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Abstract — In this paper we generate a new class of 

Tricorns and Multicorns using SP iteration (a four-

step feedback process) and explore the geometry of 

superior antifractals. Other researchers have 

already generated antifractals using Picard, Mann, 

ishikawa and Noor orbits that are examples of one –

step, two-step, three-step and four-step feedback 

processes. 
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I. INTRODUCTION  

Fractals are defined as ―objects that appear to be 

broken into a number of pieces and each piece is a 

copy of the entire shape‖.  ―Fractal‖ is the word 

taken from the Latin word ―fractus‖ which means 

―broken‖. The term ―fractal‖ was first used by a 

young mathematician, Mandelbrot [2]. Julia 

introduced the concept of iterative function and he 

derived the Julia set in 1919. After that, in 1979, 

Mandelbrot [2] extended the work of Gaston Julia 

and introduced the Mandelbrot set, a set of all 

connected Julia sets. Many researchers have studied 

Julia sets and Mandelbrot sets from different aspects. 

The connected locus of antipolynomial 

 mz z c  is known as Tricorn. The term Tricorn 

was firstly used by Milnor. In 2003, Shizuo et al.[15] 

described various properties of Tricorn and 

Multicorn by computing beautiful figures and quoted 

that Multicorns are the generalized Tricorns or the 

Tricorns of higher order.  

The dynamics of antiholomorphic complex 

polynomials mz z c  , for m ≥ 2,  was studied 

and explored to visualize interesting Tricorns and 

Multicorns antifractals with respect to one-step 

feedback process [12], two step-feedback process 

[10, 11], three-step feedback process [18] and four 

step feedback process[1,3].  

 The dynamics of antipolynomial  mz z c  

where 2m  with respect to iterative function 

generates amazing Tricorn and Multicorns [12, 14, 

15]. Crowe et. al. [16] considered it as a formal 

analogy with Mandelbrot sets and named it as 

Mandelbar set. They also brought their bifurcation 

features along arcs rather than at points.  Multicorns 

have been found in a real slice of the cubic 

connectedness locus [15]. Winter [13] showed that 

the boundary of the Tricorn contains arc. The 

symmetries of Tricorn and Multicorns have been 

analyzed by Lau and Schleicher [4].  

In 2011, W. Phuengrattana and S. Suantai [18] 

proposed the SP-iteration for approximating a fixed 

point of continuous functions on an arbitrary 

interval. They compared the convergence speed of 

Mann, Ishikawa, Noor and SP-iterations using some 

numerical examples and proved that the SP-iteration 

is equivalent to and converges faster than the other 

iterations. In this paper we generate a new class of 

Tricorns and Multicorns under SP orbit which is an 

example of four-step feedback process and analyze 

them. 

II. PRELIMINARIES 

 
Definition 1. [12] (Multicorn). The multicorns cA  

for the quadratic function   m
cA z z c   is defined 

as the collection of all c C  for which the orbit of 

the point 0 is bounded, that is 

                                             

  : 0nA c C A does not tend toc c    

where C is a complex space. nAc  is the nth iterate of 

the function  A zc . An equivalent formulation is 

that the connectedness of loci for higher degree 

antiholomorphic polynomials   mA z z cc    are 

called multicorns. 

Note that at m = 2, multicorns reduce to tricorn. 

Naturally, the tricorns lives in the real slice d c  in 

the two dimensional parameter space of maps 

 
2

2z z d c   . 

They have (m+1)-fold rotational symmetries. Also, 

by dividing these symmetries, the resulting 

multicorns are called unicorns [14]. 

Definition 2. [6] (Julia Set). The filled in Julia set of 

the function g is defined as  

            K(g) = {z  C: gk(z) does not tend to }, 

where C is the complex space, gk(z) is kth iterate of 

function g and K(g) denotes the filled Julia set. The 

Julia set of the function g is defined to be the 

boundary of K(g), i.e.,  

                               J(g) = K(g), 

where J(g) denotes the Julia set.  

Definition 3. [12] (Mandelbrot Set). The Mandelbrot 

set M consists of all parameters c for which the filled 

Julia set of   2Q z z cc    is connected, that is

 M = {c  C: K(Qc) is connected }. 
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In fact, M contains an enormous amount of 

information about the structure of Julia sets. The 

Mandelbrot set M for the Quadratic Qc(z) = z2 + c is 

defined as the collection of all c  C for which the 

orbit of the point 0 is bounded, that is 

   M = {c  C: { (0)}n

cQ ; n = 0, 1, 2, … is bounded}. 

We choose the initial point 0 as 0 is the only critical 

point of Qc. 

    Now, we give definition of the SP orbit, which 

will be used in the paper to implement four-step 

feedback process in the dynamics of 

polynomial mz z c  . 

 

Definition 4. [8] Let :T X X be a mapping. Let 

us consider a sequence {zn} of iterates for initial 

point z0  X such that  

 {zn+1:   zn+1 = (1  αn) un + αnTun ;  

              un =  (1 βn) vn + βnTvn ;               

            vn =  (1n) zn + nTzn ; n = 0, 1, 2, ...}, 

where αn, βn, n [0, 1] and {αn}, {βn}, {n} are 

sequences of positive numbers. The above sequence 

of iterates is called as SP orbit, which is a function 

of five tuples (T, z0, αn, βn, γn) . 

III.  MAIN RESULT 

Now, we will obtain a general escape criterion for 

polynomials of the form ( ) m

cG z z c 
 

Theorem 1.  For a general function ( ) m

cG z z c  , 

m =1, 2, 3…, where 0 1 , 0 1   , 0 1   , 

and c is a complex number. Define 

1 (1 ) ( )cz u G u    

2 1 1(1 ) ( )cz u G u    

- - - 

- - - 

- - - 

1 1(1 ) ( )m m c mz u G u    ,   

where  m = 1, 2, 3, 4, … 

Then, the general Superior escape criterion 

is
1/ 1 1/ 1 1/ 1max{ ,(2 / ) , (2 / ) , (2 / ) }m m mc      . 

Proof.  For proving the theorem, we shall use the 

method of induction. 

For m = 1, we have ( )cG z z c  , and  

this implies max{ ,0,0,0}.z c  

 For m = 2, we have
2( )cG z z c  , then the escape 

criterion is 

max{ ,2 / ,2 / ,2 / }z c    . 

Similarly, for m = 3, we get
3( )cG z z c  . The 

escape criterion is 

1/2 1/2 1/2max{ ,(2 / ) , (2 / ) , (2 / ) }z c    .  

  Hence the theorem is true for m=1, 2, 3 … 

 Now, suppose that theorem is true for any m. We 

prove that the result is true for m+1.     

 Let
1( ) m

cG z z c   and 1/(2 / ) mz c   , 

1/(2 / ) mz c    and 1/(2 / ) mz c   . 

 Then, consider 

              (1 ) ( )v z G zc     ,      

where 
1( ) m

cG z z c   

                     

1(1 ) ( )mz z c        

                     1mz z c           

                    1mz z z z
 

       
   

( z c )  

     i.e.   
 

1mv z z
 

   
 

                               (1) 

Also,   (1 ) ( )u v G vc  
      

 

    
 1(1 ) mv v c   

                                                  

 

1
(1 ) ( 1) 1

m
m m

z z z z c
 

            
   

 

                                                 

                           ....(2)        

Since 

 12 1 1,

1 .

mm
z implies z

m
so z z z

    

 
   
 

          (3)                                                        

Using (3) in (2), we have 

  
  1
1

m
u z z c

 
    

                                        
 

       
 1
1

m
z z c


         

      
 1
1

m
z z z


    

                 

                                                            
(∵│z│≥│c│) 

      

1
m

z z
 

   
 

 

i.e.  1
m

u z z
 

   
 

                          (4) 

Now for 1 1(1 ) ( )m m c mz u G u    , we have 

    1 (1 ) ( )cz u G u    

          
 1(1 ) mu u c     

                            

  
1

(1 ) ( 1) 1
m

m m
z z z z c

 
        
                                       
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(5)  

Since
 

 

1
2 1 1,

1 .

mm

m

z implies z

so z z z

    

  
            (6) 

Using (6) in (5), we get 

 
   1

1 1 1
m

z z z


    , 

      
 

1
1

m
z z z


    

 

      
1

m
z z
 

   
         

i.e.,
 

11
m

z z z
 

   
   

Since 1/(2 / ) mz   , 1/(2 / ) mz    and 

1/(2 / ) mz   exist, we have   1 1 1
m

z     . 

 In particular,            11z z  
 

                                 

                  
 1

m
z zm  

                                                                                                   
 

Hence,                       

             .z as mm                                                                                  

This completes the proof.  

Corollary 1.1.  Suppose 
1/ 1(2 / ) mc   , 

1/ 1(2 / ) mc   and 
1/ 1(2 / ) mc   exists. Then the 

orbit ( ,0, , , )cSP G    escapes to infinity. 

Corollary 1.2. (Escape Criterion). Let us Assume 

that for  some k ≥ 0,
1/ 1 1/ 1 1/ 1max{ ,(2 / ) , (2 / ) , (2 / ) }k k k

kz c       , then 

1k kz z   and zm  as m ∞.  

This corollary gives an algorithm to generate 

antiJulia sets for the functions of the 

type ( ) m

cG z z c  , m = 2, 3, … 

Thus, for visualizing new antifractals, the required 

escape criterion with respect to the SP orbit for  

mz z c    is  

     
1 1 1

max , 2 / , 2 / , 2 /1 1 1c m m m  
 
 
   
  

[7]. 

IV.  MULTICORNS IN SP ORBIT 

 

All In this section, we generate Tricorns and 

Multicorns by programming the polynomial 

 mz z c  in the software Mathematica 9.0 

under SP orbit (see Figs. 1-18).  

We have the following observations: 

 The number of branches in the tricorns and 

multicorns is m+1, where m is the power of z. 

Also, few branches have m sub-branches. 

 The shapes of  Tricorns and  Multicorns become 

different  as we change the values of parameters. 

 We have the beautiful Rangoli Patterns (Figs. 16, 

17). 

 We also find that higher degree multicorns 

become circular saw (Fig. 18).  

Some authors [1,3,11] had also found the similar 

conclusion while generating Multicorns using two-

step, three-step, four-step feedback processes. The 

name circular saw was, first, given by Rani and 

Kumar to Mandelbrot sets [9]. 

 

 
0.3, 0.5, 0.1 .: 6    Fig  

 
0.6, 0.3, 0. 2 .: 5    Fig  

 
0.68, 0.27, 0.9. 53:     Fig  

 
0.95, 0.27, 0.6. 84 :     Fig  
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 0.9, 0.1 0. ,: .15Fig       

  

   

     0.1, 0.1 0. ,: .96Fig       

      

  
 

0.5, 0.5 0. ,: .57Fig       

 

       
          

0.09, 0.7.8 , 0.8:Fig       
 

 
 
0.08, 0.. 9 : 3, 6Fig m        

 

 

.10 : 3, 0.6, 0.08Fig m       

 
 
0.6,. 0.08, 0.611: 3,Fig m       

 

 
 
0.5, 0.5, 02 , .5.1 : 3Fig m       
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0.3,. 0.05, 0.613: 3 ,Fig m       
 

 
 

0.05, 0.05, 0.04 , 5.14:Fig m       

 

 
 
0.05. ,15 0.6, 0.3: 5 ,Fig m       
 

 
 
0.6, 0.6, 0..1 1 06 5 , 8:Fig m       

 

 
 

.17 : 30 , 0.05, 0.2Fig m       
 

 
 

.18 :

75 0.0, 5

Fig Circular saw multicorn for

m     
 

V. NEW ANTI JULIA SETS 

We compute anti Julia sets for  mz z c  in 

the software Mathematica 9.0 via SP orbit. We have 

the following observations while generating them. 

 

 In Figs.19-20, we notice that as we increase the 

value of parameters , and   keeping constant 

c same anti Julia sets become fattier.  

 The number of branches in anti Julia sets is m+1, 

where m is the power of z. Also, few branches 

have m sub-branches (see Figs. 27, 28, 29). 

 Also, we observe that the higher degree anti Julia 

sets take different shapes (like circular shaw and 

Rangoli pattern) for different values of 

, , .,m and c   (see Figs. 30-32) 

 

 

0.3, 0.3 0.5

.19 : 2Fig AntiJulia set for m

c I     




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0.6, 0.3 0.5

. 20 : 2Fig AntiJulia set for m

c I     




 

 

 

         
0.3, 0.6, 0

. 21:

.9, 0.3 0.5

2

c I

Fig AntiJulia set for m

      


 

 

 

         
0.6, 0.3, 0

. 22 :

.9, 0.3 0.5

2

c I

Fig AntiJulia set for m

      


 

 

 

0.9, 0.6, 0

. 23:

.3, 0.3 0.5

2

c I

Fig AntiJulia set for m

      


 

 

       
0.5, 0.9, 0

. 24 :

.1, 0.3 0.5

2

c I

Fig AntiJulia set for m

      


 

 

 

       
0.9, 0.1, 0

. 25 :

.5, 0.3 0.5

2

c I

Fig AntiJulia set for m

      


 

 

 

      
0.9, 0.1, 0

. 26 :

.5, 0.1 0.1

3

c I

Fig AntiJulia set for m

      


 

 

 

       
0.03, 0.1 0

. 27 :

.

3

1

Fig AntiJulia set for m

c I  



    
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0.1, 0.5, 0

. 28 :

.9, 0.1 0.1

3

c I

Fig AntiJulia set for m

      


 

 

 

     
0.1, 0.5, 0

. 29 :

.9, 0.1 0.1

4

c I

Fig AntiJulia set for m

      


 

 

 

      
. 30 : 15

0.9, 0.1, 0.5, 0.1 0.1

Fig AntiJulia se m

I

t for

c      


 

 

 

     
. 31: 35

0.5, 0.9, 0.1, 0.1 0.1

Fig AntiJulia se m

I

t for

c      


 

 

 

 

0.1, 0.5, 0.9

. 32 :

5 , 0.05 0.00, 5

Fig Circular saw AntiJulia set for

cm I       

 

VI. CONCLUSIONS 

 In the dynamics of antipolynomials 

mz z c  , where m > 2, there exist many 

antifractals for the same value of m but different 

values of parameters in SP orbit. In our results, we 

find that for higher degree polynomials, all the 

antifractals become circular saw. We observe that 

Multicorns are symmetrical about both x and y axis 

for odd values of m, but for even values of m, the 

symmetry is maintained only along x-axis. 
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