
International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 2– January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 87

Mining Text Data using different Text

Clustering Techniques

Ratna S. Patil#1, Prof. B. S. Chordia*2

#Master Student, SSVPS’s BS Deore College of Engineering, Dhule, 424005, India
*Assistant Professor, SSVPS’s BS Deore College of Engineering, Dhule, 424005, India

Abstract- Text mining is referred as text data mining

or knowledge discovery from textual databases. The

organization of text is a natural practice of humans

and a crucial task for today’s vast databases.

Clustering does this by assessing the similarity

between texts and organizing them accordingly,

grouping like ones together and separating those with

different topics. Clusters provide a comprehensive

logical structure that provides exploration, search and

interpretation of current texts documents, as well as

organization of future ones. Side information is

available along with the text documents and may be of

different kinds, which are embedded into the text

document. However this side-information may be

difficult to estimate. In such cases, it can be risky to

include side-information into the mining process,

because it can either increase the quality of the

representation for the mining process. Therefore, so

as to maximize the advantages from using this side

information, to minimize the time complexity of

clustering process and to remove impurity of clusters

partition based text clustering techniques are used like

k-means &k-Windows algorithm. Experimental results

show that, K-Windows clustering technique is giving

better results as compared to K-means clustering

technique and also shows that side information is

effectively used for mining the data.

Key Words: Clustering algorithms, Text Mining, Data

Mining.
I. INTRODUCTION

Mining is the process of inferring for patterns within a

structured or unstructured data. There are various

mining methods out of which they differ in the context

and type of dataset that is applied. The process of

extracting knowledge from unstructured text led to the

need for various mining techniques for useful pattern

discovery. Data Mining (DM) and Text Mining (TM)

is similar in that both techniques ―mine‖ large

amounts of data, looking for meaningful

patterns.Some of the mining types are data, text, web,

business Process and service mining. DM is the

process of retrieving information from large amounts

of data to view the hidden knowledge and facilitate

the use of it to the real time applications. DM consists

of data analysis algorithms. Some techniques of Data

Mining used for analysis are Clustering, Association,

and Classification etc. Text mining is referred as text

data mining or knowledge discovery from textual

databases, it refers to the process of extracting

interesting and non-trivial patterns or knowledge from

text documents as shown in figure 1. TM starts with a

collection of documents; which would retrieve a

particular document and preprocess it by checking

format and present text in proper format. Then it

would go through a text analysis phase, sometimes

repeating techniques until information is extracted.

Three text analysis techniques are shown in figure 1,

but many other combinations of techniques could be

used depending on the goals of the organization. The

following figure explores the detail processing

methods in Text Mining.

Fig 1: Text Data Mining process

The problem of text clustering arises in the

context of many application domains such as the web,

social networks, and other collections. The rapidly

increasing huge amounts of text data in the context of

these large online collections has led to an interest in

creating scalable and effective mining algorithms. The

huge amount of work has been done in recent years on

the problem of clustering in text collections in the

database and information retrieval communities.

However, this work is primarily designed for the

various problems of pure text clustering, in the

absence of other attributes. In many application

domains, a tremendous amount of side information is

also present along with the documents. This is because

text documents occur in the context of a various

applications in which there may be a large amount of

other kinds of database attributes or Meta information

which is useful for the clustering process. Examples of

side-information are:

● In an application in which we track user access

International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 2– January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 88

behavior of web documents, the user-access

behavior is captured in the form of web logs. For

each document, the auxiliary information may

correspond to the browsing behavior of the

different users. Such logs can be used to enhance

the quality of the mining process and also

application-sensitive. This is because the logs

can often pick up subtle correlations in content,

which cannot be picked up by the raw text alone

[1].

● Many text documents contain links among them,

which are also considered as attributes. Such

links are useful for mining purposes.

● Many web documents have supporting

information associated with them like the source

of the document. In other cases, data such as

ownership, location, or even temporary

information may be informative for mining

purposes. In many network and user-sharing

applications, documents may be associated with

user-tags, which may also be quite informative

[1].

Side-information can sometimes be useful in

improving the quality of the clustering process.

Therefore, we will use an approach which carefully

ascertains the correlation of the clustering

characteristics of the side information along with the

text content. This helps in purifying the clustering

effects of both kinds of data.

Clustering is an effective technique for data

analysis. Clustering is a widely studied data mining

problem in the context of text domains. The problem

finds various applications in customer segmentation,

classification, collaborative filtering, visualization,

document organization, and indexing [2]. Text

Clustering is one of the most important research areas

in the field of data mining. Data are grouped into

clusters those having same data and those in other

groups are dissimilar. It intends to decrease intra-class

similarity while to increase interclass dissimilarity.

Clustering is an unsupervised learning technique.

Clustering is useful to obtain required patterns and

structures from a large set of data. Clustering can be

applied in many areas, such as marketing studies,

DNA analyses, city planning, text mining and web

documents classification.

Most existing methods of clustering can be

categorized into: distance based clustering algorithms

like agglomerative and hierarchical, Distance-based

Partitioning Algorithms like k-means, K-medoid, K-

Windows etc., A Hybrid Approach for clustering like

scatter/gather technique etc. Partition based clustering

generates a partition of the data such that objects in a

cluster are more similar to each other than dissimilar

objects in other clusters. Clustering is a technique to

search hidden patterns from the existing datasets [3].In

order to overcome the problems of pure text clustering

for mining the data, side information avail with text

data is used for mining the data. So, firstly

preprocessing is applied on the dataset, and then

distance measures are calculated. Text mining

technique i.e. text clustering algorithms (k-means &k-

Windows) is applied on similarity measures values.

Then using side information results are evaluated.

II. RELATED WORK

Literature review in the area of mining indicates that

there are several ways of mining text data so that

efficient clusters should be formed and better results

should be achieved. Database community has studied

lots about the problem of text-clustering [2], [15] and

[16]. In [15] they represent the novel algorithm termed

as CURE which is more robust to outliers, and

identifies clusters having non spherical shape and

variance in size. In [16] proposed a method termed as

BIRCH, which demonstrate especially for very large

databases. Scalable clustering of multidimensional

data of different types is discussed in [2], [15], and

[16].

D.Cutting, D. Karger, J. Pedersen, and J.

Tukey 1992 [3] explains the Scatter/Gather method

which demonstrates that document clustering can be

effective information access tool in its own right.

They presented a document browsing technique that

employs document clustering as its primary operation,

they also presented fast clustering algorithms that

support this interactive browsing paradigm. It uses a

combination of agglomerative and partition based

clustering.

Matrix-factorization techniques for text

clustering are stated in [17]. In this technique words

from the document based on their relevance to the

clustering process are selected and to refine the

clusters an iterative EM method is used.

R. Angelova and S. Siersdorfer 2006 [5]

focus towards the problem of automatically

structuring linked documents by using clustering. In

contrast to traditional clustering, they studied the

clustering problem in the light of available link

structure information for the data set (e.g., hyperlinks

among web documents). Their approach was based on

iterative relaxation of cluster assignments, and which

could be built on top of any clustering algorithm. That

technique results in higher cluster purity, better overall

accuracy, and made self-organization more robust.

The methods discussed in the above are

focuses on the pure text data, these methods does not

work for the text data which united with the other

form of data. So, Charu C. Aggarwal, Yuchen Zhao

and Philip S. Yu 2014 [1] designed an algorithm

which combines classical partitioning algorithms with

probabilistic models in order to create an effective

clustering approach. They then show how to extend

the approach to the classification problem. They

presented methods for mining text data with the use of

side-information. Many forms of text databases

contain a large amount of side-information can be

used in order to improve the clustering process. In

order to design the clustering method, they combined

an iterative partitioning technique with a probability

approach which computes the importance of different

International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 2– January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 89

kinds of side-information. This general approach is

used in order to design both clustering and

classification algorithms. They presented results on

real data set which shows the effectiveness of their

approach. The results showed that the use of side-

information can increase the quality of text clustering

and classification, while maintaining a high level of

efficiency. They have used k-means clustering

technique. k-means is computationally very expensive

for the very large sets of patterns met in real life

applications. On the other hand, k-means often

converges to a local minimum.

M. N. Vrahatis, B. Boutsinas, P. Alevizos,

and G. Pavlides 2002 [13] has presented an

improvement of the k-means clustering algorithm,

aiming at a better time complexity and partitioning

accuracy. This approach reduces the number of

patterns that need to be examined for similarity, in

each iteration, using a windowing technique. The

latter is based on well-known spatial data structures,

namely the range tree, which allows fast range

searches.

Bentley, J. L. (1975) has developed the

multidimensional binary search tree (or k-d tree,

where k is the dimensionality of the search space) as a

data structure for storage of information to be

retrieved by associative searches. The k-d tree is

shown to be quite efficient in its storage requirements.

III. METHODOLOGY

Figure 2 shows the general architecture of system

model. The dataset is an unstructured dataset of

documents which are pre-processed using the

following three rules: 1) Tokenize the file into

individual tokens using space as the delimiter. 2)

Removing the stop word which does not convey any

meaning. 3) Use porter stemmer algorithm to stem the

words with common root word. Stop Word Removal:

Sometimes a very common word, which would appear

to be of little beneficial in helping to select documents

matching user‘s need, is completely excluded from the

selected documents. These words are treated as ―stop

words‖ and this technique is called stop word

removal.

Fig 2: Working of Text Clustering System model

The general strategy for determining a ―stop list‖ is to

sort the terms by collectionfrequency and then to

make the most frequently used terms are treated as

stop list, the members of which are discarded during

indexing. Some of the examples of stop-word are: a,

an, the, and, are, as, at, be, for, from, has, he, in, is, it,

its, of, on, that, the, to, was, were, will, with etc. Here

the input stop word file contains 641 words.

Stemming: Stemming is an analytical process in

which the end of the words or the affixes of the

derivational words are truncated to receive the base

form of the word. Here, porter stemmer is used.

Then distance measure like cosine similarity is applied

to find the similarity between the documents using the

formula given in equation (3.1).

Cosine measure: When the angle between the two

vectors is a meaningful measure of their similarity, the

normalized inner product may be an appropriate

similarity measure.

Similarity S(di, dj) = cos(θ) =
𝑑𝑖 .𝑑𝑗

||𝑑𝑖 ||.||𝑑𝑗 ||

 (3.1)

Using this cosine similarity formula, similarity

between every document in dataset with other

documents is calculated [5]. Then partition based

clustering algorithms (i.e. k-means &k-Windows) are

applied on this cosine similarity. Here K-means take

1-dimensional input as cosine similarity of each

document while k-Windows take 2-dimensional input

as cosine similarity and document number. Both these

algorithm are described in section IV.

International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 2– January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 90

IV. PARTITIONAL BASED CLUSTERING

ALGORITHMS

There are several partitional based clustering

algorithms available like k-means, k-medoids,

CLARANS, k-Windows etc. Here we have used k-

means and k-Windows for text clustering explained as

follows:

1. K-means Algorithm

K-means is one of the simplest unsupervised learning

algorithms to group similar data objects. It was

developed by J. MacQueen (1967) and then by J. A.

Hartigan and M. A. Wong around 1975 K-means

forms clusters for n objects based on the attributes into

k partitions where k<n [5]. The k-means is a very

popular algorithm particularly suited for implementing

the clustering process because of its ability to

efficiently partition huge amounts of patterns. The

latter is true even in the presence of noise. Although

direct K-means is defined over numerical continuous

data, it is the basic framework for defining variants

capable of working on both numerical and categorical

data. The K-means consists of two main phases.

During the first phase, a partition of patterns, in k

clusters is calculated, while during the second phase,

the quality of the partition is determined. K-means is

implemented by an iterative process that starts from a

random initial partition. The latter is continually

recalculated until its quality function reaches an

optimum. In particular, the whole process is built upon

four basic steps:

(1) Selection of the initial k centroid as a

seed,

(2) Assignment of each pattern to a cluster

with nearest mean or centroid,

(3) Recalculation of k centroids for clusters,

and

(4) Computation of the quality function.

The steps 2, 3, 4 are performed iteratively until

convergence. Most clustering algorithms which are

variants of k-means have been proved convergent [5].

On the other hand, k-means-type algorithms often

terminate at a local minimum. Formally, let i1, ... in be

the input patterns. Each of them is represented by a d-

tuple {(an1, av1), ..., (and, avd)} where anj, avj, 1 ≤ j ≤ d

denote, respectively, the name and the value of the jth

numerical attribute, whose domain is the set of reals

R. Let the k first means be initialized to one of n input

patterns im1,...,imk. These k means define the set C of

clusters C= {Cj |1 ≤ j ≤ k}. The goal of the algorithm

is to minimize the following quality function:

E= 𝑞(𝑖𝑙 , 𝑖𝑚𝑗)𝑖𝑙∈𝐶𝑗
𝑘
𝑗=1 (4.1)

In direct k-means q is defined by the squared

Euclidean distance, thus q(y, z) = ||y-z||2, where

||·||determines the Euclidean norm. The k-means

algorithm is computationally very expensive for large

sets of patterns. It requires time proportional to the

product of the number of patterns, the number of

clusters and the number of iterations. More

specifically, in the algorithm above, the first loop, for

each iteration, has a time complexity O(ndk), the

second O(nd) and the quality function is calculated in

O(nd). Thus the whole algorithm has a time

complexity O(ndkt), where t is the number of

iterations [5]. Improvement of the computational

complexity is achieved either by sophisticated

initialization methods (e.g., [6, 7, 10]) or by reducing

the number of (dis)similarity calculations (e.g., [8, 9,

11]). The k-Windows algorithm is based on the latter

approach.

2.K-Windows Algorithm

K-Windows algorithm deals with this problem by

using a windowing technique, which reduces

significantly the number of patterns that need to be

examined at each iteration. Moreover, the basic

operation in the first loop is the assignment of patterns

to clusters, by performing arithmetic comparison

between two numbers. The key idea behind this

technique is to use a window in order to determine a

cluster. The window is explained as an orthogonal

range in the d-dimensional Euclidean space, where d

is the number of numerical attributes. Here, 2-

dimensional data is used. The magnitude of A depends

on the density of the data set. Which is define, across

each different direction i,

Ai =
(mean distance among patterns in i)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑖𝑛𝑑𝑜𝑤𝑠)
 ×0.5 (4.2)

Fig 3: Movements and enlargements of a window.

Intuitively, we try to fill the mean space between two

patterns with non-overlapping (thus we scale by 0.5)

windows. Every pattern that lies within a window is

treated as belonging to the corresponding cluster.

Repeatedly, each window is moved in the Euclidean

space by centering itself on the mean of the patterns

included. This takes place till further movement

results in an increase in the number of patterns that lie

within it which is shown by solid lines in figure 3.

After this step, we can determine the means of clusters

as the means of the corresponding windows. However,

since only a limited number of patterns are considered

in each movement, the quality of a partition may not

International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 2– January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 91

be optimum. The quality of a partition is calculated in

a second phase. At first, we enlarge windows in order

to contain as many patterns from the respective

cluster. The quality of a partition is determined by the

number of patterns contained in any window, with

respect to all patterns.

The k-Windows clustering algorithm is as follows:

ALGORITHM K-Windows.

Input k, A, t

initialize k means jn1, ..., jnk along with their

k d-ranges wn1, ..., wnk each of area A

repeat

for each input pattern i, 1 ≤ p ≤ m

do
assign il to wi ,

so that il lies within wi

for each d-range wi

do

calculate its mean ini=
1

|𝑤 𝑖 |
 𝑗𝑝𝑗𝑝∈𝑤 𝑖

 (4.3)

and recalculate d-ranges

until no any pattern has changed d-ranges

enlarge d-ranges up to no significant

change exists in their initial mean

compute the ratio r =
1

𝑛
 |𝑖𝑝 ∈ 𝑤𝑗 |
𝑘
𝑗=1

 (4.4)

if r < t

do reexecute the algorithm

At first, k means are selected (possibly in a random

way). Initial d-ranges (windows) have as centers these

initial means and each one is of area a. Then, the

patterns that lie within each d-range are found. As

here the data is 2 dimensional, an orthogonal range

search [11] is used. An orthogonal range search is

based on a preprocess phase where a range tree i.e.

here binary tree is constructed. Patterns that lie within

a d-range can be found by traversing the binary tree,

in polylogarithmic time. In the third step, the mean of

patterns that are present within each range is

calculated. Each such mean defines a new d-range that

is considered a movement of the previous d-range.

The last two steps are executed repeatedly, until no d-

range includes a significant increment of patterns after

a movement [13].

3. Kd Tree Search
Kd Tree (short for k-dimensional tree) is a space-

partitioning data structure for organizing points in a k-

dimensional space. k-d trees are a useful data structure

for several applications, such as searches involving a

multidimensional search key (e.g.range searches and

nearest neighbor searches). k-d trees are a special case

of binary space partitioning trees invented by Jon

Louis Bentley in 1975 for multidimensional data. The

k-d tree is a binary tree in which every node is a k-

dimensional point. Every non-leaf node can be

thought of as implicitly generating a splitting

hyperplane that divides the space into two parts,

known as half-spaces. Points to the left of this

hyperplane are represented by the left subtree of that

node and points right of the hyperplane are

represented by the right subtree. The hyperplane

direction is chosen in the following way: every node

in the tree is associated with one of the k-dimensions,

with the hyperplane perpendicular to that dimension's

axis. So, for example, if for a particular split the "x"

axis is chosen, all points in the subtree with a smaller

"x" value than the node will appear in the left subtree

and all points with larger "x" value will be in the right

subtree. In such a case, the hyper plane would be set

by the x-value of the point, and its normal would be

the unit x-axis.

Let us consider the procedure for constructing the kd-

tree.

It has two parameters, a set of points and an integer.

The first parameter is set for which we want to build

kd-tree, initially this the set S. The second parameter

is the depth of the root of the sub tree. Initially the

depth parameter is zero. The procedure returns the

root of the kd-tree.

Procedure name BUILDKDTREE(S,depth)
Input: A set of points S and the current depth.

Output: The root of the kd-tree storing S.

if S contains only one point

then return a leaf storing this point

else if depth is even

then Split S into two subsets with a vertical

line l through the median x-coordinate

of the points in S. S1 be the set of points to

the left of l or on l, and let S2 be the

set of points to the right of l.

else Split S into two subsets with a horizontal line l

through the median y-coordinate

 of the points in S. Let S1 be the set of points to the

below of l or on l, and let S2 be

 the set of points above l.

vleft←BUILDKDTREE(S1, depth +1).

vright←BUILDKDTREE(S2, depth +1).

Create a node v storing l, make vleft the left child of v,

and make vright the right child of v.

return v.

As the kd-tree is binary tree. So, kd-tree for a set of n-

points uses O(n) storage and and can be constructed in

O(n logn) [11].

V. EXPERIMENTAL RESULTS

Experimental results have been evaluated on an Intel

core2 DUO CPU with 2GBRAM under 64-bit

Windows 8 operating system. This system is

implemented in java using jdk 1.8. 20 NewsGroup

Dataset [14] is used for experiments which a

collection of approximately 20,000 newsgroup

documents, partitioned among 20 different

newsgroups like graphics, hardware, politics etc. It

was originally collected by Ken Lang. Now a day, The

20 newsgroups collection has become a popular data

set for experiments in text applications, such as text

classification and text clustering.But this data may be

https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Space_partitioning
https://en.wikipedia.org/wiki/Space_partitioning
https://en.wikipedia.org/wiki/Space_partitioning
https://en.wikipedia.org/wiki/Point_%28geometry%29
https://en.wikipedia.org/wiki/Euclidean_space
https://en.wikipedia.org/wiki/Range_search
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Binary_space_partitioning

International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 2– January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 92

noisy so data preprocessing is carried out to get the

clean data. Data preprocessing consists various steps

like tokenization, stop words removal, Stemming etc.

We have used 641 stop words for stop word removal

process and porter stemmer is used for stemming.

Then vector space model is generated using tf-idf

values. Using these vectors, cosine similarity is

calculated between documents. This is given as input

to the K Means & K Windows clustering. K Means

works on single dimensional data. So, here it works on

cosine similarity scores of documents. But K

Windows works on 2 dimensional or

multidimensional data. But, Data is 2 Dimensional.

This is given as input to the K Windows i.e. (Cosine

Similarity Scores, Document number). Both

algorithms are tested for different size of cosine score

values as 5, 10, 15, 20, 25, 30 and 35. According to

that, it‘s running time in milliseconds, number of

clusters generated by both algorithms & memory

usage by both these algorithms in kilobytes is

tabulated in the following Table 1. Using this

information, graphs are generated which shows the

comparison between K Means & K Windows

algorithm.

Table I: Results of K Means & K Windows

Figure below shows experimental results on dataset of

different data size as no. of cosine scores applied on

both K Means & K Windows.

Fig 2:Comparison of running time required vs.

data size for both algorithms

Fig 3: Comparison of number of cluster generated

vs. data size for both algorithms

Fig 4: Comparison of memory utilized vs. data size

Cosine Similarity

Scores(Data Size)

Running Time (in

Milliseconds)

Number of clusters

generated
Memory Utilized in KB

 k-Means k-Windows k-Means k-Windows k-Means k-Windows

5 7 1 2 2 1587 848

10 9 1 3 4 1959 696

15 9 2 3 7 1778 682

20 9 2 3 9 1985 533

25 9 2 3 11 1972 682

30 9 2 3 13 1978 696

35 10 3 3 14 1962 848

International Journal of Computer Trends and Technology (IJCTT) – Volume 43 Number 2– January 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 93

for both algorithms

The quality of a clustering result is evaluatedusing

evaluation measure like purity is widely used to

evaluate the performance of unsupervisedlearning

algorithms [1].To begin with, each cluster is labeled

with the majority category that appears in that cluster.

Moreover, if a categorylabel has been assigned to a

cluster, it still can be assigned toother clusters if it is

the dominant category in that cluster.Based on the

cluster labels, the purity and entropy measures are

computed as follows. Thepuritymeasure evaluates the

coherence of a cluster, thatis, the degree to which a

cluster contains documents from asingle category.

Given a particular clusterCiof sizeni, thepurity ofCiis

formally defined as

P(Ci) =
1

𝑛𝑖
𝑚𝑎𝑥ℎ(𝑛𝑖

ℎ) (5.1)

Where, 𝑚𝑎𝑥ℎ(𝑛𝑖
ℎ) is the number of documents that

are fromthe dominant category in

clusterCiand𝑛𝑖
ℎ represents thenumber of documents

from clusterCiassigned to categoryh. Purity can be

interpreted as the classification rate underthe

assumption that all samples of the cluster are

predictedto be members of the actual dominant class

for the cluster.For an ideal cluster, which only

contains documents from asingle category, its purity

value is 1. In general, the higherthe purity value, the

better the quality of the cluster is[1].

 Here, overall purity of clusters for both

algorithms is listed in Table II and which graphically

in fig 5.

Table II: Results of Purity Of Clusters of both k-

Means & K-windows Algorithm

 K-Means K-windows

Overall Purity

of clusters

0.044 0.4145

Fig 5: Cluster Purity Comparison between k-

Means & K-windows

VI. CONCLUSION

Text mining is performed using side information and

clustering is performed using K-mean &K-Windows.

Many forms of text data is gathered from databases

contain a large amount of side information or meta

information, which may be used in order to improve

the quality of clustering results. Experimental results

show that use of side information can enhance the

quality of text clustering and performance is evaluated

in terms of memory utilization & running time. K

Windows clustering technique is efficient as compared

to K Means. So, the quality of searching the query is

enhanced using side information.

REFERENCES

[1] Charu C. Aggarwal, Yuchen Zhao and Philip S. Yu ,‖On the Use

of Side Information for Mining Text Data‖, IEEE transactions on

knowledge and data engineering, vol. 26, no. 6, June 2014

[2] S. Guha, R. Rastogi, and K. Shim, ―CURE: An efficient

clustering algorithm for large databases,‖ in Proc. ACM SIGMOD

Conf., New York, NY, USA, 1998, pp. 73–84.

[3] D. Cutting, D. Karger, J. Pedersen, and J. Tukey,

―Scatter/Gather:A cluster-based approach to browsing large

document collections,‖ in Proc. ACM SIGIR Conf., New York, NY,

USA, 1992, pp. 318–329.

[4] C.C. Aggarwal and P.S.Yu,―On text clustering with side

information,‖ in Proc. IEEE ICDE Conf., Washington, DC, USA,

2012.

[5] Lior Rokach, Oded Maimon, ―Chapter 15 Clustering Methods‖,

data mining and knowledge discovery handbook.

[6] P. S. Bradley and U. M. Fayyad, Refining initial points for k-

means clustering, in ‗‗Proceedings of the IJCAI-93, San Mateo,

CA,‘‘ pp. 1058–1063, 1983.

[7] Z. Huang, Extensions to the k-means algorithm for clustering

large data sets with categorical values, Data Mining Knowledge

Discovery 2 (1998), 283–304.

[8] A. K. Jain and R. C. Dubes, ‗‗Algorithms for Clustering Data,‘‘

Prentice–Hall, Englewoods Cliffs, NJ, 1988.

[9] D. Judd, P. McKinley, and A. Jain, Large-scale parallel data

clustering, in ‗‗Proceedings of Int. Conference on Pattern

Recognition,‘‘ 1996.

[10] C. Pizzuti, D. Talia, and G. Vonella, A divisive initialization

method for clustering algorithms, in ‗‗Proc. PKDD 99—Third

Europ. Conf. on Principles and Practice of Data Mining and

Knowledge Discovery,‘‘ Lecture Notes in Artificial Intelligence,

Vol. 1704, pp. 484–491, Springer-Verlag, Prague, 1999.

[11] Bentley, J. L. (1975). "Multidimensional binary search trees

used for associative searching". Communications of the ACM. 18

(9): 509.

[12] C. C. Aggarwal and C.-X. Zhai, ―A survey of text classification

algorithms,‖ in Mining Text Data. New York, NY, USA: Springer,

2012.

[13] M. N. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pavlides,

The New k-Windows Algorithm for Improving the k-Means

Clustering Algorithm, journal of complexity 18, 375–391 (2002).

[14] http://qwone.com/~jason/20Newsgroups/

[15] R. Ng and J. Han, ―Efficient and effective clustering methods

for spatial data mining,‖ in Proc. VLDB Conf., San Francisco, CA,

USA, 1994, pp. 144–155.

[16] T. Zhang, R. Ramakrishnan, and M. Livny, ―BIRCH: An

efficient data clustering method for very large databases,‖ in Proc.

ACM SIGMOD Conf., New York, NY, USA, 1996, pp. 103–114.

[17] W. Xu, X. Liu, and Y. Gong, ―Document clustering based on

nonnegative matrix factorization,‖ in Proc. ACM SIGIR Conf., New

York, NY, USA, 2003, pp. 267–273.

