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Abstract— The development of application specific instruction 
set processor (ASIP) is a methodology in designing the processor 
system. The designing of processor system is focused on the 
internal architecture of the processor. By using the ASIP design, 
it can offer the optimum performance and also the flexibility in a 
processor architecture, but with limited application. However, by 
implementing the processor on Field Programmable Gate Array 
(FPGA), it could further extend the opportunity to reconfigure 
the architecture instantly. Therefore, this paper is about the 
implementation of the modification of a 16-bit wide instruction 
set for a simple 8-bit soft-core RISC processor called 
UTeMRISCII. The purpose of the project is to improve the 
ability of the processor by adding a new instruction set that can 
be able to perform basic digital  signal processing (DSP) 
algorithm. For verification, a multiply-accumulate (MAC) 
instruction is created as the new customized instruction. The 
modification of the instruction set architecture is achieved by 
using Hardware Description Language (HDL) implementation. 
To validate the operation of new customized instruction in the 
software platform, the CPUSim software is used as the simulator 
to observe the output. Meanwhile, in the hardware platform, the 
new customized instruction is translated into processor design 
and verified using the Xilinx ISE software. The Xilinx Virtex-6 
board is used to implement the processor. The simulation and 
hardware synthesis results proved that the new MAC instruction 
implementation performed correctly and produces correct 
outputs during the processor execution. 
 
Keywords— ASIP; modification instruction set; Multiply-
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I. INTRODUCTION 
The application specific instruction set processor (ASIP) 

has the flexibility of general purpose processors, in using 
additional instruction set and programming field through its 
design [1, 2]. Therefore, to implement ASIP technique, a 
customized instruction sets is introduced through the 
instruction set extensions. The instruction set extensions 
technique is adapted for specific application. The instruction 
set extensions can be categorized into two approaches, which 
are complete customization and partial customization [2]. The 
complete customization approach requires a complete build on 
the instruction set architecture of a processor. Meanwhile, 
partial customization approach involves the extension of the 
existing instruction set architecture where a limited number of 
new instructions are added to tune it to perform specific 
functions [3]. Basically, both approaches are targeted is to 
simplify the processor design which takes into account the 

most useful instructions for the specific application and 
discarded the others in order to maximize the execution time. 

The Reduced Instruction Set Computer (RISC) architecture 
is a CPU design that provides higher performance with much 
faster execution of each instruction [4, 5, 6]. In determining 
the performance parameters for RISC processors, 
improvement of maximum operating frequency and clock 
cycle per instruction have been considered. Therefore, from 
that point, the RISC processor provides the best platform in 
implementing instruction set extension approaches.  

Implementation of a simple RISC processor   on   an   
FPGA   platform   would   enable   more opportunities to 
enhance the processor’s capability by adoption of  ASIP  
design methodologies [7, 8]. In this platform, the internal 
architecture of  RISC  processor  is  described  in  Hardware  
Description Language (HDL) [9] that make it possible to 
make modification on memory allocation, register array and 
instruction decoder. Therefore, the designers are in control to 
determine the performance trade-off, resource utilization and 
detail configuration of the required instruction set. 

For implementation of DSP application, FPGA-based DSP 
system design also incorporates hardware multipliers and 
memory blocks. Embedded DSP processors could be 
integrated into micro-controller platforms for a complete 
digital signal controller (DSC) system design [10]. 
Performance parameters measured including the area of the 
resulting architecture and the number of clock cycles are 
needed to evaluate the DSP operation. 

The multiply-accumulate (MAC) unit is a common digital 
block used extensively in a microprocessor and digital signal 
processors for data-intensive applications [11]. For example, 
many filters, orthogonal frequency-division multiplexing 
algorithms, and channel estimators require FIR or FFT/IFFT 
computations that MAC units can accelerate efficiently. Inputs 
are fed to the multiplier, and successive products are summed 
by the accumulate adder [12]. Different architecture in the 
implementation of a MAC on the FPGA platform as hardware 
emulation of multipliers and accumulators have also been 
proposed with the intention of providing speed increased and 
area reduction [13]. 
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II. METHODOLOGY 

A. UTeMRISCII Architecture 
An architecture of UTeMRISCII consists of several block 

modules which are compatible with an 8-bit RISC micro-
controller. Fig.1 shows the module implementations that are 
required in UTeMRISCII processor including the 
corresponding ROM and RAM. 

The Arithmetic and Logic Unit (ALU) module acts as the 
heart of the processor where the function is to control and 
synchronize the data path according to the programmed 
operations. The RISC processor core controls the data flow, 
synchronization and to fetch and execute the instruction set 
and data. 

To generate the ROM and RAM, the CoreGen application 
module is utilized. The ROM functions as the 
instruction/program code storage while the RAM functions as 
the data/register storage. Normally, block ROM instantiation 
option is sufficient in generating memory blocks, however, for 
RAM, a distributed memory block option is used due to the 
asynchronous read and write design requirements. 

Multiply and Accumulate instruction set is designated as a 
new instruction set of the processor. The MAC instruction 
executes the multiply and accumulate operation and the new 
instruction op-code is embedded to the instruction decoder 
module. Therefore, when the MAC instruction is fetched, the 
instruction decoder will be able to decode the instruction and 
the arithmetic execution will be performed by the ALU 
module.  

Besides that, this instruction will also check for overflow 
condition. The overflow flag is set if the result of a MAC 
instruction is out of range of the signed arithmetic number 
between -32,768 to 32, 767.  

Modification of the Instruction Set Architecture (ISA) is 
followed by an instruction modification flow chart as shown 
in Fig. 2. From this flowchart, the modification is started with 
the development of the UTeMRISCII architecture which is 
capable to accommodate a new instruction set. Then, the 
MAC instruction is created by modifying the ALU and the 
IDEC modules. A test program in assembly language file 
(.ASM) is developed which include the new MAC instruction. 
For verification purpose, the test program is simulated using 
CPUSim software. The (.ASM) file is then compiled and 
assembled to generate the hexadecimal file (.HEX). 
Subsequently, the .HEX file is converted to a coefficient file 
(.COE). This file is then used as an initialization file to be 
loaded to the ROM module.  
 

 
 

Fig. 1 Block Modules of UTeMRISCII Processor 
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 Fig. 2 Instruction Set Modification Flow Chart 
 

B. MAC Architecture 
The architecture of the MAC operation is shown in Fig. 3. 

Input signals a and b are the 8-bit multiplicand and multiplier 
respectively. The multiplier module computes the 
multiplication operation and produces a 16-bit result. The 
result is then accumulated with the previous MAC result and 
stored in the accumulator register. The final output is stored in 
two 8-bit register pair.  

 In the  8-bit UTeMRISCII processor architecture, the 
multiplier and adder function is configured and implemented 
in the ALU processor. Its operation utilizes a signed 2’s 
complement multiplier and a full adder. The operation 
requires one clock cycle to implement the multiplication and 
accumulation process. In the clock cycle, the multiplier 
provides a double precision result of two single precision  
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operand, while the accumulator performs arithmetic functions 
with double precision input and output. 

 

 
 

Fig. 3 Basic MAC Hardware Architecture 
 

C. Instruction Set Modification 
For the UTeMRISCII processor, the width of the 

instruction set is 16-bit wide, which consists of a combination 
of opcode and literal bit or file register or memory address. 
Direct and indirect addressing modes are also supported in 
this processor. The format of the instruction set architecture of 
the RISC processor is shown in Fig.4. There are three 
instruction set format utilized in the UTEMRISCII. The byte-
oriented file register consists of instruction opcode, file 
register/memory address and directional bit. The directional 
bit indicates the destination of the ALU output where bit ‘1’ 
will store the output back to the file register/memory and bit 
‘0’ will store the output to working register. The bit-oriented 
file register operation involved bit testing indicated by select 
bit (‘b’) on the corresponding file register/memory address. 
Literal value operation only involved opcode and 10-bit literal 
value (‘k’). The literal value indicates either raw data or label 
that contained memory location address (especially in goto 
and call instruction).    

  

Fig.4 General Instruction Format (a) Byte-oriented File Register 
Operation, (b) Bit-oriented File Register Operation and (c) Literal Value 

Operation 

D. Instruction Set Simulation 
The CPUSim software is a tool that is used to verify and 

simulate the new instruction set. CPUSim software is a highly 
customized Java application computer architecture simulator 
[14] , which provides features to insert customized instruction 
in assembly language with the ability to perform simulation at 
microcode level to a variety of CPU architectures including 
RISC processors. Therefore, the new MAC instruction is 
configured inside the simulator. Fig. 5 shows the layout of the 
CPUSim simulator window. 

 

 
 

Fig. 5 Layout of CPUSim simulator window: (a) RAM of test program, (b) 
Register and (c) Memory Register windows 

 

E. FPGA Implementation 
Implementation of FPGA is a part of the process to verify 

the design of the MAC instruction on FPGA chip. All logic 
modules are then synthesized, placed and routed and executed 
in Virtex-6 FPGA chip. During the FPGA implementation, 
key parameters, such as the maximum clock frequency and 
resource utilization are observed together. The coefficient file 
as mentioned in the previous section, is used as the 
initialization file to the ROM module. During the operation, 
ALU fetched the MAC instruction from instruction decoder 
module and then execute the corresponding MAC sequences 
as per programmed. In Hardware Description Languange 
(HDL) simulation, the design is simulated through the 
testbench environment. The testbench is used to verify the 
correctness of design before simulation using the ISim 
simulator. Afterwards, the design is run through several 
processes including translate, mapping and  “place and route” 
to generate the configuration file. The configuration file is 
developed to program the configuration device before 
hardware implementation process. To validate and debug the 
design, the ChipScope analyzer is utilized. Before the 
debugging process, the design is implemented in the FPGA 
chip on the Virtex-6. The Integrated Logic Analyzer (ILA) 
core is inserted within the project design in order to observe 
the internal signals of the UTeMRISCII processor. The 
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internal signals are then is displayed as waveforms at the 
ChipScope Analyzer window. 

III. RESULT AND DISCUSSION 
The overall result of MAC architecture is shown in Fig. 6. 

The input of a and b contain the values of working register (w) 
and File Select Register (FSR) respectively. The values of a 
and b are in two's complement. Multiplication is done in 
unsigned numbers (a1 and b1) and the result is stored in m1 
register. The result is presented back in signed number format 
in register m1. Next, to perform accumulate operation, the 
value of m2 is added to the previous value of accumulator 
(accuold) and stored the result in accu register. The 
accumulated result is stored into register pair y and y2, where 
y is stored as the higher 8 bit data, while y2 is stored as the 
lower 8-bit data. Indirectly, the data in register y and y2 are 
stored in w and FSR. Therefore, the MAC instruction is 
repeated in loops until the result triggers the overflow flag. 
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Fig. 6 MAC hardware architecture 

F. CPUSim simulation 
No In CPUSim simulator, the new MAC's machine 

instruction is defined by assembling the instruction in  the test 
program at the main window.  The simulator is then run in 
debug mode where all the instructions in the assembly 
language program are executed sequentially. The outputs of 
the simulation are observed at register level through its 
register windows. Fig. 7 shows the assembly language 
program that includes the MAC instruction. The MAC 
instruction then went through a continuous loop to verify its 
operation. The assembly language program is compiled to 
generate the hexadecimal file. 

Fig. 8 shows the correct implementation of the MAC 
instruction where the values of a and b is generated from 
dum2 and dum1 with values in hexadecimal are 1B and 7F 
respectively. The values of a and b are converted to its 
magnitude value before the multiplication is done. The 
multiplication result is stored in m1 (0D65). The result is 
converted back to its signed value and stored in register m2. 
Next, accumulate operation is performed by adding value of 
m2 (0D65) with value of previous accumulate result or 
accuold (7F82), which is also the value of (y, y2) from the 
previous MAC iteration. Then the accumulation result (8CE7) 
is updated to accu register, and result is separated in 8-bit data 
stored to y (8C) and y2 (E7) registers. However, overflow flag 
status is indicating ‘1’ in this iteration, which means the final 
result of this iteration has exceeded the range of -32,768 to 32, 
767 (&H8000 to &H7FFF) sign bit number. 

 

 
 

Fig. 7 Assembly language program for MAC instruction execution 
 

 
 

Fig. 8 CPUSim output result of MAC instruction implementation 
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B. Xilinx ISE. 
 The UTeMRISCII processor block modules are initiated 

and synthesized using Xilinx Virtex-6 FPGA platform with 
the Xilinx ISE integrated environment. The integrated ISim 
simulator is used to validate the design with the MAC 
instruction. Fig. 9 is the waveform result of the ISim simulator 
where the result is found to match with the result of CPUSim 
simulation. In CPUSim software, the input of design is 
defined as a and b, while in ISim simulator the input is 
defined as w and f. The final result of y and y2 is labeled as 
aluout and y2out respectively. 

C. ChipScope Analyzer 
 The ChipScope analyzer is used to debug the design 

through the Integrated Logic Analyzer (ILA) core. The 
waveform window by Chipscope Analyzer is used to display 
the output result of the design which perform the MAC 
instruction in the FPGA chip. Fig. 10 shows the correct output 
result that was generated from ChipScope Analayzer, and 
matched with the CPUSim simulation and ISim simulation 
results.  

 

IV.  CONCLUSION 
This paper describes the capability of a simple UTeMRISCII 
processor architecture to execute a new instruction through an 
ISA modification. The soft-core processor which is 
implemented in an FPGA platform provides the flexibility and 
compatibility in application specific processor design. The 
new MAC instruction is successfully simulated, implemented 
and verified with accurate result throughout the whole process. 

Therefore, UTeMRISCII would be a good platform to perform 

more complex DSP operation using the low-end processor. 
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