
International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 2 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 103

Implementation of Sight and Shooting Systems with

Rule-Based Artificial Intelligence in a Military 3-Dimensional

Environment
Firas Abdullah Thweny Al-Saedi

1
, Fadi Khalid Ibrahim

2

1,2 Computer Engineering Department, Al-Nahrain University, Baghdad, Iraq

Abstract — This paper discusses the details of the

sight and shooting system used in a 3-Dimensional

(3D) military training environment. These systems are

used to make the soldier see and detect another

soldier and shoot him. An algorithm is developed for

the sight and shooting systems that checks the

intersection of the sight or shooting rays against the

least number of obstacles. Also, the Rule-Based

Artificial Intelligence (AI) system used for the

computer controlled soldiers is discussed.

Keywords — 3D, Sight system, Shooting system, Rule-

Based AI, Military squad, Pre-calculated path.

I. INTRODUCTION

Before moving into the subject the reader must

know what is the Virtual Reality (VR), VR is a

computer-simulated environment, whether that

environment is a simulation of the real world or an

imaginary world. Most current VR environments are

primarily visual experiences, displayed either on a

computer screen or through special or stereoscopic

displays, but some simulations include additional

sensory information, such as sound through speakers

or headphones. Some advanced, haptic systems now

include tactile information, generally known as force

feedback, in medical and gaming applications. Users

can interact with a virtual environment or a Virtual

Artifact (VA) either through the use of standard input

devices such as a keyboard and mouse, or through

multimodal devices such as a wired glove, the

Polhemus boom arm, and omni-directional treadmill.

The simulated environment can be similar to the real

world, for example, simulations for pilot or combat

training, or it can differ significantly from reality, as in

VR games. In practice, it is currently very difficult to

create a high-fidelity virtual reality experience, due

largely to technical limitations on processing power,

image resolution and communication bandwidth.

However, those limitations are expected to eventually

be overcome as processor, imaging and data

communication technologies become more powerful

and cost-effective over time [1].

In this paper and to be cost-effective, Microsoft

Visual C# 2008 [2] along with the new XNA 3.0

[3][4][5] graphics technology released by Microsoft

were used, actually, the graphics technology used is

games-quality, this technology was used to generate a

VR environment that is used individually or through

network of two computers (this can be expanded

easily). Also, the input device used is either the

standard keyboard and mouse or using the new

Nintendo Wii Remote (Wiimote) [6][7].

In [8], a focus is shown on building a game, AI-live,

that is oriented towards the intensive use of AI

controlled Bots. The game borrows the idea from the

popular game "The sims", but with a strong focus on

building characters based on different AI techniques,

one of the AI techniques is the Rule-Based AI.

In the next sections, the sight and shooting systems

used in the simulation along with the AI system that

controls the soldiers are discussed..

II. THE SIGHT SYSTEM

The soldiers in the simulation system need a

method to be able to see each other, for example, the

enemy soldiers needs a system that makes them able

to recognize the soldiers controlled by the trainee and

attack them on need. Also, the enemy soldiers must be

able to see the other enemy soldiers to recognize if

they are running or in alarm mode. For these reasons,

the sight system was used. The sight system used is a

ray (line of sight) that originates from the soldier's

face towards any desired direction. Figure 1 illustrates

the sight system used.

For the simulation system, the ray is made in a way

that it scans objects in front of the soldier. The

scanning range depends on the angle set by the

designer in the simulation source code and can be

changed by changing the value of the variable that

holds that value. Also, the scanning can be stopped so

that the ray stays constant and does not move. Figure 2

illustrates the scanning mechanism.

Fig. 1 Illustration of sight system

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 2 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 104

Fig. 2 Illustration of scanning mechanism

The ray is represented by position and direction, the

position is a 3D coordinate (X,Y,Z) that represents the

ray's origin in space, the direction also is a 3D

normalized coordinate that represents the ray's

direction. Figure 3 illustrates the ray representation.

Fig. 3 Illustration of ray representation

The unity 3D axis system shown in Figure 3 shows

how to represent the ray's origin and direction. For

each soldier, the sight's ray position is the soldier's Y

position plus the soldier's height because the ray's

origin should be at soldier's head, while the soldier's

sight ray direction is the soldier's direction plus minus

the scanning angle offset. Figure 4 illustrates the

scanning mechanism.

For each soldier there is a sight ray that keeps

scanning by the specified viewing angle, the sight ray

system represents the eye of the soldier.

1) Detecting Objects Using the Sight Ray

For the soldier to be able to recognize an object, its

sight ray must intersect with that object's bounding

box. A method called Smit's method is used to know

whether a sight ray is intersecting with a bounding box,

that is, the soldier is seeing the object that is bounded

by that bounding box. Smit's method [9] can be

represented by the pseudo code shown below:

Box: minimum extent Bl = (xl, yl, zl)

 maximum extent Bh = (xh, yh, zh)

Ray: R0 = (x0, y0, z0) , Rd = (xd, yd, zd)

 ray is R0 + Rdt

1. Set tnear = -INFINITY 1. , tfar = +INFINITY

2. For the pair of X planes

 1. if xd = 0, the ray is parallel to the planes so:

 if x0 < xl or x0 > xh return FALSE

(origin not between planes)

 2. else the ray is not parallel to the planes, so

calculate intersection distances of planes

 t1 = (xl - x0) / xd (time at which ray

intersects minimum X plane)

 t2 = (xh - x0) / xd (time at which ray

intersects maximum X plane)

 if t1 > t2 , swap t1 and t2

 if t1 > tnear , set tnear = t1

 if t2 < tfar , set tfar = t2

 if tnear > tfar , box is missed so return

FALSE

 if tfar < 0 , box is behind ray so return

FALSE

 3. Repeat step 2 for y, then z

 4. All tests were survived, so return TRUE

2) Recognizing Objects and Obstacles

The environment used has buildings and outdoor

obstacles, Smit's method discussed earlier detects if an

object is in the view angle range of the soldier's sight

ray, it does not detect whether there is an obstacle

between the soldier (observer) and the object. In this

case, the soldier can not see the object because there is

an obstacle ahead although the object is in the soldier's

sight. To simulate this, another system was built. This

system checks whether there is an obstacle between

the soldier and the object. Because there is numerous

buildings and obstacles and soldiers that use their

sight system, this system was built in a way that it

only checks the sight ray intersection against the

necessary obstacles only and not against all the

obstacles in the simulation environment in order not to

affect the performance of the system. Each building is

bounded with a bounding box, each area of building is

bounded with a bounding box, each area of the

building contains obstacles and each one of those

obstacles is bounded with a bounding box. Figure 5

illustrates this.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 2 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 105

Start

Define the soldier’s viewing scope

(ViewAngle) and assign the desired value

to it, for example:

ViewAngle = 24

Define the angle that the soldier is facing

(SoldierAngle) and update it when the

soldier turns left or right

Define the soldier’s sight ray parameters:

Sight ray origin : O(X,Y,Z) (soldier’s eye)

Sight ray direction : D(X,Y,Z)

Define soldier’s sight ray current scanning

angle (ScanAngle)

D.X = Cos (ScanAngle)

D.Z = Sin (ScanAngle)

ScanAngle = SoldierAngle + 1

Is ScanAngle >

(SoldeirAngle +

(ViewAngle/2)) ?

NO

D.X = Cos (ScanAngle)

D.Z = Sin (ScanAngle)

ScanAngle = SoldierAngle - 1

Is ScanAngle <

(SoldeirAngle -

(ViewAngle/2)) ?

NO

YES

YES

Fig. 4 Soldier's sight ray scanning mechanism

Fig. 5 Division of a building into areas

The reason of using this kind of division is that to

check the sight ray intersection against a small number

of obstacles each time, so for example, if the soldier is

looking at the building, the sight ray intersection will

be checked only against the obstacles that are in the

areas of the building that the sight ray intersects with.

The other part of the system is how to know if there is

an obstacle between the soldier and the object. Figure

6 illustrates the problem.

Fig. 6 Illustration of the proposed sight detection

algorithm

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 2 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 106

It is assumed that each room in building B is a

collision area (see Figure 5). Building A is small, so, it

is only one collision area. Now, the algorithm checks

to see with what buildings is the sight ray intersecting

with. The sequence of checked buildings depends on

the written simulation program. So may be it will

check for building A firstly or building B or any

building. It is assumed that it checks building A firstly,

by this assumption the shortest distance returned from

sight ray collision with building A obstacles will be

smaller than the distance between the soldier and the

object. So, the object is not seen. There is no benefit

of checking another building’s obstacles. If building B

is checked first. Only the obstacles within the areas

intersected by the sight ray are checked and by this a

lot of CPU cycles are saved. And as long as the

algorithm finds some obstacle that is closer to the

soldier, it will not check the other buildings in the

sight ray track. Figure 7 illustrates the proposed

technique used to recognize objects and obstacles.

III. SHOOTING SYSTEM

The soldiers in the simulation environment use the

shooting system to represent bullets, the shooting

system is actually the sight system itself. This was

done in order to use a ray for each soldier. When the

enemy is seen by the soldier this means the soldier can

shoot the enemy, so, a routine is invoked to determine

the probability of shooting success, this is discussed in

section V in detail. The shooting system uses the same

technique used for the sight system which is shown in

Figure 7. When the soldier uses the shooting system, a

fire is drawn at the rifle's position and a gun-shot

sound is heard

IV. FOLLOW SYSTEM

As stated earlier, the user will lead a team of two

soldiers to attack a military base with soldiers. The

user will control one of the soldiers in the team, the

other soldier will be controlled by the computer AI. In

this section, the follow system is discussed, that is,

when the user gives the order to the other soldier to

follow the soldier he is controlling. The user can

control anyone of the two soldiers and give orders to

the other soldier. The soldier controlled by the user is

called "leader", the other one is called "companion".

The companion has another sight ray called

"FollowSightRay", the origin for this ray is the

companion's head and the direction is always towards

the leader's position. The purpose for using this ray is

to check if the leader is in the companion's sight (no

obstacles ahead), then the companion will move

toward the leader directly without using path finding

algorithms to find its way to the leader's position.

When the leader moves, its position every five meters

is recorded. When the companion is ordered to follow

the leader and there is a direct line of sight between

them, the companion will go toward the recorded

position but stops when the distance between itself

and the leader is two meters. The reason beyond using

the value five meters is that to make the companion in

a close distance from the leader. In this case, for every

five meters the leader moves, its position is recorded

and the companion will run toward that position and

this keeps the companion close to the leader always. If

twenty meters is used instead, then the leader will

move twenty meters before the companion senses the

leader's new position and runs toward it. Also, the

distance between the leader and the companion is kept

to be two meters and this is used as in real life when

the distance between a group of soldiers should be not

so close and not so far just for safety. Figure 8 shows

the mechanism used to record the leader position.

Figure 9 illustrates the steps followed by the

companion to follow the leader. The whole simulation

environment is covered with nodes that are used by

the path finding algorithms [10].

In Figure 9, the (leader position – companion

position) will result a 3D vector. By normalizing this

vector, the direction is found. The normalizing [11] is

done by dividing each component of the 3D vector by

the magnitude of the vector.

V. SOLDIER AI

The AI is required for the soldiers in the simulation

so that they can interact with each other and with the

user. The type of AI used is the Rule-Based AI [12]

[13]. The behavior of each soldier is determined using

a set of rules and for this reason this type of AI is

called the Rule-Based AI. In the next two subsections,

the companion soldier AI along with the enemy

soldiers AI is discussed.

1) Companion Soldier AI

The user can control any soldier of the two soldier

team, when the user controls a soldier, the other one

will automatically be controlled by the computer AI.

The leader can give orders to the companion using

keyboard keys or the Wiimote. The orders given to the

companion are "Fire at Will" or "Hold Fire" and

"Follow Me" or "Don't Follow". Also, while the sight

ray of the companion is scanning, a routine chooses a

random value between 0 and 9 and the corresponding

field index content of a ten elements array (probability

table [12]) is returned, this array contains a group of

"True" and "False" values filled by the designer in

design-time. If the returned value is "True", the sight

ray calculations are started and thus the routine

determines whether the companion is seeing an enemy.

If the returned value is "False" the sight ray

calculations will not start and no action is taken by the

companion. The number of "True" and "False" values

in the array is a mean to determine the skill of the

companion in shooting the enemies. So there is always

a chance that the companion will not shoot the enemy,

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 2 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 107

this gives a realistic view to the simulation. Also, this

system is used by enemy soldiers too, using this

system has a benefit, that is, only some of the soldiers

in each simulation frame will invoke the sight

calculation routine (depending on the random number

chosen). By this, the calculations are distributed

between frames and the performance is perceived.

Also, when anyone of the soldiers is attacked by the

enemy, the attacker position will be stored so that it

can be used by the soldier to defend itself.

Each soldier has a life gauge that can be changed in

the design time, this gauge is used just for evaluation

purposes, when the soldier's life gauge is zero, it is

dead. Figure 10 shows a dead soldier. Figure 11

illustrates the companion's Rule-Based AI

Start

Is soldier’s sight ray

intersects with object’s

bounding box?

End

Define a variable (distance) to save the

distance between soldier’s position

S(X,Y,Z) and object’s position

O(X,Y,Z):

distance = SquareRoot((S.X - O.X)2 +

(S.Y - O.Y)2 + (S.Z - O.Z)2)

Pick one of the buildings and go

to next step

Is sight ray intersects

with the building?

Pick one of the building’s areas

and check the sight ray

intersection against it

Is sight ray

intersects with the

building’s area

picked in the

previous step?

Calculate the distance between sight ray

origin and each obstacle (within the area)

the ray is intersecting with and get the

shortest distance from the group of distance

values found and save it in a variable

(ShortestDistance)

Is (ShortestDistance <

distance) ?

Object is not

seen

Object is seen

Are all buildings

checked?

Are all

building’s areas

checked?

NO

NO

YES

NO

NO

YES

YES

NO

YES

YES

YES

NO

Fig. 7 Proposed technique to recognize objects and

obstacles

Start

Use a variable

(OldFollowNode) to record the

leader’s position every five

meters

initialize (OldFollowNode)

with arbitrary value (any value

that is X,Y,Z coordiante)

Get the leader’s position

(LeaderPosition)

Is distance between

(OldFollowNode and

LeaderPosition) >= 5

meters ?

OldFollowNode = LeaderPosition

YES

NO

Fig. 8 Leader position recording mechanism

2) Enemy Soldiers AI

Enemy soldiers are the soldiers that guard the

military base, all the soldiers have the same type of AI.

That is, Rule-Based AI. Enemy soldiers AI is similar

to the companion soldier's AI and it differs in only

some aspects that will be discussed in the context of

this section. Each enemy soldier has two modes, the

first mode "Peaceful" and the second mode is "Attack".

Initially, the enemy soldier mode is "Peaceful" and it

has a constant path to move in, normally, this path is

in some area of the simulation environment, and this is

to show that the soldier is guarding or watching some

part of the environment. Figure 12 shows a view of

one of the simulation environments to show soldiers

walking in paths to protect the environment.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 2 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 108

Fig. 9 Steps used by the companion to follow the

leader

Fig. 10 Illustrates a dead soldier

when the enemy soldier is in "Peaceful" mode, it

continues walking in its path until it sees a user soldier

(leader or companion) live or dead or another enemy

soldier in "Attack" mode, in this case, the enemy

soldier will change its mode to "Attack" mode and

begins to shoot and follow the user soldier depending

on an algorithm discussed in this section. The path for

each soldier is determined in design-time and followed

by the soldier when it is in "Peaceful" mode. For a

soldier to walk in a path, its initial position is needed,

also, the angle its facing and number of steps to walk

in the direction its facing is needed too. Figure 13

shows an example of an object walking in a pre-

calculated path.

Start

Is the companion “me”

attacked now?

Save the states of the

“FollowLeader” and “FireAtWill”

flags

Turn to face the attacker

position and

change the flags to stand and

fire:

FollowLeader = False

FireAtWill = True

Is the leader attacked

now?
Turn to face the attacker

position and

change the flags to fire:

FireAtWill = True

Calculate the sight ray new direction

(depending on the angle the companion

is facing)

Is FireAtWill = True?

Is the distance between

companion and enemy in the

allowed shooting range ?

Invoke the objects and obstacles

recognition system

Get a random value from the probability

table

Is returned value =

True ?

Is enemy object

seen?

Decrement enemy

health gauge

YES

NO

YES

NO

YES

YES

YES

YES

End

change the states of the

“FollowLeader” and “FireAtWill”

flags to the their old saved state

NO

NO

NO

NO

Fig. 11 Companion Rule-Based AI

Start

Set the FollowSightRay

origin to be the

companion’s head

Set the FollowSightRay direction to be

toward leader’s position using:

FollowSightRay Direction = Normalize

(leader position – companion position)

Can the companion see

the leader using the

FollowSightRay?

Use the path finding

algorithm to find what is the

next node to go to in the path

to the leader’s position

Go towards the

“OldFollowNode” found using

position recording mechanism

and stop when the distance to

the leader is 2 meters

End

YES

NO

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 2 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 109

Fig. 12 Enemy soldiers walking in paths

Fig. 13 Pre-calculated path demonstration

The enemy soldier always continues using the steps

in Figure 14 until its life gauge is zero. The life gauge

value is set in design-time and decreases by one for

each shot by the user soldiers. Also, the shooting

system used works in the same way as the shooting

system of the companion soldier (see Figure 11).

VI. CONCLUSIONS

The subjects discussed in this paper are parts of a

project that simulates a military environment. The

sight and shooting systems along with the AI for the

companion and enemy soldiers were discussed here.

As seen in the previous section, the AI system makes

use of the shooting and sight systems to determine the

soldier's behaviour.

Also, the AI makes use of the path finding system

discussed in [10]. When the probability table for the

soldier is filled with "True", the soldier will be perfect

in shooting. The purpose beyond using "False" values

is that to simulate the human's imperfectness in an

activity

Start

Walk in the pre-calculated path

Set Mode = Peaceful

Scan using the sight system

Is a user soldier seen in

dead or alive state?

Turn to face the user soldier

“Attacker”

Is the enemy soldier

itself being shot by a

user soldier?

Is another enemy soldier

seen in dead or running

“Attack mode”?

Set Mode = Attack and register

the “Attacker” as the same

other enemy soldier’s attacker.

Register this user soldier as

“Attacker”

Is the user soldier

now in the enemy

soldier’s view?

Use the path finding system to

get the next node to go to in the

path to the user soldier

Set Mode = Attack

Is the enemy soldier

reached the node?

Use shooting system

to shoot the user

soldier

YES

NO

YES

YES

NO

NO

YES

Is Mode =

Attack ?

NO

YES

NO

NO

YES

Fig. 14 Enemy soldiers AI

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 29 Number 2 – November 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 110

REFERENCES

[1] en.wikipedia.org/wiki/Virtual_reality.

[2] Rob Miles, "C# Development", Department of Computer

Sciences, University of HULL, October 2008.
[3] Aaron Reed, "Learning XNA 3.0", O'Reilly Media, 2009.

[4] Chad Carter. "Microsoft XNA Unleashed: Graphics and

Game programming for XBOX360 and Windows", SAMS
Publishing, 2008.

[5] Reimer Grootjans, "XNA 3.0 Game Programming Recipes:

A Problem-Solution Approach", Apress, March 9, 2009.
[6] en.wikipedia.org/wiki/Wii.

[7] http://www.msdn.com.

[8] Susana Fern´andez, Roberto Adarve, Miguel P´erez,
Mart´ın Rybarczyk and Daniel Borrajo, "Planning for an

AI based virtual agents game", 2006.

[9] Brian Smits. Efficient bounding box intersection. Ray
tracing news, 15(1), 2002.

[10] Firas Abdullah Thweny, Fadi K. Ibrahim,

"Implementation of Path Finding in 3-Dimensional
Environment", IJCTT Journal V. 14, No. 1 August 2014.

[11] Fletcher Dunn and Ian Parberry, "3D Math Primer for

Graphics and Game Development", Wrodware Publishing
Inc , 2002.

[12] David M Bourg, Glenn Seemann, "AI for Game

Developers", O'Reilly Media, July 2004.
[13] Ian Millington, "Artificial Intelligence for Games",

Elsevier Inc., 2006.

http://www.ijcttjournal.org/
http://www.oreillynet.com/pub/au/702
http://www.oreillynet.com/pub/au/1839

