
International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 486

ANDROID BASED MOBILE APPLICATION
DEVELOPMENT and its SECURITY

Suhas Holla#1, Mahima M Katti#2
Department of Information Science & Engg, R V College of Engineering

Bangalore, India

Abstract— In the advancing world of technology, Mobile
applications are a rapidly growing segment of the global mobile
market. Mobile applications are evolving at a meteor pace to give
users a rich and fast user experience. In this paper, Android
mobile platform for the mobile application development, layered
approach and the details of security information for Android is
discussed.

Google released Android which is an open-source
mobile phone operating system with Linux-based platform. It
consists of the operating system, middleware, and user interface
and application software. Certainly, Android is about to become
the most widely used OS on mobile phones, but with Android
comes a security vulnerability that few users take into account.
On Android Market, where you can download thousands of
applications for Android, anyone can upload their programs
without having to submit them to careful security checks. This
makes Android a prime target for computer criminals. In this
paper, we discuss a layered approach for android application
development where we can develop application which downloads
data from the server. Also an Android Application Sandbox
(AASandbox) which is able to perform both static and dynamic
analysis on Android programs to automatically detect suspicious
applications is also discussed.

Keywords— Android, application framework, android runtime,
layered approach, AASandbox

I. INTRODUCTION
Android is a new, next-gen mobile operating system

that runs on the Linux Kernel. Android Mobile Application
Development is based on Java language codes, as it allows
developers to write codes in the Java language. These codes
can control mobile devices via Google-enabled Java libraries.
It is an important platform to develop mobile applications
using the software stack provided in the Google Android SDK.
Android mobile OS provides a flexible environment for
Android Mobile Application Development as the developers
can not only make use of Android Java Libraries but it is also
possible to use normal Java IDEs. The software developers at
Mobile Development India have expertise in developing
applications based on Android Java Libraries and other
important tools. Android Mobile Application Development

can be used to create innovative and dynamic third party
applications. Mobile Development India has worked
extensively on projects ranging from gaming software,
organizers, media players, picture editors to go-cart devices
and more.

II. BACKGROUND STUDY
The platform was officially announced and the SDK

tools were available in October 2008. Currently there is only
one mobile phone that runs the Android OS, the G1 from T-
Mobile. According to the official Android website (Android
2008) the platform is based into the four core features as
shown in the Fig 1:

Fig. 1 Four core features of the android platform

A. Application Fundamentals
Android applications are written in Java programming

language. However, it is important to remember that they are
not executed using the standard Java Virtual Machine (JVM).
Instead, Google has created a custom VM called Dalvik which
is responsible for converting and executing Java byte code.
All custom Java classes must be converted (this is done
automatically but can also be done manually) into a Dalvik
compatible instruction set before being executed into an
Android operating system. Dalvik VM takes the generated
Java class files and combines them into one or more Dalvik
Executable (.dex) files. It reuses duplicate information from
multiple class files, effectively reducing the space requirement
(uncompressed) by half from a traditional .jar file. Dalvik was

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 487

created to support the nature of lightweight mobile operating
systems require because of the limited hardware capabilities
compared to conventional desktops or laptops.

B. Android Platform overview
Android is a software stack for mobile devices that includes

an operating system, middleware and key applications. The
Android SDK provides the tools and APIs necessary to begin
developing applications on the Android platform using the
Java programming language [3]. Android based on Linux
version 2.6. The system services such as security, memory
management, process management are controlled by Linux.
Fig 2 shows android architecture.

Fig. 2 Architecture of android [1]

C. Developing Android Applications
The Android SDK provides an extensive set of application

programming interfaces (APIs) that is both modern and robust.
Android handset core system services are exposed and
accessible to all applications. When granted the appropriate
permissions, Android applications can share data among one
another and access shared resources on the system securely
[5]. Android applications are written in Java programming
language.

D. Application Framework
By providing an open development platform, Android

offers developers the ability to build extremely rich and
innovative applications. Developers are free to take advantage
of the device hardware, access location information, run
background services, set alarms, add notifications to the status
bar, and much, much more.

Developers have full access to the same framework APIs
used by the core applications. The application architecture is

designed to simplify the reuse of components; any application
can publish its capabilities and any other application may then
make use of those capabilities (subject to security constraints
enforced by the framework). This same mechanism allows
components to be replaced by the user.

Underlying all applications is a set of services and systems,
including:

 A rich and extensible set of Views that can be used to
build an application, including lists, grids, text boxes,
buttons, and even an embeddable web browser

 Content Providers that enable applications to access
data from other applications (such as Contacts), or to
share their own data

 A Resource Manager, providing access to non-code
resources such as localized strings, graphics, and
layout files

 A Notification Manager that enables all applications
to display custom alerts in the status bar

 An Activity Manager that manages the lifecycle of
applications and provides a common navigation
backstack.

E. Android Runtime
Android includes a set of core libraries that provides most

of the functionality available in the core libraries of the Java
programming language [5]. Every Android application runs in
its own process, with its own instance of the Dalvik virtual
machine. Dalvik has been written so that a device can run
multiple VMs efficiently. The Dalvik VM executes files in the
Dalvik Executable (.dex) format which is optimized for
minimal memory footprint. The VM is register-based, and
runs classes compiled by a Java language compiler that have
been transformed into the .dex format by the included "dx"
tool. The Dalvik VM relies on the Linux kernel for underlying
functionality such as threading and low-level memory
management.

III. LAYERED APPROACH FOR APPLICATION DEVELOPMENT
In this paper we suggest layered approach for android

application development. This can be used for web based
application development.

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 488

Fig. 3 Layered architecture

Figure 3 shows the layered approach for the android
application development. The lowest level is HTTP layer
which is responsible for sending HTTP get and post requests
to the server and receiving the response. Next layer is API
layer. This is for parsing the response from the server and
formulating the query and passing it to the HTTP layer. The
API layer gets the response string from the HTTP layer and
parses the string. It also helps in extracting the necessary
fields and passes it to the data layer. The Generic Data layer
contains the components that include designing business
layers and implementing functionalities like caching,
exceptional management, logging and validation. Next is
platform dependent data layer which takes the data from the
API layer and use it. It stores the data in the platform
dependent way. Some classes like Adapter, Listview etc store
the data dependent on the platform. Last one the UI layer.
This helps in showing the data to the user and manages user
interactions. It has two components user interface components
and user process components. User interface components
provide a way for users to interact with the application. User
process components synchronize and organize user
interactions. UI layer is responsible for views in android. It
has Views, buttons, layouts etc.

A. The application model
In Android’s application model [1], an application is a

package of components, each of which can be instantiated and
run as necessary (possibly even by other applications).
Components are of the following types [5]:
Activity components form the basis of the user interface;
usually, each window of the application is controlled by some
activity. Service components run in the background, and
remain active even if windows are switched. Services can
expose interfaces for communication with other applications.
Receiver components react asynchronously to messages from
other applications. Provider components store data relevant to

the application, usually in a database. Such data can be shared
across applications [3].

Consider, e.g., an online photo viewing application for an
Android based phone. This application may have several
components. There are activities for viewing the photos on the
phone in the form of grid or list. There may be a service for
downloading a photo in the background. There may be
receivers for pausing a application when a call comes in, and
for restarting the application when the call ends. The
application should not affect the high priority functionality of
the device like incoming call, incoming sms, battery low
indication etc. Finally, there may be a provider for storing the
photos and its details on the phone.

B. Component classes and methods
The Android SDK has a base class for each type of

component (Activity, Service, Receiver, and Provider), with
callback methods that are invoked at various points in the life
cycle of the associated component. Each component has a life
cycle. Each component of an application is defined by
extending one of the base classes, and overriding the methods
in that class. In particular:

 The Activity class has methods that are run when
activity is created, or activity calls some other
activity, or returns to the activity.

 The Service class has methods that are run when the
service is started, or some component binds to this
service or even combination of both.

 The Receiver class has a method that is run when a
message is sent to this receiver.

 The Provider class has methods to delete, query and
update the data stored by this provider.

C. Component classes and methods
The Google Android mobile phone platform is one of the

most anticipated smartphone operating systems. Smart phones
can be used in place of Computers/Laptops. As mobile
devices attain increasing capabilities, there are many more
opportunities for novel applications development. Recent
development of mobile application development has reached a
high demand on today’s cellular market. Android defines a
new component-based framework for developing mobile
applications, where each application is comprised of different
numbers and types of components. Activity components are
the basis of the user interface; each screen presented to the
user is a different Activity [6]. Service components provide
background processing that continues even after its
application loses focus. Content Provider components share
information in relational database form. SQLite is embedded
into android which supports relational database. For instance,
the system includes an application with a Content Provider

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 489

devoted to sharing the user’s address book upon which other
applications can query. Finally, Broadcast Receiver
components act as an asynchronous mailbox for messages
from the system and other applications. As a whole, this
application framework supports a flexible degree of
collaboration between applications, where dependencies can
be as simple or complex as a situation requires.

IV. ANDROID SECURITY FRAMEWORK
The Google Android mobile phone platform is one of the

most anticipated smartphone operating systems. Smart phones
can be used in place of Computers/Laptops. As mobile
devices attain increasing capabilities, there are many more
opportunities for novel applications development. Recent
development of mobile application development has reached a
high demand on today’s cellular market. Android defines a
new component-based framework for developing mobile
applications, where each application is comprised of different
numbers and types of components. Activity components are
the basis of the user interface; each screen presented to the
user is a different Activity [6]. Service components provide
background processing that continues even after its
application loses focus. Content Provider components share
information in relational database form. SQLite is embedded
into android which supports relational database. For instance,
the system includes an application with a Content Provider
devoted to sharing the user’s address book upon which other
applications can query. Finally, Broadcast Receiver
components act as an asynchronous mailbox for messages
from the system and other applications. As a whole, this
application framework supports a flexible degree of
collaboration between applications, where dependencies can
be as simple or complex as a situation requires.

A. Android Application Sandbox
Sandboxes are often located within kernel space since

access to critical parts of the OS can be realized [2]. The
kernel is a very essential part of a system because it acts as
bridge between hardware and software. One approach of
sandbox systems is to monitor system and library calls
including their arguments. This is often done through system
call redirecting, also known as system call hijacking. System
calls, short system calls, are function invocations made from
user space into the kernel in order to request some services or
resources from the operating system.

B. Static and Dynamic Analysis of Android Applications
Two common practices [4] for malware detection are

Static Analysis and Dynamic analysis. Static analysis involves
decompilation, decryption, pattern matching and system call

analysis. In all these cases software is not being executed.
Here, a common approach is filtering binaries by malicious
patterns, called signatures. Another technique for malware
detection is Dynamic analysis which involves running the
system in controlled environment and monitoring its behavior.
It involves monitoring file changes, network activity,
processes and threads etc. A common approach to dynamic
software analysis is Sandboxing. A sandbox can be defined as
“an environment in which the actions of a process are
restricted according to a security policy”. In practice, this
means that a sandbox is an instance of the target OS, which is
isolated in a way that prevents malware from performing
harmful actions. Since both techniques have certain
disadvantages, Thomas Bl¨asing et al. [6] proposed a novel
two-step analysis of Android applications, consists of a full-
fledged kernel-space sandbox, and a fast static pre-check.
AASandbox executes automatically, without any need for
human interaction, and saves the logs of system calls and
static analysis for further inspection. As an input, the
AASandbox takes an Android application archive, which is
packaged in a *.apk file and is therefore referred to as APK.
Applications are written in Java and run in a Dalvik virtual
machine. Application source code is first compiled to standard
Java bytecode, and then optimized and converted to Dalvik
executable format for being interpreted Dalvik VM. Byte code
is then packaged together with other application resources,
including UI layouts, localization and a manifest file which
defines the structure of the application. The AASandbox first
performs a static pre-check, followed by a full-blown dynamic
analysis as shown in Fig 4.

Fig. 4 Design of the Android Application Sandbox (AASandbox)

V. SECURITY ISSUES RELATED TO ANDROID PLATFORM
The integrity of the Android platform is maintained

through a variety of security measures [3].

A. Applications as Operating System User
Each and every application is a user using the operating

system. When an application is installed, the operating system

International Journal of Computer Trends and Technology- volume3Issue3- 2012

ISSN: 2231-2803 http://www.internationaljournalssrg.org Page 490

creates a new user profile associated with the application.
Each application runs as a different user, with its own private
files on the file system, a user ID, and a secure operating
environment. The application executes in its own process with
its own instance of the Dalvik VM and under its own user ID
on the operating system.

B. Explicitly Defined Application Permissions
When an Android requires explicitly defined application

permissions in the manifest file. To access shared resources on
the system, Android applications register for the specific
privileges they require. While developing the application
required permissions should be specified in Android manifest
file. For example if the phone vibration functionality is
required then it must be specified in the android manifest file.
While installing the application it shows the list of resources
that the application is going to access. Some of these
privileges enable the application to use phone functionality to
make calls, access the network, and control the camera and
other hardware sensors. Applications also require permission
to access shared data containing private and personal
information such as user preferences, user’s location, and
contact information. Applications might also enforce their
own permissions by declaring them for other applications to
use. The application can declare any number of different
permission types, such as read-only or read-write permissions,
for finer control over the application.

C. Limited Ad-Hoc Permissions
Content providers might want to provide some on-the-fly

permissions to other applications for specific information they
want to share openly. This is done using ad-hoc granting and
revoking of access to specific resources using Uniform
Resource Identifiers (URIs). URIs points to specific data
assets on the system, such as MediaStore, Contacts, CallLog
etc. Here is an example of a URI that provides the phone
numbers of all contacts:
content://contacts/phones.

D. Application Signing for Trust Relationships
All Android applications packages are signed with a

certificate, so users know that the application is authentic. The
private key for the certificate is held by the developer. This
helps establish a trust relationship between the developer and
the user. It also allows the developer to control which
applications can grant access to one another on the system. No
certificate authority is necessary; self-signed certificates are
acceptable.

VI. CONCLUSION

With the vigorous development through Android, mobile
applications have been widely used on the various mobile
devices. Android mobile applications are evolving at a meteor
pace to give a rich and fast user experience. The maturity of
the hardware and software platforms of mobile devices and
the promotion of the Mobile Internet have brought a great
opportunity to the migration of the web applications to mobile
platforms. In case of the security, Static analysis scans the
software for malicious patterns without installing it. Dynamic
analysis executes the application in a fully isolated
environment, i.e. sandbox, which intervenes and logs low-
level interactions with the system for further analysis. Both
the sandbox and the detection algorithms can be deployed in
the cloud, providing a fast and distributed detection of
suspicious software in a mobile software store akin to
Google’s Android Market. The ultimate goal is to protect the
mobile applications from the malicious attributes and
safeguard the interests of Android mobile users. With the
mobile capabilities, the Internet connection capabilities and
complete software platforms available, the future of mobile
web application appear limitless.

VII. FUTURE WORK
The era of mobile web application has just started, and

there is a long way for it to march. Development of mobile
web application will be emphasized on following aspects:
1) More and more sensors will be added to mobile phones, so
new APIs to use those capabilities will bring brand new
applications to users.
2) Multimedia capabilities will be enhanced and engine will
support more types of multimedia such as flash and svg .
3) The dedicated Integrated Development Environment (IDE)
will be improved to accelerate the applications’ development.
Visualization programming and JavaScript debugging will be
the most important functions of the IDE.

REFERENCES
[1] What is android?

http://developer.android.com/guide/basics/what-is-android.html
[2] 3G Mobile Terminal Development Trend of the operating system

[M/OL]. http://pda.c114.net/32/c4948.html, 2007
[3] Android Architecture 2010[R/OL].

http://www.cnmsdn.com/html/201003/1268713218ID2058_2 .html.
[4] Static detection of malicious code in executable programs by J.

Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie, and N.
Tawbi.

[5] Android Official Website (2008)—“Android | Official Website”,
<http://www.android.com/>.

[6] An Android Application Sandbox System for Suspicious Software
Detection, by Thomas Bl¨asing, Leonid Batyuk, Aubrey-Derrick
Schmidt, Seyit Ahmet Camtepe, and Sahin Albayrak

[7] www.blackhat.com

