 (300 Files) 60 MS 76 MS

Fig. 2 Base/Existing system with multiple

client graph.

Case III: Presented system with multiple clients

Data set File size Client 1 Client 2

Data 1 (100 Files) 45 MS 32 MS

Data 2 (200 Files) 40 MS 67 MS

Data 3 (300 Files) 52 MS 72 MS

Fig. 3 Presented system with multiple

clients

IV. SYSTEM ARCHITECTURE

Architecture diagram shows the improved real-

time data system on stream cloud system. Here

figure represents complete 3T system. In this

system, First Q input query comes and it is divided

into multiple sub queries SQ1, SQ2. The spitted sub

queries have been assigned to stream cloud instance

for execution. While doing this, Stream cloud served

uses some operations like parsing, Mapping and Job

creation and job assignment. While doing this, it has

to take care of the different status of the client nodes

like computing power, CPU, RAM etc. So as per this

criteria job has been assigning to execution. System

also contains the heart bit signal passing mechanism

which is using for checking the live status of the

available nodes. System passes signals continuously

International Journal of Computer Trends and Technology (IJCTT) – Volume 51 Number 1 September 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 33

for knowing node active status after fixed time of

interval. If in case reply from node will not get

within the time then system assumes that node as

dead. This technique is useful for improving

efficiency of the system. It also continuously checks

whether new node is presented in the system which

helps for HA. Once the operation done successfully,

then it is directly giving the output.

Fig 1: If necessary, the images can be extended both columns

Stream cloud compliments elastic resource

management with dynamic load balancing for

guaranty that the new instances are only be

provisioned when a subclustors of node is not able to

cope the incoming load. Here system also checks

processing power of the computer system like CPU

and RAM. So as per the collected information task

can be assigned for the execution which helps for

balancing the load across subclustors. System uses

different strategies for obtaining elasticity such as

A. Elastic reconfiguration protocols
Subclustor reconfiguration required the

transferring the owner ship from one instance of

subclustor to another ie. from the old instance to new

one in the same subclustor. This triggers

reconfiguration by one or more reconfiguration

actions.

B. Reconfiguration start
The process is initiated by the elastic manager

that decides to perform a reconfiguration either for

provisioning, decommissioning, or load balancing

purposes.

C. Windows reconfiguration protocol
The Window Recreation protocol aims at

avoiding communication between the instances

being reconfigured.

V. CONCLUSIONS

In this paper, we have presented improved Real-

time data elasticity on stream cloud is presented.

System also presents transparent query

parallelization that keeps the syntax and semantics

of the centralized system. HA, Elasticity and

scalability are attained by means of novel

parallelization strategy which minimizes the

distribution overheads and also improves the

performance of the system. Stream cloud elasticity

and dynamic load balancing gives efficiency with

minimizing number of resources. This evolution

demonstrates the scalability, elasticity and high

availability of stream cloud.

REFERENCES

[1] M. Stonebraker, U. C¸ etintemel, and S.B. Zdonik, “The 8

Requirements of Real-Time Stream Processing,” SIGMOD
Record, vol. 34, no. 4, pp. 42-47, 2005.

[2] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J.

Franklin, J.M. Hellerstein, W. Hong, S. Krishnamurthy, S.
Madden, V. Raman, F. Reiss, and M.A. Shah,

“Telegraphcq: Continuous Dataflow Processing for an

Uncertain World,” Proc. First Biennial Conf.Innovative
Data Systems Research (CIDR), 2003.

[3] D.J. Abadi, Y. Ahmad, M. Balazinska, U. C¸ etintemel, M.

Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A.
Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S.B. Zdonik,

“The Design of the Borealis Stream Processing Engine,”

Proc. Second Biennial Conf. Innovative Data Systems
Research (CIDR), pp. 277-289, 2005.

[4] M.T. O ¨ zsu and P. Valduriez, Principles of Distributed

Database Systems, third ed. Springer, 2011

[5] V. Gulisano, R. Jime´nez-Peris, M. Patin˜ o-Martı´nez, and

P. Valduriez, “Streamcloud: A Large Scale Data Streaming
System,” Proc. Int’l Conf. Distributed Computing Systems

(ICDCS ’10), pp. 126-137, 2010.

[6] StreamCloud: An Elastic and Scalable Data Streaming
System ,Vincenzo Gulisano,Ricardo Jime´nez-Peris,Marta

Patin˜ o-Martı´nez,Claudio Soriente,Patrick Valduriez

VOL. 23, NO. 12, DECEMBER 2012.
[7] N. Tatbul, U. C¸ etintemel, and S.B. Zdonik, “Staying Fit:

Efficient Load Shedding Techniques for Distributed

Stream Processing,” Proc. Int’l Conf. Very Large Data
Bases (VLDB), pp. 159-170, 2007.

[8] D.J. Abadi, D. Carney, U. C¸ etintemel, M. Cherniack, C.

Convey, S. Lee, M. Stonebraker, N. Tatbul, and S.B.
Zdonik, “Aurora: A New Model and Architecture for Data

Stream Management,” VLDB J., vol. 12, no. 2, pp. 120-

139, 2003.

[9] Y. Xing, S.B. Zdonik, and J.-H. Hwang, “Dynamic Load

Distribution in the Borealis Stream Processor,” Proc. Int’l

Conf. Data Eng. (ICDE), pp. 791-802, 2005.

