
International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1196

Modification of Instruction Set Architecture in a
UTeMRISCII Processor

Ahmad Jamal Salim#1, Nur Raihana Samsudin*2, Sani Irwan Md Salim#3 , Soo Yew Guan#4
#Faculty of Electronic Engineering and Computer Engineering, Universiti Teknikal Malaysia Melaka

Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

Abstract— The development of application specific instruction
set processor (ASIP) is a methodology in designing the processor
system. The designing of processor system is focused on the
internal architecture of the processor. By using the ASIP design,
it can offer the optimum performance and also the flexibility in a
processor architecture, but with limited application. However, by
implementing the processor on Field Programmable Gate Array
(FPGA), it could further extend the opportunity to reconfigure
the architecture instantly. Therefore, this paper is about the
implementation of the modification of a 16-bit wide instruction
set for a simple 8-bit soft-core RISC processor called
UTeMRISCII. The purpose of the project is to improve the
ability of the processor by adding a new instruction set that can
be able to perform basic digital signal processing (DSP)
algorithm. For verification, a multiply-accumulate (MAC)
instruction is created as the new customized instruction. The
modification of the instruction set architecture is achieved by
using Hardware Description Language (HDL) implementation.
To validate the operation of new customized instruction in the
software platform, the CPUSim software is used as the simulator
to observe the output. Meanwhile, in the hardware platform, the
new customized instruction is translated into processor design
and verified using the Xilinx ISE software. The Xilinx Virtex-6
board is used to implement the processor. The simulation and
hardware synthesis results proved that the new MAC instruction
implementation performed correctly and produces correct
outputs during the processor execution.

Keywords— ASIP; modification instruction set; Multiply-
accumulate.

I. INTRODUCTION
The application specific instruction set processor (ASIP)

has the flexibility of general purpose processors, in using
additional instruction set and programming field through its
design [1, 2]. Therefore, to implement ASIP technique, a
customized instruction sets is introduced through the
instruction set extensions. The instruction set extensions
technique is adapted for specific application. The instruction
set extensions can be categorized into two approaches, which
are complete customization and partial customization [2]. The
complete customization approach requires a complete build on
the instruction set architecture of a processor. Meanwhile,
partial customization approach involves the extension of the
existing instruction set architecture where a limited number of
new instructions are added to tune it to perform specific
functions [3]. Basically, both approaches are targeted is to
simplify the processor design which takes into account the

most useful instructions for the specific application and
discarded the others in order to maximize the execution time.

The Reduced Instruction Set Computer (RISC) architecture
is a CPU design that provides higher performance with much
faster execution of each instruction [4, 5, 6]. In determining
the performance parameters for RISC processors,
improvement of maximum operating frequency and clock
cycle per instruction have been considered. Therefore, from
that point, the RISC processor provides the best platform in
implementing instruction set extension approaches.

Implementation of a simple RISC processor on an
FPGA platform would enable more opportunities to
enhance the processor’s capability by adoption of ASIP
design methodologies [7, 8]. In this platform, the internal
architecture of RISC processor is described in Hardware
Description Language (HDL) [9] that make it possible to
make modification on memory allocation, register array and
instruction decoder. Therefore, the designers are in control to
determine the performance trade-off, resource utilization and
detail configuration of the required instruction set.

For implementation of DSP application, FPGA-based DSP
system design also incorporates hardware multipliers and
memory blocks. Embedded DSP processors could be
integrated into micro-controller platforms for a complete
digital signal controller (DSC) system design [10].
Performance parameters measured including the area of the
resulting architecture and the number of clock cycles are
needed to evaluate the DSP operation.

The multiply-accumulate (MAC) unit is a common digital
block used extensively in a microprocessor and digital signal
processors for data-intensive applications [11]. For example,
many filters, orthogonal frequency-division multiplexing
algorithms, and channel estimators require FIR or FFT/IFFT
computations that MAC units can accelerate efficiently. Inputs
are fed to the multiplier, and successive products are summed
by the accumulate adder [12]. Different architecture in the
implementation of a MAC on the FPGA platform as hardware
emulation of multipliers and accumulators have also been
proposed with the intention of providing speed increased and
area reduction [13].

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1197

II. METHODOLOGY

A. UTeMRISCII Architecture
An architecture of UTeMRISCII consists of several block

modules which are compatible with an 8-bit RISC micro-
controller. Fig.1 shows the module implementations that are
required in UTeMRISCII processor including the
corresponding ROM and RAM.

The Arithmetic and Logic Unit (ALU) module acts as the
heart of the processor where the function is to control and
synchronize the data path according to the programmed
operations. The RISC processor core controls the data flow,
synchronization and to fetch and execute the instruction set
and data.

To generate the ROM and RAM, the CoreGen application
module is utilized. The ROM functions as the
instruction/program code storage while the RAM functions as
the data/register storage. Normally, block ROM instantiation
option is sufficient in generating memory blocks, however, for
RAM, a distributed memory block option is used due to the
asynchronous read and write design requirements.

Multiply and Accumulate instruction set is designated as a
new instruction set of the processor. The MAC instruction
executes the multiply and accumulate operation and the new
instruction op-code is embedded to the instruction decoder
module. Therefore, when the MAC instruction is fetched, the
instruction decoder will be able to decode the instruction and
the arithmetic execution will be performed by the ALU
module.

Besides that, this instruction will also check for overflow
condition. The overflow flag is set if the result of a MAC
instruction is out of range of the signed arithmetic number
between -32,768 to 32, 767.

Modification of the Instruction Set Architecture (ISA) is
followed by an instruction modification flow chart as shown
in Fig. 2. From this flowchart, the modification is started with
the development of the UTeMRISCII architecture which is
capable to accommodate a new instruction set. Then, the
MAC instruction is created by modifying the ALU and the
IDEC modules. A test program in assembly language file
(.ASM) is developed which include the new MAC instruction.
For verification purpose, the test program is simulated using
CPUSim software. The (.ASM) file is then compiled and
assembled to generate the hexadecimal file (.HEX).
Subsequently, the .HEX file is converted to a coefficient file
(.COE). This file is then used as an initialization file to be
loaded to the ROM module.

Fig. 1 Block Modules of UTeMRISCII Processor

Established
RISC processor

architecture

Create new
MAC instruction

in RISC

.ASM file New instruction
architecture
simulation

Functions
correctly?

HEX file
generation

COE conversion

N

Y

.hex file

.coe fileModify
ALU and IDEC

codes

Synthesize codes
to FPGA

END

A

A

 Fig. 2 Instruction Set Modification Flow Chart

B. MAC Architecture
The architecture of the MAC operation is shown in Fig. 3.

Input signals a and b are the 8-bit multiplicand and multiplier
respectively. The multiplier module computes the
multiplication operation and produces a 16-bit result. The
result is then accumulated with the previous MAC result and
stored in the accumulator register. The final output is stored in
two 8-bit register pair.

 In the 8-bit UTeMRISCII processor architecture, the
multiplier and adder function is configured and implemented
in the ALU processor. Its operation utilizes a signed 2’s
complement multiplier and a full adder. The operation
requires one clock cycle to implement the multiplication and
accumulation process. In the clock cycle, the multiplier
provides a double precision result of two single precision

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1198

operand, while the accumulator performs arithmetic functions
with double precision input and output.

Fig. 3 Basic MAC Hardware Architecture

C. Instruction Set Modification
For the UTeMRISCII processor, the width of the

instruction set is 16-bit wide, which consists of a combination
of opcode and literal bit or file register or memory address.
Direct and indirect addressing modes are also supported in
this processor. The format of the instruction set architecture of
the RISC processor is shown in Fig.4. There are three
instruction set format utilized in the UTEMRISCII. The byte-
oriented file register consists of instruction opcode, file
register/memory address and directional bit. The directional
bit indicates the destination of the ALU output where bit ‘1’
will store the output back to the file register/memory and bit
‘0’ will store the output to working register. The bit-oriented
file register operation involved bit testing indicated by select
bit (‘b’) on the corresponding file register/memory address.
Literal value operation only involved opcode and 10-bit literal
value (‘k’). The literal value indicates either raw data or label
that contained memory location address (especially in goto
and call instruction).

Fig.4 General Instruction Format (a) Byte-oriented File Register
Operation, (b) Bit-oriented File Register Operation and (c) Literal Value

Operation

D. Instruction Set Simulation
The CPUSim software is a tool that is used to verify and

simulate the new instruction set. CPUSim software is a highly
customized Java application computer architecture simulator
[14] , which provides features to insert customized instruction
in assembly language with the ability to perform simulation at
microcode level to a variety of CPU architectures including
RISC processors. Therefore, the new MAC instruction is
configured inside the simulator. Fig. 5 shows the layout of the
CPUSim simulator window.

Fig. 5 Layout of CPUSim simulator window: (a) RAM of test program, (b)
Register and (c) Memory Register windows

E. FPGA Implementation
Implementation of FPGA is a part of the process to verify

the design of the MAC instruction on FPGA chip. All logic
modules are then synthesized, placed and routed and executed
in Virtex-6 FPGA chip. During the FPGA implementation,
key parameters, such as the maximum clock frequency and
resource utilization are observed together. The coefficient file
as mentioned in the previous section, is used as the
initialization file to the ROM module. During the operation,
ALU fetched the MAC instruction from instruction decoder
module and then execute the corresponding MAC sequences
as per programmed. In Hardware Description Languange
(HDL) simulation, the design is simulated through the
testbench environment. The testbench is used to verify the
correctness of design before simulation using the ISim
simulator. Afterwards, the design is run through several
processes including translate, mapping and “place and route”
to generate the configuration file. The configuration file is
developed to program the configuration device before
hardware implementation process. To validate and debug the
design, the ChipScope analyzer is utilized. Before the
debugging process, the design is implemented in the FPGA
chip on the Virtex-6. The Integrated Logic Analyzer (ILA)
core is inserted within the project design in order to observe
the internal signals of the UTeMRISCII processor. The

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1199

internal signals are then is displayed as waveforms at the
ChipScope Analyzer window.

III. RESULT AND DISCUSSION
The overall result of MAC architecture is shown in Fig. 6.

The input of a and b contain the values of working register (w)
and File Select Register (FSR) respectively. The values of a
and b are in two's complement. Multiplication is done in
unsigned numbers (a1 and b1) and the result is stored in m1
register. The result is presented back in signed number format
in register m1. Next, to perform accumulate operation, the
value of m2 is added to the previous value of accumulator
(accuold) and stored the result in accu register. The
accumulated result is stored into register pair y and y2, where
y is stored as the higher 8 bit data, while y2 is stored as the
lower 8-bit data. Indirectly, the data in register y and y2 are
stored in w and FSR. Therefore, the MAC instruction is
repeated in loops until the result triggers the overflow flag.

accu

y
(w)

y2
(FSR)

8 8

a1 b1

+

16

16

m1
Multiplier

b
(FSR)

8

a
(w)

8

accuold

16

a1 b1

m2

overflow flag

Fig. 6 MAC hardware architecture

F. CPUSim simulation
No In CPUSim simulator, the new MAC's machine

instruction is defined by assembling the instruction in the test
program at the main window. The simulator is then run in
debug mode where all the instructions in the assembly
language program are executed sequentially. The outputs of
the simulation are observed at register level through its
register windows. Fig. 7 shows the assembly language
program that includes the MAC instruction. The MAC
instruction then went through a continuous loop to verify its
operation. The assembly language program is compiled to
generate the hexadecimal file.

Fig. 8 shows the correct implementation of the MAC
instruction where the values of a and b is generated from
dum2 and dum1 with values in hexadecimal are 1B and 7F
respectively. The values of a and b are converted to its
magnitude value before the multiplication is done. The
multiplication result is stored in m1 (0D65). The result is
converted back to its signed value and stored in register m2.
Next, accumulate operation is performed by adding value of
m2 (0D65) with value of previous accumulate result or
accuold (7F82), which is also the value of (y, y2) from the
previous MAC iteration. Then the accumulation result (8CE7)
is updated to accu register, and result is separated in 8-bit data
stored to y (8C) and y2 (E7) registers. However, overflow flag
status is indicating ‘1’ in this iteration, which means the final
result of this iteration has exceeded the range of -32,768 to 32,
767 (&H8000 to &H7FFF) sign bit number.

Fig. 7 Assembly language program for MAC instruction execution

Fig. 8 CPUSim output result of MAC instruction implementation

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1200

B. Xilinx ISE.
 The UTeMRISCII processor block modules are initiated

and synthesized using Xilinx Virtex-6 FPGA platform with
the Xilinx ISE integrated environment. The integrated ISim
simulator is used to validate the design with the MAC
instruction. Fig. 9 is the waveform result of the ISim simulator
where the result is found to match with the result of CPUSim
simulation. In CPUSim software, the input of design is
defined as a and b, while in ISim simulator the input is
defined as w and f. The final result of y and y2 is labeled as
aluout and y2out respectively.

C. ChipScope Analyzer
 The ChipScope analyzer is used to debug the design

through the Integrated Logic Analyzer (ILA) core. The
waveform window by Chipscope Analyzer is used to display
the output result of the design which perform the MAC
instruction in the FPGA chip. Fig. 10 shows the correct output
result that was generated from ChipScope Analayzer, and
matched with the CPUSim simulation and ISim simulation
results.

IV. CONCLUSION
This paper describes the capability of a simple UTeMRISCII
processor architecture to execute a new instruction through an
ISA modification. The soft-core processor which is
implemented in an FPGA platform provides the flexibility and
compatibility in application specific processor design. The
new MAC instruction is successfully simulated, implemented
and verified with accurate result throughout the whole process.

Therefore, UTeMRISCII would be a good platform to perform

more complex DSP operation using the low-end processor.

ACKNOWLEDGMENT
The authors would like to thank Universiti Teknikal Malaysia
Melaka and Ministry of Higher Education Malaysia for the
financial support given through the research grant number
FRGS/2012/FKEKK/TK02/02/1/F00126.

REFERENCES
[1] J. Ball, "Designing Soft-Core Processors for FPGAs Processor

Design," in Processor Design: System-on-Chip Computing for
ASICs andFPGAs, J. Nurmi, Ed., 1st ed: Springer Netherlands,
2007, pp. 229-256.

[2] C. Galuzzi and K. Bertels, "The Instruction-Set Extension Problem:
A Survey," ACM Trans. Reconfigurable Technol. Syst., vol.
4, pp. 1-28, 2011.

[3] L. Barthe, L. V. Cargnini, P. Benoit, and L. Torres, "The
SecretBlaze: A Configurable and Cost-Effective Open-Source
Soft-Core Processor," in IEEE International Symposium on
 Parallel and Distributed Processing Workshops and Phd Forum
(IPDPSW), 2011, pp. 310 313.

[4] P. S. Mane, et al., "Implementation of RISC Processor on FPGA,"
in Industrial Technology, 2006. ICIT 2006. IEEE International
Conference on, 2006, pp. 2096-2100.

[5] L. Barthe, et al., "The SecretBlaze: A Configurable and Cost-
Effective Open-Source Soft-Core Processor," in IEEE International
Symposium on Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), 2011, pp. 310-313.

[6] P. S. Mane, I. Gupta, and M. K. Vasantha, "Implementation of
RISC Processor on FPGA," in IEEE International Conference on
Industrial Technology 2006, pp. 2096-2100.

[7] J. S. Lee and M. H. Sunwoo, "Design of New DSP Instructions and
Their Hardware Architecture for High-Speed FFT," The Journal of
VLSI Signal Processing, vol. 33, pp. 247-254, 2003.

[8] W. Wenxiang, L. Ling, Z. Guangfei, L. Dong, and Q. Ji, "An
Application Specific Instruction Set Processor optimized for FFT,"
in IEEE 54th International Midwest Symposium on Circuits and
Systems (MWSCAS), 2011, pp. 1-4.

Fig. 9 ISim output result of MAC instruction implementation

Fig. 10 ChipScope output result of MAC instruction implementation

International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 5–May 2013

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1201

[9] T. Coonan. (20 December 2011). Verilog Synthetic PIC.
Available:http://www.mindspring.com/~tcoonan/newpic.html

[10] M. M. Mansour, et al. (2011) Trends in Design and Implementation
of Signal Processing Systems [In the Spotlight]. IEEE Signal
Processing Magazine. 192-193.

[11] H. Tung Thanh, M. Själander, and P. Larsson-Edefors, "A High-
Speed, Energy-Efficient Two-Cycle MultiplyAccumulate(MAC)
Architecture and Its Application to aDouble-Throughput MAC
Unit," IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 57, pp. 30733081,2010.

[12] C. Lo Sing, A. Miri, and Y. Tet Hin, "Efficient
FPGAimplementation of FFT based multipliers," in Canadian
Conference on Electrical and Computer Engineering, 2005,pp.
1300-1303.

[13] A. Abdelgawad and M. Bayoumi, "High Speed and Area Efficient
MultiplyAccumulate(MAC)UnitforDigitalSignalProssingApplicatio
ns," in IEEE International Symposium on Circuits and Systems
2007, pp. 3199-3202.

[14] D. Skrien, "CPU Sim 3.1: A tool for simulating computer
architectures for computer organization classes," Journal
onEducational Resources in Computing (JERIC), vol. 1, pp. 46-59,
2001.

