
International Journal of Computer Trends and Technology (IJCTT) – Volume 48 Number 2 June 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 93

Rational Search Algorithm

Raj Asha

Undergraduate student, Department of Information Technology, Thakur College of Engineering and

Technology

Kandivali East, Mumbai, Maharashtra, India

Abstract - The Rational Search algorithm is a

searching algorithm used to search for a particular

element in an array. The array should be sorted in

ascending order for using the algorithm. The

Rational Search algorithm works in a similar

manner as a human would search a word in a

dictionary by directly jumping in the part where

there is a high chance of finding the required item. It

outperforms linear search as well as binary search

when the data items in the array are approximately
uniformly distributed, that is, the difference between

any two adjacent elements are approximately the

same for any other two adjacent elements in the

array. Otherwise its performance is equivalent to a

linear search algorithm.

Keywords—Search Algorithm, Rational Search

Algorithm, Searching.

I. INTRODUCTION

The Rational Search algorithm searches for a

particular element in the array. The array must be in

ascending order for using the rational search
algorithm. The Rational search algorithm performs

excellently when the elements in the array are

approximately uniformly distributed, that is, the

difference between any two adjacent elements are

approximately the same for any other two adjacent

elements in the array.

Rational Search algorithm searches for an element

in the array just like a human would search for a

word in the dictionary by directly jumping in the

part where there is a high chance of finding the

required word.
Rational Search uses the first and last element of

the sorted array and the element to search in an

equation which returns an index which is very close

to the element that is to be searched if present. The

above process is repeated where the first and last

element changes according to the subarray at every

iteration until the element is found or the entire array

is checked. If the element is found, then it returns its

index otherwise return null.

Rest of the paper is organized as follows: section

2 describes the Related Work in which I have
discussed about linear search and binary search

algorithms. Section 3 describes the new Rational

Search algorithm. Section 4 describes Proof of

Correctness of the rational search algorithm. Section

5 describes Comparison between linear, binary and

rational algorithm. Conclusion, acknowledgment and

references is provided in section 6.

II. RELATED WORK

A. Linear Search

Linear search is also called sequential search. It is

one of the simplest searching algorithm that finds an

element from a list of elements. It starts from the

first element in the list and moves in sequence one

element at a time to search for the target value. If

target element is found then search stops and returns

the target element index otherwise it reaches the end

and returns null.

Linear search worst case running time is n, where
n is the number of elements in the list.

Algorithm

1. Set i to 0

2. If Ai = Etarget, then target element found;

return i.

3. Increment i by 1.

4. If i < n, go to set 2. Otherwise, the target

element not found; return null.

B. Binary Search

Binary search is a popular searching algorithm

which requires the array to be sorted in order to

search for the target element. Binary search finds out

the middle element and then compares it with our

target value; if the middle element matches with the

target value then simply return index of the middle

element otherwise check whether our target value is

smaller or larger than the middle element and

accordingly consider only the part of array where the

target value may be present and eliminate the other
half. Continue this process until the target value is

found or the remining part is empty.

Binary search runs in at worst logarithmic time,

making O(log n) comparisons, where n is the

number of elements in the array.

Algorithm

1. Set low to 0 and high to n-1.

2. If low > high, the search stops and target

value is not found so return null.

3. Set mid(middle element) to (low+high)/2.

4. If Amid < Etarget, then low = mid + 1 and go
to step 2.

5. If Amid > Etarget, then high = mid – 1 and go

to step 2.

International Journal of Computer Trends and Technology (IJCTT) – Volume 48 Number 2 June 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 94

6. If Amid = Etarget, then target element found;

return mid.

III. RATIONAL SEARCH

Rational search is a search algorithm that finds

the position of a target value within a sorted array.

Rational search makes use of an equation involving

value of element to be searched, value of first and

last elements of remaining part of array. The

equation returns an index whose value is compared

with our target element; If they are unequal then the

part of the array where the target element cannot lie

is eliminated and search continues on the remaining
part until it is successful or remaining part becomes

empty.

Rational search has a worst case when elements

are not at all uniformly distributed at that time it

takes the same time as linear search. But its best case

is when the elements are uniformly distributed then

it takes constant time to search an element. Whereas

for the average case it performs better than linear

search but may perform better/worse than binary

search.

Algorithm

1. Set L to 0 and R to n-1

2. Set Lval to AL and Rval to AR

3. If L > R, the search terminates as

unsuccessful.

4. Set perc to T * 100 / (Lval + Rval).

5. Set index to (perc * (R – L + 1) / 100) + L.

6. If Aindex < T, set L to index + 1 and go to

step 2.

7. If Aindex > T, set R to index – 1 and go to

step 2.

8. Now Aindex = T, the search is done; return

index.

For example, if we have an array of size 10 which is

uniformly distributed, that is, the difference between

any two adjacent elements are approximately the

same for any other two adjacent elements in the

array and is stored in ascending order as:

 A[10] = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

If we want to search for 90 then in such a case:

1. L = 0 and R = 9

2. Lval = 10 and Rval = 100.
3. Since L < R we continue.

4. Perc = 90 * 100 / (10 + 100) = 81.

5. Index = (81 * (9 – 0 + 1) / 100) + 0 = 8.

6. Now Aindex = T, the search is done; return

index 8.

Linear search:

It would take 9 comparisons for searching using

linear search as linear search takes O(n) time for

searching in average and worst cases.

Binary search:

It would take 3 comparisons for searching using

binary search as binary search takes O(log n) time
for searching in average and worst cases.

Rational search:

It would only take 1 comparison for searching the

element using rational search as it takes constant

time (O(1) time) for rational search when the data is

uniformly distributed.

IV. PROOF OF CORRECTNESS FOR RATIONAL

SEARCH

To prove correctness of the algorithm, we need to

prove two things:

1. algorithm terminates

2. algorithm produces correct output

A. Rational Search Terminates After Finite

Number of Steps

Variable L is set to 0 and R is set to n – 1. After

each iteration either the value of L is increased at

least by 1 or the value of R is decreased at least by 1.

The termination condition is given as L > R.

Therefor after a finite number of steps L will become

greater than R and so the loop will terminate.

B. Rational Search Produces Correct Output

In the last line, we can see that if Aindex = T,
where T is the target element then we return the

index of the element otherwise the process continues

until L <= R after which we return null and the

program terminates indicating the element is not

present in the array.

V. COMPARISON OF SEARCHING

ALGORITHMS

We will compare three search algorithms which are

linear search, binary search and rational search.

TABLE 1

TIME COMPLEXITY OF DIFFERENT

ALGORITHMS

 Best Average Worst

Linear O(1) O(n) O(n)

Binary O(1) O(log n) O(log n)

Rational O(1) Less than

O(n)

O(n)

Best Case:

International Journal of Computer Trends and Technology (IJCTT) – Volume 48 Number 2 June 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 95

The best case for rational search occurs when all the

elements are uniformly distributed. In such a case, it

requires constant time O(1) to search for an element

irrespective of the size of the array.

Average Case:

The average case for rational search occurs when

some elements are uniformly distributed whereas

others are not uniformly distributed. In such a case,

small clusters are formed causing delay in finding

the element quickly as compared to best case. So, in

such a case, it requires less time than linear search,

that is, less than O(n) time.

Worst Case:

The worst case for rational search occurs when all

elements are not uniformly distributed at all. In such

a case, it requires the same time as linear search for
searching an element, that is, it takes O(n) time.

VI. CONCLUSION

Rational search is thus a good searching algorithm

which can be used in many applications for a quick

search result than linear search and also than binary

search in many cases. Rational search, when used in

application where data is uniformly distributed,

searches an element in constant time outperforming

both linear and binary search. Therefore, rational

search gives best results as compared to linear or
binary search in applications where data does not
contain many outliers.

ACKNOWLEDGMENT

The author wishes to thank Rupa Asha, author’s

mother, who helped him by providing suggestions

and improvements in the algorithm.

REFERENCES

[1] Linear search algorithm,

https://en.wikipedia.org/wiki/Linear_search

[2] Binary search algorithm,

https://en.wikipedia.org/wiki/Binary_search_algorithm

[3] Knuth, Donald (1998). Sorting and Searching. The Art of

Computer Programming. 3 (2nd ed.).

[4] Uniform distribution (continuous),

https://en.wikipedia.org/wiki/Uniform_distribution_(contin

uous)

[5] Time Complexity,

 https://en.wikipedia.org/wiki/Time_complexity

[6] Alfred V., Aho J., Horroroft, Jeffrey D.U. (2002) Data

Structures and Algorithms

https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming

