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Abstract— Job Shop Scheduling problem becomes 

more complex if heterogeneous systems are 

considered and algorithm is to be implemented for 

online schedulers. In real time, number of 

heterogeneous systems connected to online scheduler 

may vary from time to time. Also, number of different 

sized jobs may differ at any instant. This problem 

deals with optimization of job partitioning when 

maximum partition size is given; and to find out 

scheduling criteria when new jobs arrive keeping old 

jobs status in mind. So, partitioning size for any 

particular job and make span time for given jobs are 

optimized at any given instant for given set of jobs. 

This is known to be NP complete problem therefore 

many techniques based on different heuristics have 

been proposed to solve partitioning and scheduling 

problem efficiently and in reasonable amount of time.  

This paper proposes the solution to this problem using 

Genetic algorithm. Variation in number of jobs and 

systems require very flexible algorithm which can 

adjust its parameters accordingly; the proposed 

algorithm is capable and very efficient to handle such 

issues. This paper covers introduction to problem and 

various terms used, proposed solution using Genetic 

Algorithm (GA) with newly designed fitness function 

and performance comparison of proposed GA under 

various constraints. 

 

Categories and Subject Descriptors 
D.4.1 [Operating Systems]: Process Management – 

Multiprocessing/multiprogramming/multitasking, 

Scheduling. 

General Terms 
Algorithms, Management, Performance, Design. 

 

Keywords—Genetic Algorithm, Optimization, 

Scheduling. 

I. INTRODUCTION 

The job shop scheduling problem is one of the most 

well-known problems which can be applied in many 

fields [8]. This paper focus on specific case where 

some online scheduler can partition given jobs based 

upon given maximum partitioning size into limited 

number of sub tasks and then can schedule them on 

given online systems. This may be seen as a scenario 

in process scheduling for which unbounded numbers 

of heterogeneous systems are considered and different 

sized jobs arrive at online scheduler after random time 

intervals. Number of jobs at any time interval may 

also vary. Unbounded number of heterogeneous 

systems, variable job sizes, variable number of jobs 

and variable partitioning size make this problem much 

more complex and also identical to real life scenario. 

Though this paper proposed a solution keeping 

specific scenario of process scheduling with 

mentioned constraints, this solution can also be 

applied with little modifications on job shop problems 

of different nature.   

Job shop scheduling problem is regarded as one of the 

most challenging NP-hard problem. Efficient methods 

are important for increasing production efficiency, 

reducing cost and improving product quality [10]. 

Number of algorithms has been developed to address 

this task. Some examples include the Giffler and 

Thompson algorithm, the shifting bottleneck 

algorithm, Tabu search (TS) [1], [5], simulated 

annealing (SA) and genetic algorithm (GA) [2], [3] etc. 

Most of them fail to obtain good solutions solving 

large scale problems because of the huge memory and 

lengthy computational time required [14]. On the 

other hand, heuristic methods include dispatching 

priority rules, shifting bottleneck etc. are popular 

alternatives for such problems. Due to some 

limitations of these techniques and emergence of some 

new techniques, much attention has been devoted to 

meta-heuristics. One main class of meta-heuristic is 

the population based heuristic e.g.  Genetic algorithm 

(GA) [13], particle swarm optimization (PSO), and so 

on. Among the above methods, GA, proposed by John 

Holland, is regarded as problem independent approach 

and is well suited to deal with such hard problems [6], 

[9]. 

II. JOB SHOP SCHEDULING PROBLEM 

Job shop scheduling problem is a specific and well 

known class of scheduling problems. The problem and 

various constraints considered are mentioned in this 

section of the paper. Specific scenario of process 

scheduling is considered to implement solution for 

this class of Job shop problem. At any instant of time, 

n jobs may arrive at online scheduler each with 

specified size s. Time interval between arrivals of new 

jobs is taken as random, so any variable n number of 
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jobs may join the queue at any instant of time. Since 

solution is implemented keeping constraints of process 

scheduling in mind, so size is considered in MI 

(million instructions) per job. Each job also specifies 

maximum partition number. If maximum partition size 

is given as zero, then that job can’t be partitioned 

further into sub-jobs/sub-tasks (in implemented 

scenario of problem). The m numbers of 

heterogeneous systems are available at any particular 

instance. Since this implementation is designed for 

online scheduler which is assumed to work in real 

time scenario, so value of m may vary. As some 

systems may go offline and some new systems may 

join the network. Each system has different 

computational capability/ processing power which is 

defined as MIPS (million instructions per second). 

Mathematical representation of these constraints and 

objective functions is discussed under design 

methodology. 

III. GENETIC ALGORITHM 

Genetic algorithms are search and optimization 

algorithms based on the mechanics of natural selection 

and natural genetics [David E. Goldberg]. Here search 

refers to search for optimal solution in given solution 

space. These algorithms are useful in solving 

optimization problems by emulating biological 

theories [11]. Based on Darwin’s theory of evolution, 

they work for survival of fittest [12]. Genetic 

algorithms can automatically access the search space 

and adaptively adjust the search direction to improve 

solution because they work on probabilistic rules 

rather than deterministic approach [4]. Most of genetic 

operators also work in accordance with random 

approach. The working of basic genetic algorithm is 

shown in Figure 1. Different components of basic 

genetic algorithms are explained as follows:  

3.1 Population  

Population consists of collection of possible solutions 

(referred as Chromosomes). Initial population is made 

up of randomly chosen Chromosomes from given 

search space. Genetic algorithms work in improving 

average fitness of population from generation to 

generation keeping in mind objective function of 

given problem. 

3.2 Chromosome 

Each individual element of any population is called 

Chromosome. Chromosome is any feasible solution 

available in search space represented in structured 

manner. Representation is problem dependent and can 

be done in many ways such as these can be encoded in 

form of Binary String, Integer Strings, Real Strings, 

and Hybrid Strings etc.  

3.3 Fitness Function 

Keeping objective function in mind, fitness functions 

are designed in such manner that strength of each 

Chromosome can be evaluated using these functions. 

So, fitness functions provide a quantitative base to 

check position of current chromosome in given search 

space and to decide right direction towards optimal 

solution to make improvements at each and every step. 

3.4 Selection 

 From given population of chromosomes (treated as 

mating pool), each candidate receives reproduction 

probability based upon fitness value of its own and 

fitness value of other chromosomes. This reproduction 

probability decides whether any chromosome will be 

selected as parent for mating or not. Any selection 

criteria can be used based upon problem given such as 

Roulette Wheel Selection, Rank Selection, and 

Tournament Selection etc. 

3.5 Crossover 

This genetic operator operates on every pair of parents 

selected based upon crossover probability. Child 

Strings are generated from parent Strings by 

exchanging information among strings of mating pool. 

Single Point or Multi Point Crossover can be applied 

depending upon given problem. Same type of 

crossover should be used throughout the run to main 

consistency in approaching optimal solution.  

3.6 Mutation 

Each chromosome goes under mutation after 

performing crossover with very low mutation 

probability. Main objective of using mutation is to 

select neighbouring point instead of current point in 

given search space. Sudden alteration is made in few 

genes of any chromosome under this operator. 

3.7 Elitism 

Preservation of best fit chromosomes in new 

generations by replacing newly found chromosomes 

with lesser fitness value is performed [7].  

3.8 Termination Criteria 

 Termination Criteria could be predefined in form of 

number of generations to be produced or it could be 

left for later. In second case, when there is no 

improvement in overall average for few generations, 

then decision for termination is made. 
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Fig. 1 Flowchart for basic Genetic Algorithm 

IV. DESIGN METHODOLOGY 

Solution to this problem is proposed and implemented 

based upon Multi-objective functions. GA works 

twice. First algorithm tries to optimize partitioning 

size of given jobs. Second one look for optimization 

of scheduling criteria. If jobs are partitioned into sub-

tasks, then different tasks can be allocated to different 

systems. So, scheduling is not only based upon given 

jobs, but it is based upon sub-tasks. When new jobs 

arrive at next time instant, algorithm keeps allocation 

of uncompleted jobs fixed. Elitism is applied after 

each iteration. 

4.1 Partitioning Algorithm 

Partitioning algorithm is genetic algorithm which tries 

to optimize number of partitions for each job bounded 

by given maximum possible partition size. This is not 

wise approach to evaluate fitness of the solution every 

time based upon possible scheduling criteria. 

Moreover, scheduling criteria can’t be accurately 

found till optimized partitioning number for each job 

is available. So, fitness function is based upon how the 

load will be divided among available systems. Stress 

is given to partition in such a way so that more tasks 

can be executed on systems with higher processing 

ability. Number of generations for this algorithm is 

taken as 10. So, whole procedure is repeated 10 times. 

Different parameters settings are explained as follows: 

4.1.1 Encoding Chromosome  

Each random chromosome is encoded with integers. 

Each chromosome for particular instance has same 

length which is equal to n- number of given jobs. 

Suppose at one particular instance 6 jobs arrive, so 

chromosome length will be 6. Value of any particular 

bit is between 0 and maximum partitioning number 

which is given for that particular job. Suppose first 

three jobs have maximum partitioning number 2 and 

rest have maximum partitioning number 3. Then any 

random chromosome will look as follows: 

Sample Chromosome 1: 201231 

Sample Chromosome 1: 212203 

 

4.1.2 Population 

Population size is fixed as 10. So, for initial 

population 10 random chromosomes are generated 

with above specified constraints. 

4.1.3 Fitness Function 

Status for any system at start up is initialized to 1, 

which represent its availability. It is reset to 0, when it 

goes busy from idle. Penalty of 100 is added every 

time if system is not available to reduce probability of 

survival of respective chromosome. Mathematical 

representation of Fitness function for optimization of 

job partitioning can be given as: 
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4.1.4 Selection  

Once the population of chromosomes has been 

generated, the selection of parents has been done 

based upon a respective fitness function. The Roulette 

wheel selection method or the fitness proportionate 

selection method has been used for this problem. 

Under this method, chromosome with higher fitness 

has higher chances of being selected as parent. Five 

pairs of parents are selected for each iteration from 

one current population to form new population. 

4.1.5 Crossover Operator  

Single point crossover is adopted for this problem 

since the string length is not very large. Crossover is 

applied with some probability on each pair of selected 

parents. The crossover probability for this problem is 

fixed at 0.8.  

4.1.6 Mutation Operator  

Mutation alters one or more gene values in a 

chromosome from its initial state.  For each bit value, 

alteration is done which is bounded between 0 and 

maximum possible partition size given for that 

respective job. The mutation probability for this 

problem is set to be 0.6. Mutation is performed with 

mentioned probability on each bit of every 

chromosome in mating pool. 
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4.2 Scheduling Algorithm 

Once partition number for each job is optimized by 

partitioning algorithm, then comes the scheduling of 

partitioned jobs. Any job i can be partitioned into t 

tasks. t is optimized partition number found by 

partitioning algorithm and is bounded between 0 and 

maximum possible partitioning number given for that 

particular job i. Number of generations for this 

algorithm is taken as 20. So, whole procedure is 

repeated 20 times. 

4.2.1 Encoding chromosome 

Chromosome is encoded with integer values. Length 

of chromosome is sum of optimized number of 

partitions for all jobs. In mathematical representation 

this length is T. Each bit value is any possible integer 

value in range of 0 to number of m, where m is 

number of heterogeneous systems available at 

respective time instant. 0 denote that respective task is 

unallocated for which fitness function will add some 

penalty to make span time. As, after number of 

generations, algorithm automatically tries to improve 

fitness of every individual chromosome, all zeros are 

most likely to be eliminated from final solution with 

some feasible integer value. 

4.2.2 Population 

Population size is fixed as 10. So, for initial 

population 10 random chromosomes are generated 

with above specified constraints. 

4.2.3 Fitness Function 

Make span time is used to evaluate the fitness of every 

individual chromosome. For any bit value 0 i.e. for 

any unallocated task, penalty of 100 is added to fitness 

value. This reduces the total fitness value and 

probability of survival for such chromosomes 

automatically reduces. If few jobs are uncompleted 

when new jobs arrive, then allocation of previous 

uncompleted jobs is kept fixed. If new jobs are 

allocated to same system then waiting time is added. 

Respective Fitness function to evaluate fitness of 

chromosomes representing scheduling criteria can be 

represented as: 
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Table I shows definition of various parameters used in 

showing sample results. Results for one sample 

iteration using above fitness function are shown in 

Table II. It can be seen that average fitness value is 

comparatively reduced. Actually, as this is 

minimization problem, so lesser value is the better. 

For Selection process, a large normalization constant 

is used to convert this minimization problem into 

maximization problem and then vice versa. 

 

Table I: Notations used for Sample Result 

Symbol Definition 

SL Schedule Length to be minimized 

FV Fitness Values which corresponds 

Schedule Length 

NSL Normalization Constant(Taken to 

be 500) – Schedule Length 

fi  Fitness of a string (chromosome) 

Σf Sum of fitness values 

CSelect fi / Σf 

F Average of fitness values 

ECount Expected Count = fi / f 

RW Actual Count From Roulette 

Wheel (By Rounding off  ECount) 

C. Site Crossover Site 

M.S Mates Selected randomly 

 

Table II: Sample Result for single iteration 
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4.2.4 Selection  

Once the population of chromosomes has been 

generated, the selection of parents has been done 

based upon a respective fitness function. The Roulette 

wheel selection method or the fitness proportionate 

selection method has been used for this problem. 

Under this method, chromosome with higher fitness 

has higher chances of being selected as parent. Five 

pairs of parents are selected for each iteration from 

one current population to form new population. 

4.2.5 Crossover Operator  

Single point crossover is adopted for this problem. 

Crossover is applied with some probability on each 

pair of selected parents. The crossover probability for 

this problem is kept fixed at 0.8. Figure 2 shows 

sample of crossover operation done at locus 3. 

 

 
Fig. 2 Crossover Operation 

4.2.6 Mutation Operator  

Mutation alters one or more gene values in a 

chromosome from its initial state.  For each bit value, 

alteration is done which is bounded between 1 and m, 

where m is number of heterogeneous systems 

available at respective time instant. The mutation 

probability for this problem is set to be 0.6. Mutation 

is performed with mentioned probability on each bit of 

every chromosome in mating pool. Figure 3 shows 

sample of mutation operation 

 
Fig. 3 Mutation Operation 

V. PERFORMANCE COMPARISON 

The performance of the system with time i.e. the 

changes in crossover and mutation probability with 

time and the effect of probability of crossover and 

mutation on the number of generations has been 

studied. The crossover probability is analysed, by 

keeping the population size, number of generations 

and the mutation probability fixed at a certain value. 

The Figure 3 shows that the probability of crossover, 

pc, gives better results at a value pc = 0.6 to pc = 0.8. 

Another analysis is also done with combination of 

both crossover and mutation probabilities. Hence for 

this problem, a crossover probability of 0.8 has been 

chosen for better results. 

 

 
Fig. 4 Crossover Probability Comparison Graph 

 

The probability of mutation has been analysed by 

keeping the size of the population, the number of 

generations and the crossover probability fixed at a 

certain value. The analysis graphical representation as 

in Figure 4 shows that, the probability of mutation, pm, 

gives optimal results at a value pm = 0.4 to pm = 0.6. 

Thus for this problem, the mutation probability is 

chosen to be 0.6. 

 

 
Fig. 4 Mutation Probability Comparison Graph 

 

The effect on the number of generations has been 

analysed with respect to the probability of crossover 

and mutation, by keeping the population size fixed 

and varying the probability of crossover and mutation 

from 0.1 to 1. The Figure 5 shows that the near 

optimal results are achieved at crossover probability, 

pc= 0.8 and mutation probability, pm= 0.6. 
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Fig. 6 Effect on number of generations 

 

VI. CONCLUSIONS 

Job Shop scheduling problem is NP- Hard problem for 

which many algorithms under different categories 

have been proposed before. This paper proposed a 

solution to this multi objective problem to optimize 

both job partition size and scheduling criteria. 

Solution is implemented under meta heuristic category 

of algorithms using Genetic Algorithm. Apart for 

traditional binary string representation of genetic 

algorithms, the chromosomes are modified to be 

integer strings representation. New fitness functions 

are also proposed. Results show that final outcome of 

the algorithm is near optimal all the time, but the 

hardness of problem is resolved in the sense that 

computation time is reduced by big margin. This 

approach is very practical and helpful especially for 

real time online schedulers which can’t spend much 

time to find optimal scheduling criteria and keep 

arriving jobs in waiting queue for long time. 
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