
International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 144

Optimization of Online Job Shop Partitioning

and Scheduling for Heterogeneous Systems

using Genetic Algorithm
Sunny Sharma

#1
, Gurjit Singh Randhawa

#2

#1Research Scholar, Department of Computer Science, Guru Nanak Dev University, Amritsar, India
#2Research Scholar, Department of Computer Science, University of Western Ontario, Canada

Abstract— Job Shop Scheduling problem becomes

more complex if heterogeneous systems are

considered and algorithm is to be implemented for

online schedulers. In real time, number of

heterogeneous systems connected to online scheduler

may vary from time to time. Also, number of different

sized jobs may differ at any instant. This problem

deals with optimization of job partitioning when

maximum partition size is given; and to find out

scheduling criteria when new jobs arrive keeping old

jobs status in mind. So, partitioning size for any

particular job and make span time for given jobs are

optimized at any given instant for given set of jobs.

This is known to be NP complete problem therefore

many techniques based on different heuristics have

been proposed to solve partitioning and scheduling

problem efficiently and in reasonable amount of time.

This paper proposes the solution to this problem using

Genetic algorithm. Variation in number of jobs and

systems require very flexible algorithm which can

adjust its parameters accordingly; the proposed

algorithm is capable and very efficient to handle such

issues. This paper covers introduction to problem and

various terms used, proposed solution using Genetic

Algorithm (GA) with newly designed fitness function

and performance comparison of proposed GA under

various constraints.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management –

Multiprocessing/multiprogramming/multitasking,

Scheduling.

General Terms
Algorithms, Management, Performance, Design.

Keywords—Genetic Algorithm, Optimization,

Scheduling.

I. INTRODUCTION

The job shop scheduling problem is one of the most

well-known problems which can be applied in many

fields [8]. This paper focus on specific case where

some online scheduler can partition given jobs based

upon given maximum partitioning size into limited

number of sub tasks and then can schedule them on

given online systems. This may be seen as a scenario

in process scheduling for which unbounded numbers

of heterogeneous systems are considered and different

sized jobs arrive at online scheduler after random time

intervals. Number of jobs at any time interval may

also vary. Unbounded number of heterogeneous

systems, variable job sizes, variable number of jobs

and variable partitioning size make this problem much

more complex and also identical to real life scenario.

Though this paper proposed a solution keeping

specific scenario of process scheduling with

mentioned constraints, this solution can also be

applied with little modifications on job shop problems

of different nature.

Job shop scheduling problem is regarded as one of the

most challenging NP-hard problem. Efficient methods

are important for increasing production efficiency,

reducing cost and improving product quality [10].

Number of algorithms has been developed to address

this task. Some examples include the Giffler and

Thompson algorithm, the shifting bottleneck

algorithm, Tabu search (TS) [1], [5], simulated

annealing (SA) and genetic algorithm (GA) [2], [3] etc.

Most of them fail to obtain good solutions solving

large scale problems because of the huge memory and

lengthy computational time required [14]. On the

other hand, heuristic methods include dispatching

priority rules, shifting bottleneck etc. are popular

alternatives for such problems. Due to some

limitations of these techniques and emergence of some

new techniques, much attention has been devoted to

meta-heuristics. One main class of meta-heuristic is

the population based heuristic e.g. Genetic algorithm

(GA) [13], particle swarm optimization (PSO), and so

on. Among the above methods, GA, proposed by John

Holland, is regarded as problem independent approach

and is well suited to deal with such hard problems [6],

[9].

II. JOB SHOP SCHEDULING PROBLEM

Job shop scheduling problem is a specific and well

known class of scheduling problems. The problem and

various constraints considered are mentioned in this

section of the paper. Specific scenario of process

scheduling is considered to implement solution for

this class of Job shop problem. At any instant of time,

n jobs may arrive at online scheduler each with

specified size s. Time interval between arrivals of new

jobs is taken as random, so any variable n number of

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 145

jobs may join the queue at any instant of time. Since

solution is implemented keeping constraints of process

scheduling in mind, so size is considered in MI

(million instructions) per job. Each job also specifies

maximum partition number. If maximum partition size

is given as zero, then that job can’t be partitioned

further into sub-jobs/sub-tasks (in implemented

scenario of problem). The m numbers of

heterogeneous systems are available at any particular

instance. Since this implementation is designed for

online scheduler which is assumed to work in real

time scenario, so value of m may vary. As some

systems may go offline and some new systems may

join the network. Each system has different

computational capability/ processing power which is

defined as MIPS (million instructions per second).

Mathematical representation of these constraints and

objective functions is discussed under design

methodology.

III. GENETIC ALGORITHM

Genetic algorithms are search and optimization

algorithms based on the mechanics of natural selection

and natural genetics [David E. Goldberg]. Here search

refers to search for optimal solution in given solution

space. These algorithms are useful in solving

optimization problems by emulating biological

theories [11]. Based on Darwin’s theory of evolution,

they work for survival of fittest [12]. Genetic

algorithms can automatically access the search space

and adaptively adjust the search direction to improve

solution because they work on probabilistic rules

rather than deterministic approach [4]. Most of genetic

operators also work in accordance with random

approach. The working of basic genetic algorithm is

shown in Figure 1. Different components of basic

genetic algorithms are explained as follows:

3.1 Population

Population consists of collection of possible solutions

(referred as Chromosomes). Initial population is made

up of randomly chosen Chromosomes from given

search space. Genetic algorithms work in improving

average fitness of population from generation to

generation keeping in mind objective function of

given problem.

3.2 Chromosome

Each individual element of any population is called

Chromosome. Chromosome is any feasible solution

available in search space represented in structured

manner. Representation is problem dependent and can

be done in many ways such as these can be encoded in

form of Binary String, Integer Strings, Real Strings,

and Hybrid Strings etc.

3.3 Fitness Function

Keeping objective function in mind, fitness functions

are designed in such manner that strength of each

Chromosome can be evaluated using these functions.

So, fitness functions provide a quantitative base to

check position of current chromosome in given search

space and to decide right direction towards optimal

solution to make improvements at each and every step.

3.4 Selection

 From given population of chromosomes (treated as

mating pool), each candidate receives reproduction

probability based upon fitness value of its own and

fitness value of other chromosomes. This reproduction

probability decides whether any chromosome will be

selected as parent for mating or not. Any selection

criteria can be used based upon problem given such as

Roulette Wheel Selection, Rank Selection, and

Tournament Selection etc.

3.5 Crossover

This genetic operator operates on every pair of parents

selected based upon crossover probability. Child

Strings are generated from parent Strings by

exchanging information among strings of mating pool.

Single Point or Multi Point Crossover can be applied

depending upon given problem. Same type of

crossover should be used throughout the run to main

consistency in approaching optimal solution.

3.6 Mutation

Each chromosome goes under mutation after

performing crossover with very low mutation

probability. Main objective of using mutation is to

select neighbouring point instead of current point in

given search space. Sudden alteration is made in few

genes of any chromosome under this operator.

3.7 Elitism

Preservation of best fit chromosomes in new

generations by replacing newly found chromosomes

with lesser fitness value is performed [7].

3.8 Termination Criteria

 Termination Criteria could be predefined in form of

number of generations to be produced or it could be

left for later. In second case, when there is no

improvement in overall average for few generations,

then decision for termination is made.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 146

Fig. 1 Flowchart for basic Genetic Algorithm

IV. DESIGN METHODOLOGY

Solution to this problem is proposed and implemented

based upon Multi-objective functions. GA works

twice. First algorithm tries to optimize partitioning

size of given jobs. Second one look for optimization

of scheduling criteria. If jobs are partitioned into sub-

tasks, then different tasks can be allocated to different

systems. So, scheduling is not only based upon given

jobs, but it is based upon sub-tasks. When new jobs

arrive at next time instant, algorithm keeps allocation

of uncompleted jobs fixed. Elitism is applied after

each iteration.

4.1 Partitioning Algorithm

Partitioning algorithm is genetic algorithm which tries

to optimize number of partitions for each job bounded

by given maximum possible partition size. This is not

wise approach to evaluate fitness of the solution every

time based upon possible scheduling criteria.

Moreover, scheduling criteria can’t be accurately

found till optimized partitioning number for each job

is available. So, fitness function is based upon how the

load will be divided among available systems. Stress

is given to partition in such a way so that more tasks

can be executed on systems with higher processing

ability. Number of generations for this algorithm is

taken as 10. So, whole procedure is repeated 10 times.

Different parameters settings are explained as follows:

4.1.1 Encoding Chromosome

Each random chromosome is encoded with integers.

Each chromosome for particular instance has same

length which is equal to n- number of given jobs.

Suppose at one particular instance 6 jobs arrive, so

chromosome length will be 6. Value of any particular

bit is between 0 and maximum partitioning number

which is given for that particular job. Suppose first

three jobs have maximum partitioning number 2 and

rest have maximum partitioning number 3. Then any

random chromosome will look as follows:

Sample Chromosome 1: 201231

Sample Chromosome 1: 212203

4.1.2 Population

Population size is fixed as 10. So, for initial

population 10 random chromosomes are generated

with above specified constraints.

4.1.3 Fitness Function

Status for any system at start up is initialized to 1,

which represent its availability. It is reset to 0, when it

goes busy from idle. Penalty of 100 is added every

time if system is not available to reduce probability of

survival of respective chromosome. Mathematical

representation of Fitness function for optimization of

job partitioning can be given as:

n

i

m

j

i

iii

i

c

PenaltyS

else

CsizenSS

thenstatusSif

MaxFitness

1 1

i

/.

),1.(

S

 mi0 whereS

4.1.4 Selection

Once the population of chromosomes has been

generated, the selection of parents has been done

based upon a respective fitness function. The Roulette

wheel selection method or the fitness proportionate

selection method has been used for this problem.

Under this method, chromosome with higher fitness

has higher chances of being selected as parent. Five

pairs of parents are selected for each iteration from

one current population to form new population.

4.1.5 Crossover Operator

Single point crossover is adopted for this problem

since the string length is not very large. Crossover is

applied with some probability on each pair of selected

parents. The crossover probability for this problem is

fixed at 0.8.

4.1.6 Mutation Operator

Mutation alters one or more gene values in a

chromosome from its initial state. For each bit value,

alteration is done which is bounded between 0 and

maximum possible partition size given for that

respective job. The mutation probability for this

problem is set to be 0.6. Mutation is performed with

mentioned probability on each bit of every

chromosome in mating pool.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 147

4.2 Scheduling Algorithm

Once partition number for each job is optimized by

partitioning algorithm, then comes the scheduling of

partitioned jobs. Any job i can be partitioned into t

tasks. t is optimized partition number found by

partitioning algorithm and is bounded between 0 and

maximum possible partitioning number given for that

particular job i. Number of generations for this

algorithm is taken as 20. So, whole procedure is

repeated 20 times.

4.2.1 Encoding chromosome

Chromosome is encoded with integer values. Length

of chromosome is sum of optimized number of

partitions for all jobs. In mathematical representation

this length is T. Each bit value is any possible integer

value in range of 0 to number of m, where m is

number of heterogeneous systems available at

respective time instant. 0 denote that respective task is

unallocated for which fitness function will add some

penalty to make span time. As, after number of

generations, algorithm automatically tries to improve

fitness of every individual chromosome, all zeros are

most likely to be eliminated from final solution with

some feasible integer value.

4.2.2 Population

Population size is fixed as 10. So, for initial

population 10 random chromosomes are generated

with above specified constraints.

4.2.3 Fitness Function

Make span time is used to evaluate the fitness of every

individual chromosome. For any bit value 0 i.e. for

any unallocated task, penalty of 100 is added to fitness

value. This reduces the total fitness value and

probability of survival for such chromosomes

automatically reduces. If few jobs are uncompleted

when new jobs arrive, then allocation of previous

uncompleted jobs is kept fixed. If new jobs are

allocated to same system then waiting time is added.

Respective Fitness function to evaluate fitness of

chromosomes representing scheduling criteria can be

represented as:

m systemany of

MIPSin ability n Computatio m.cap

j jobany for MIin Size j.size

job everyfor t number

partition optimizd of Sum T

systems ofNumber m

processing under Chromosome c,

100Penalty Penalty),0(

./.S),(

mi0 whereS

1

m

1 1

i

i

where

thenCifPenalty

capmSizejSthenSCifS

MaxFitness

j

T

j

i

T

j

iij

c

Table I shows definition of various parameters used in

showing sample results. Results for one sample

iteration using above fitness function are shown in

Table II. It can be seen that average fitness value is

comparatively reduced. Actually, as this is

minimization problem, so lesser value is the better.

For Selection process, a large normalization constant

is used to convert this minimization problem into

maximization problem and then vice versa.

Table I: Notations used for Sample Result

Symbol Definition

SL Schedule Length to be minimized

FV Fitness Values which corresponds

Schedule Length

NSL Normalization Constant(Taken to

be 500) – Schedule Length

fi Fitness of a string (chromosome)

Σf Sum of fitness values

CSelect fi / Σf

F Average of fitness values

ECount Expected Count = fi / f

RW Actual Count From Roulette

Wheel (By Rounding off ECount)

C. Site Crossover Site

M.S Mates Selected randomly

Table II: Sample Result for single iteration

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 148

4.2.4 Selection

Once the population of chromosomes has been

generated, the selection of parents has been done

based upon a respective fitness function. The Roulette

wheel selection method or the fitness proportionate

selection method has been used for this problem.

Under this method, chromosome with higher fitness

has higher chances of being selected as parent. Five

pairs of parents are selected for each iteration from

one current population to form new population.

4.2.5 Crossover Operator

Single point crossover is adopted for this problem.

Crossover is applied with some probability on each

pair of selected parents. The crossover probability for

this problem is kept fixed at 0.8. Figure 2 shows

sample of crossover operation done at locus 3.

Fig. 2 Crossover Operation

4.2.6 Mutation Operator

Mutation alters one or more gene values in a

chromosome from its initial state. For each bit value,

alteration is done which is bounded between 1 and m,

where m is number of heterogeneous systems

available at respective time instant. The mutation

probability for this problem is set to be 0.6. Mutation

is performed with mentioned probability on each bit of

every chromosome in mating pool. Figure 3 shows

sample of mutation operation

Fig. 3 Mutation Operation

V. PERFORMANCE COMPARISON

The performance of the system with time i.e. the

changes in crossover and mutation probability with

time and the effect of probability of crossover and

mutation on the number of generations has been

studied. The crossover probability is analysed, by

keeping the population size, number of generations

and the mutation probability fixed at a certain value.

The Figure 3 shows that the probability of crossover,

pc, gives better results at a value pc = 0.6 to pc = 0.8.

Another analysis is also done with combination of

both crossover and mutation probabilities. Hence for

this problem, a crossover probability of 0.8 has been

chosen for better results.

Fig. 4 Crossover Probability Comparison Graph

The probability of mutation has been analysed by

keeping the size of the population, the number of

generations and the crossover probability fixed at a

certain value. The analysis graphical representation as

in Figure 4 shows that, the probability of mutation, pm,

gives optimal results at a value pm = 0.4 to pm = 0.6.

Thus for this problem, the mutation probability is

chosen to be 0.6.

Fig. 4 Mutation Probability Comparison Graph

The effect on the number of generations has been

analysed with respect to the probability of crossover

and mutation, by keeping the population size fixed

and varying the probability of crossover and mutation

from 0.1 to 1. The Figure 5 shows that the near

optimal results are achieved at crossover probability,

pc= 0.8 and mutation probability, pm= 0.6.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 3 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 149

Fig. 6 Effect on number of generations

VI. CONCLUSIONS

Job Shop scheduling problem is NP- Hard problem for

which many algorithms under different categories

have been proposed before. This paper proposed a

solution to this multi objective problem to optimize

both job partition size and scheduling criteria.

Solution is implemented under meta heuristic category

of algorithms using Genetic Algorithm. Apart for

traditional binary string representation of genetic

algorithms, the chromosomes are modified to be

integer strings representation. New fitness functions

are also proposed. Results show that final outcome of

the algorithm is near optimal all the time, but the

hardness of problem is resolved in the sense that

computation time is reduced by big margin. This

approach is very practical and helpful especially for

real time online schedulers which can’t spend much

time to find optimal scheduling criteria and keep

arriving jobs in waiting queue for long time.

ACKNOWLEDGMENTS

Our thanks to Department of Computer Science &

Engineering, Guru Nanak Dev University, Amritsar,

India for providing us all the required resources

necessary to study and implement the solution to this

problem. We also want to thank all the authors of

referenced papers which guided us all the time as base

for this study.

REFERENCES

[1] A. M. Dell, M. Trubian, ―Applying tabu-search to job shop

scheduling problem,‖ Annals of Operations Research, vol. 41,

no. 3, pp. 231-252, 1993.

[2] Albert Y.Zomaya, Chris Ward and Ben Macey, ―Genetic

Scheduling for Parallel Processor Systems: Comparative

Studies and Performance Issues‖, IEEE Transactions on

Parallel and Distributed systems, Vol. 10, No.8, pp.795-
812,August 1999.

[3] Amir Masoud Rahmani and Mojtaba Rezvani, ―A Novel

Genetic Algorithm for Static Task Scheduling in Distributed
Systems‖, International Journal of Computer Theory and

Engineering, Vol. 1, No. 1, 1793-8201, April 2009

[4] David. E. Goldberg, ―Genetic algorithms in Search,
Optimization & Machine learning‖, Addison Wesley,

Publishing Co. Inc. ,Boston, MA, pp- 1-25, 1990.

[5] E. Nowicki, C. Smutnicki, ―A fast taboo search algorithm for

the job shop scheduling problem‖, Management Science, vol.

41, no. 6, pp. 113-125, 1996.

[6] Edwin.S.H Hou, N.Ansari, H.Ren , ―A Genetic Algorithm for

Multiprocessor Scheduling‖, IEEE Transaction on Parallel
and Distributed Systems, vol. 5,no. 2, pp.113-120,Feb. 1994.

[7] Erick Cantú-Paz, ―A Survey of Parallel Genetic Algorithms‖,

Department of Computer Science and Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-

Champaign,1998.

[8] Gerasoulis and Yang, ―DSC: Scheduling Parallel Tasks on an
Unbounded Number of Processors.‖, IEEE Transactions on

Parallel and Distributed Systems, vol. 5, no. 9, pp. 951-967,

Sep. 1994.
[9] Imad Fakhri Al Shaikhli and Ismail Khalil , ―An Improved

Genetic Algorithm for Solving The Multiprocessor

Scheduling Problem‖, Australian Journal of Basic and
Applied Sciences, ISSN 1991-8178, Vol.5, No.12, pp : 947-

951, 2011.

[10] Liang Sun, Xiaochun Cheng, Yanchun Liang, ―Solving Job
Shop Scheduling problem Using Genetic Algorithm with

Penalty Function‖, International Journal of Intelligent

Information Processing, Volume 1, Number 2, December

2010.

[11] Melanie Mitchell, ―An Introduction to Genetic algorithms‖,

The MIT press, Cambridge, Massachusetts, England, 5th
printing, pp 2-20, 1999.

[12] Pratibha Bajpai et al., ―Genetic Algorithm- an Approach to
Solve Global Optimization Problems‖, Indian Journal of

Computer Science and Engineering, 2010.

[13] Yi-Hsuan Lee and Cheng Chen, ―A Modified Genetic
Algorithm for Task Scheduling in Multiprocessor Systems‖,

Proceedings of 6th International Conference Systems and

Applications, IEEE Computer Society, Washington DC,USA,
pp. 382-387, 1999.

[14] Wei Wu, Junhu Wei and Xiaohong Guan, ―Hybrid Nested

Partitions Algorithm for scheduling in job shop problem‖,
―Proceedings of the 2009 IEEE International Conference on

Robotics and Biomimetics‖, December 19-23, 2009, Guilin,

China.
[15] Sharma MS, Virk RS. A Review towards Evolutionary

Multiobjective optimization Algorithms,

http://ijoes.vidyapublications.com/paper /Vol13/37-

Vol13.pdf.

http://www.ijcttjournal.org/

