
International Journal of Computer Trends and Technology (IJCTT) – volume 28 Number 3 – October 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 135

Dynamic Graph Based Slicing for Object-oriented Programs
Swatee Rekha Mohanty

#1
, Prafulla Kumar Behera

*2
, Durga Prasad Mohapatra

#3

#
PhD Scholar, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India, Pin-751004

#
Reader, Dept. of CSA, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India, Pin-751004

#
Associate Professor, Dept. of CSE, National Institute of Technology, Rourkela, Odisha, India, Pin-769008

 Abstract: This paper proposes a Dynamic Graph

(DG) traversal slicing algorithm for computing

dynamic slices of object-oriented programs in

presence of inheritance. The computed dynamic slice

can facilitate various software engineering activities

like program comprehension, testing, debugging,

reverse engineering maintenance etc. This paper first

proposes an intermediate program Dynamic Graph

(DG) to represent the execution trace of an object-

oriented program. Then the proposed slicing

algorithm is applied on the intermediate program

representation to compute the dynamic slices. The

advantage of this approach is that, the intermediate

program representation is manageable as it is created

on the execution trace, hence needs less memory to

store and less time to traverse. The proposed

algorithm is space as well as time efficient and

computes precise dynamic slices.

 Keywords: Dynamic slice, Dynamic Graph, Object-

oriented program, System Dependence Graph,

Execution Trace.

I. INTRODUCTION

Slicing is a program analysis technique. This concept

was originally developed by Mark Weiser [1].Slicing

has a remarkable contribution to the field of software

engineering, as it facilitates various software

engineering activities, as, program comprehension,

testing, debugging, maintenance and reverse

engineering etc. Generally, program slices can be

computed with respect to the slicing criterion <S, V >,

Where S is the statement number and V is the set of

variables used or defined at S. Object-oriented

programs are enriched with many additional features

to best represent and implement the real world

problems.
 Object-oriented technique modularizes the

programs, but at the same time it is very complex and

difficult to debug, test and maintain those products.

Slicing technique extracts the set of statements

program, which is relevant to a particular

computation. Such strategies are usually called

filtering techniques. The most important filtering

technique is program slicing [2]. This paper computes

the dynamic slices of object-oriented programs in

presence of inheritance.

Inheritance is one of the features amongst those

offered by object-oriented programming languages.

This is the way to promote reusability, where the

features of the super classes can be extended to the

newly created subclasses. It may introduce difficulties

to get a suitable representation of the object-oriented

programs that possess inheritance. This paper focuses

on the above cited issue and proposes the best way to

represent the object-oriented program having the

concepts of inheritance through an intermediate

program representation called dynamic graph (DG).

Dynamic graph is designed to represent the execution

trace of the object-oriented program. We are

concerned with the dynamic slice, which contains the

set of statements that actually affects the slicing

criterion for a particular execution of the program. The

execution trace plays a vital role as it is the set of

statements those are actually executed for a specific

input to the program.

After the construction of dynamic graph, we apply a

dynamic graph traversal slicing algorithm to compute

the dynamic slices of object-oriented programs. This

found to be more precise and correct.

The rest of the paper is organized as follows. An

exclusive review of literature is presented in Section 2.

Some basic concepts and definitions are discussed in

Section 3. Section 4 presents the proposed algorithm

for computing dynamic slices of an object oriented

program in presence of inheritance. We also discuss

the working of the proposed algorithm along with the

correctness and complexity analysis in this section.

The implementation of the proposed algorithm and

tool architecture is presented in Section 5. In this

section the proposed tool architecture is discussed.

The comparison of the proposed work with the

existing approaches is discussed in Section 6 followed

by some of the limitation of our proposed algorithm.

Section 7concludes the paper and presents the future

work.

II. LITERATURE REVIEW

Mark Weiser [1] was the first to introduce the

concepts of Program slicing. According to him, slicing

is a method of decomposing a program based on the

data and control dependence analysis. He introduced

the concept of approximate slicing and stated that the

slice must be a small executable program.

Ottenstein et al. [3] used Program Dependence

Graph (PDG) to capture the data and control

dependence presents within a single procedure. They

stated that many software engineering applications can

be made in an optimized way by traversing the

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 28 Number 3 – October 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 136

Program Dependence Graph. Their slice can be used

specifically in program transformation.

Horwitz et al. [4] introduced System dependence

Graph (SDG) for representing program that spans

multiple procedures. They proposed a better way to

find the slices in case of the inter-procedural

programs. In their representation, they introduced

many new edges like call edge, parameter- in,

parameter- out and summary edges etc.

Mund et al. [7] extended their approach of

computing dynamic slices of intra-procedural program

to compute the dynamic slices of inter-procedural

program. For intermediate representation of the

program, they have used the Control Flow Graph

(CFG). In their representation they included the inter-

procedural calls. They claimed that their approach was

efficient than that of the existing approaches.

Larsen and Harrold [9] introduced the concept of

Class Dependence Graph (ClDG) to represent the

classes in object-oriented programs. They have

introduced some new edges like class member edge,

inheritance edge etc. They have correctly represented

the object-oriented features like classes, inheritance,

polymorphism, message passing etc in their proposed

graph. Ultimately, they constructed System

Dependence Graph (SDG) for the whole object-

oriented program. After the SDG is being constructed

they applied the two pass graph traversal algorithm [4]

for computing the dynamic slices of object-oriented

programs.

Wang et al. [16] described the utility of the program

slicing in various software engineering applications.

At the same time they stated that the computed slices

were too large and bit difficult to inspect by the

software engineer. So to have a manageable dynamic

slice they divided the execution trace of the program

under consideration into several phases. They have

generated intermediate program representation of

individual phases by considering the data and control

dependencies. Then they applied the dynamic slicing

algorithm at those different levels to compute the

dynamic slice.

Korpi et al. [17] stated that slicing has not widely

been applied in software engineering field. They did a

survey by considering 12 dynamic program slicer.

From their survey they identified many issues, which

should be the concern and should consider for

improvement. Some of these issues are: limitations

regarding supported programming languages,

virtualization and navigation features and limitation of

empirical studies. They claimed that paying attention

to these issues will help in faster scientific progress

and will help in more practical implementation of

program slicing in the field of software engineering.

Treffer et al. [18] introduces the Abstract Slicing.

They stated that abstract slicing is an efficient

technique, which helps in understanding the

interaction between the different parts of the program.

They also explained that dynamic slices are more

precise as they used the run time information for their

construction.

Chebaro et al. [19] proposed a technique to reduce

the source code by program slicing before test

generation took place. In this paper they presented

optimized and adaptive usages of program slicing.

They proposed an algorithm which was implemented

in a tool named as SANTE (Static ANalysis and

TEsting). They did program simplification to easy

detect and analysis of error.

III. BASIC CONCEPTS AND DEFINITIONS

This section is organized into two parts. The first

part describes the intermediate program

representations and the second part describes the basic

concepts and definitions used in the proposed

algorithm.

A. Intermediate program representations

This paper introduces a new intermediate program

representation named dynamic graph (DG). This is

exclusively based on the execution trace of the

program. Execution trace is the set of those statements

that are executed when the program starts execution

after getting a specific input value from the user. The

idea behind constructing such intermediate program

representations is that, we found in literature many

intermediate program representations proposed by the

researchers are based on the programs under

consideration and they are quite unmanageable due to

the size of the programs. Hence, this paper tries to

minimize the nodes in the intermediate program

representation by focusing on the execution trace, as

the dynamic slice contains the statements that belong

to the execution trace.

Program Dependence Graph: Ferrante et al. [14]

proposed Program Dependence Graph (PDG) to

represent the intra-procedural programs. Program

dependence graph represents the data dependencies

and control dependencies within the statements of the

programs. But PDG, is unable to represent the inter-

procedural dependencies.

System Dependence Graph: Horwitz et al. [4]

proposed System Dependence Graph (SDG) to

represent the inter-procedural dependencies of a

program that span multiple procedures. SDG can

correctly represent inter-procedural programs by

adding some additional edges like call edge,

parameter-in and parameter-out edges, summary edge

etc.

Class Dependence Graph: Larsen and Harrold [9]

extended the System Dependence Graph [4] to

represent the object-oriented features. They introduced

a new representation called Class Dependence Graph

(ClDG) to represent the classes in an object-oriented

program. They have introduced a new edge called

class membership edge to connect the class entry node

with the class members. They have nicely represented

the object-oriented features like inheritance, dynamic

binding and message passing etc. in their approach.

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 28 Number 3 – October 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 137

Dynamic Graph: To represent the execution trace

of the object-oriented programs in presence of

inheritance, this paper introduces dynamic graph (DG)

as the intermediate program representation. DG is a

subset of SDG. DG can be defined as Gh = (Nd, Ed).

Where Nd is set of nodes and Ed is the set of edges in

the dynamic graph .Nd = {n |n represents the

statements of a program}, Ed = {e |e represents data

and/or control dependencies between ni and nj where

(ni, nj) є Nd}.

Dynamic graph (DG) basically represents two types

of dependencies. Those are data dependencies and

control dependencies. Dynamic graph replaces the call

edge (an edge between the method call nodes to the

method entry node) by control dependence edge.

Objective of doing so is that, when a node calls a

method, ultimately the control is transferred from the

calling node to the called node.

Algorithm for constructing Dynamic Graph: This

section presents an algorithm for constructing the

dynamic graph. In this algorithm, n represents the

number of statements in the execution trace.

Gh represents a two dimensional array containing

the dependency information within the statements of

the execution trace. During the implementation, 0

represents that there is no dependence between the

nodes, 1 represents data dependence between the

nodes and 2 represents a control dependence between

the nodes.

Consider the example program given in Fig.1.

The example program given in Fig. 1 defines four

different classes. They are class person, student,

teacher and InheritanceDemo. InheritanceDemo

contains the main() methods and it creates the objects

of other classes within it. We have considered this

program as it nicely implements the concepts of

inheritance, message passing and method overloading

(method polymorphism). Class person is the base

class, student and teacher are the derived classes.

Let our program runs with the input value i=1. We

will have the execution trace as shown in Fig. 2.

As we have executed the program with the input set

i=1, the else part of the if construct have executed.

We proposed our idea of constructing dynamic

graph (DG) instead of constructing the System

Dependence Graph (SDG) to represent the execution

trace of our example program under consideration. As

mentioned earlier, the matrix represents the

dependence information of the execution trace which

is given in Table 1.

Table 1. Dependence information for the execution

trace of the example program given in Fig.1.

Below, we present our algorithm for constructing

the dynamic graph (DG) in pseudo code.

Algorithm for DG Construction

Input: Execution trace

Output: Dynamic Graph

1. For each statement of the execution trace draw a

circle, representing the node

2. For i= 1 to n

3. For j= 1 to n

4. If Gh[j] data dependence on Gh[i]

5. Add data dependence edge from Gh[i] to Gh[j]

6. ElseIf Gh[j] control dependence on Gh[i]

7. Add control dependence edge from Gh[i] to

Gh[j]

8. EndIf

9. EndIf

10. EndFor

11. EndFor

Fig. 3. SDG of the example program given in

Fig.1

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 28 Number 3 – October 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 138

Description of the DG Construction algorithm:

First we draw circles to represent the statements of the

execution trace. Then, we verify various dependencies

like data dependence and control dependence of a

particular node with rest of the node. If node Gh[j]

data dependent on Gh[i], we add data dependence

edge we add data dependence edge from Gh[i] to

Gh[j]. If node Gh[j] control dependent on Gh[i], we

add control dependence edge from Gh[i] to Gh[j].

Fig 4. DG of the example program given in Fig. 1.

B. Basic concepts and definitions

This section presents some definitions used in the

proposed algorithm. In the rest of the paper, we use

the terminologies statement, node and vertex

interchangeably.

Control Dependence: Let x and y are two different

nodes in the SDG. Node y depends on x if there is a

directed path from x to y, y post-dominates every node

z on directed path D, excluding node x and y and y

does not post-dominate x. In the example program

nodeSMC43 is control dependent on node S42.

Data Dependence: Let x and y are two nodes in the

system dependence graph. Then node y is data

dependence on node x, if a variable var defined at x is

used at y. There is a directed path exist from x to y

along which there is no intervening definition of var.

In the example program node S42 is data dependent

on node S40.

Def(var): Let var be a variable in a program P.

Then a node u is said to be Def(var) node if node u

defines variable var. In our example program

Def(pObj) = SMC43.

Use(var): Let var be a variable in the program P .

Then a node u is said to be Use(var) node, if node u

uses the variable var. Use(pObj) = MC44.

DefVarSet(u): Let u and var be the node and

variable ,respectively. Then, DefVarSet(u) = {var|var

is a variable of the program P and u is a Def(var)

node}.DefVarSet(SMC43) = pObj.

UseVarSet(u): Let var be a variable of a program

P.And u be a node. Then UseVarSet(u) = {var | var is

a variable of the program P and u is a Use(Var)

node}.UseVarSet(MC44) = pObj.

Let the example program be executed with the input

value i = 1. According to the predicate condition,

object of class Person is created and it called the

display() method. The execution trace for the input i

= 1, is shown in Fig. 2. The dynamic graph (DG) of

the example program with respect to the execution

trace given in Fig. 2 is shown in Fig 4.

ActiveDataSlice: Let P be a program and var be a

variable. Before execution of the program P,

ActiveDataSlice(var) = ɸ. Let u be a def(var) node and

UseVarSet(u) = var1,var2, ...,varK. Let programP be

executed with a given set of input values.

Then,ActiveDataSlice(var) = u U

ActiveDataSlice(var1) U …U ActiveDataSlice(vark)

U ActiveDataSlice(vart) U ActiveControlSlice(t),

where t is the most recently executed node.

ActiveControlSlice: Let s be the test node in the

SDG of the program P and UseVarSet(s) =

{var1,var2,...,varK}. Before execution of the program

P, ActiveControlSlice = ɸ. After each execution of the

node s in an actual run of the

program,ActiveControlSlice(s) = {s} U

ActiveDataSlice(var1) U....U ActiveDataSlice(vark) U

ActiveDataSlice(vart) U ActiveControlSlice(t) where t

is the most recently executed predicate node.

DyanSlice(s, var): Let s be a node in the program

P, and the variable var be in set DefVarSet(s) U

UseVarSet(s).Before execution of the program P

DyanSlice(s,var)= ɸ. For each execution of the

statement s, DyanSlice(s,var) = ActiveDataSlice(var)

U ActiveControlSlice(t), where t is the most recently

executed predicate node of s.

ActiveCallSlice: For a call node u,

ActiveCallSlice(ucall) = ActiceDataSlice(var) U

ActiveControlSlice(ucall),where var is the variable or

object used to call the method.

DS: During the implementation of the proposed

algorithm we have used a one dimensional array

named as DS.

IV. PROPOSED ALGORITHM

This section proposes the DG traversal slicing

algorithm to compute the dynamic slices of object-

oriented programs in presence of inheritance.

The proposed algorithm is given below.

Algorithm- DG traversal slicing algorithm :

Input: An object-oriented program

Output: Dynamic slice

1) Consider the program P.

2) Initialization: Before execution of the program

do the followings:

a) For each node u of the program P do the

followings:

If u is a predicate node, then set Active Control

Slice(u) = ɸ.

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 28 Number 3 – October 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 139

b) For every variable var of the program P, set

ActiveDataSlice(var) = ɸ.

c)For each variable var є DefVarSet(u) U

UseVarSet(u), set DyanSlice(u, var) = ɸ

d) For each call node uof the program P Set

ActiveCallSlice(u)= ɸ.

3) Run the program P with given set of input

values.

4) Get the execution trace of the program with

respect to the given input values and then construct the

dynamic graph (DG).

5) Dynamic slice computation: Enter the slicing

node u, Slicing node is the node, on which the slice

has to computed.

a) If u is a Def(var) node and not a call node, then

DyanSlice(u, var) = ActiveDataSlice(var). Compute

ActiveDataSlice(var) by traversing DG through the

incoming data dependence edges and list the reached

nodes in DS.

b) If u is a call node, DyanSlice(u,var) =

ActiveCallSlice(u). Compute ActiveCallSlice(u) by

traversing DG through the outgoing control

dependence edges and incoming data dependence

edges and list the reached nodes in DS.

c) If u is a test node,DyanSlice(u,var) =

ActiveControlSlice(u). Compute

ActiveControlSlice(u) by traversing DG through all

incoming control dependence edges and incoming

data dependence edges and list the reachednodes in

DS.

d) If u is a Def(var) and Use(var) node,

DyanSlice(u,var) = ActiveDataSlice(var) U

ActiveControlSlice(t),where t is the most recent

executed predicate node.

6) Slice look up:

Extract the nodes of DS, which are reached during

the traversal of the dynamic graph. Those nodes will

constitute the dynamic slice.

Description of the Algorithm:

This section explains our proposed algorithm. At

first an object-oriented program is being executed with

a given set of input values, and the execution trace is

found out. Based on the execution trace, the dynamic

graph (DG) is constructed. Then the slicing node is

fetched to compute the dynamic slice at a particular

node. Now four different conditions may arise.

If the slicing node (which is a node in the dynamic

graph) is a Def(var) node, then ActiveDataSlice(var)

is computed. This is computed by traversing the

dynamic graph (DG) through the incoming data

dependence edges and the reached nodes are listed. If

the slicing node is a call node, ActiveCallSlice(u) is

computed by traversing DG through the outgoing

control dependences edges and incoming data

dependence edges and the reached nodes are listed. If

the slicing node is a test node, then the

ActiveControlSlice(u) is computed by traversing DG

through all incoming control dependence edges and

incoming data dependence edges and the reached

nodes are listed. If the slicing node is a Def(var)

and Use(var) node, then ActiveDataSlice(var) U

ActiveControlSlice(t) is computed.

Working of the proposed algorithm:

In this section, we explain the working of our

proposed algorithm by taking the example program

given in Fig. 1. The example program runs with input

i = 1. The slicing node is <SMC43>.The node SMC43

is a call node. So, Activecallslice (SMC43) is

computed by traversing through the outgoing control

dependence edges and incoming data dependence

edges and the reached nodes are listed.

CE1 class Person Author

{

S2 String FirstName;

S3 String LastName;

SME4 Person(String fName, String lName)

{

S5 FirstName = fName;

S6 LastName = lName;

}

ME7 void Display()

{

S8 System.out.println("First Name : " +

FirstName);

S9 System.out.println("Last Name : " + LastName);

}

}

CE10 class Student extends Person

{

S11 int id;

S12 String standard;

S13 String instructor;

SME14 Student(String fName, String lName, int

nId, String stnd, String instr)

{

SMC15 super(fName,lName);

S16 id = nId;

S17 standard = stnd;

S18 instructor = instr;

}

ME19 void Display()

{

MC20 super.Display();

S22 System.out.println("Standard : " + standard);

S23 System.out.println("Instructor: " + instructor);

}

}

CE24 class Teacher extends Person

{

S25 String mainSubject;

S26 int salary;

S27 String type; //Primary or Secondary School

teacher

SME28 Teacher(String fName, String lName,

String sub, int slry, String sType)

{

S29 super(fName,lName);

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 28 Number 3 – October 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 140

S30 mainSubject = sub;

S31 salary = slry;

S32 type = sType;

}

ME33 void Display()

{

MC34 super.Display();

S35 System.out.println("MainSubject : " +

mainSubject);

S36 System.out.println("Salary : " + salary);

S37 System.out.println("Type:"+type);

}

}

MCE38 class InheritanceDemo

{

MME39 public static void main(String args[])

{

S40 int i;

S41 i=Integer.parseInt(in.readLine());

S42 if(i==2)

{

SMC43 Person pObj = new

Person("Rayan","Miller");

MC44 pObj.Display();

}

Else

{

SMC45Student sObj = new

Student("Jacob","Smith",1,"1 - B","Roma");

MC46 sObj.Display();

SMC47 Teacher tObj = new

Teacher("Daniel","Martin","English","6000","Primary

Teacher");

MC48 tObj.Display();

} } }

Fig. 1.An example program

CE1 class Person

{

S2 String FirstName;

S3 String LastName;

SME4 Person(String fName, String lName)

{

S5 FirstName = fName;

S6 LastName = lName;

}

ME7 void Display()

{

S8 System.out.println("First Name : " +

FirstName);

S9 System.out.println("Last Name : " + LastName);

}

}

CE10 class Student extends Person

{

S11 int id;

S12 String standard;

S13 String instructor;

SME14 Student(String fName, String lName, int

nId, String stnd, String instr)

{

SMC15 super(fName,lName);

S16 id = nId;

S17 standard = stnd;

S18 instructor = instr;

}

ME19 void Display()

{

MC20 super.Display();

S22 System.out.println("Standard : " + standard);

S23 System.out.println("Instructor: " + instructor);

}

}

CE24 class Teacher extends Person

{

S25 String mainSubject;

S26 int salary;

S27 String type; //Primary or Secondary School

teacher

SME28 Teacher(String fName, String lName,

String sub, int slry, String sType)

{

S29 super(fName,lName);

S30 mainSubject = sub;

S31 salary = slry;

S32 type = sType;

}

ME33 void Display()

{

MC34 super.Display();

S35 System.out.println("MainSubject : " +

mainSubject);

S36 System.out.println("Salary : " + salary);

S37 System.out.println("Type:"+type);

}

}

MCE38 class InheritanceDemo

{

MME39 public static void main(String args[])

{

S40 int i;

S41 i=Integer.parseInt(in.readLine());

S42 if(i==2)

Else

{

SMC45Student sObj = new

Student("Jacob","Smith",1,"1 - B","Roma");

MC46 sObj.Display();

SMC47 Teacher tObj = new

Teacher("Daniel","Martin","English","6000","Primary

Teacher");

MC48 tObj.Display();

}

}

}

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 28 Number 3 – October 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 141

Fig.2 Execution trace of the example program

given in Fig.1

Table 2 also shows the slice for node MC44,

SME4, ME7 S41 and S42.

Table 2. Dynamic slices of the example program

at different statements

Slice computation at different nodes

Slice Node Types of Node Dynamic Slice

SMC43 Call Node SMC43, SME4, S5,

S6, S2, S3

MC44 Call Node MC44, ME7, S8, S9,
S2, S3, SMC43,

SME4, S5, S6

SME4 Call Node SME4, S5, S6, S2,

S3

ME7 Call Node ME7, S8, S9, S2, S3

S41 Def(var)node S41, S40

S42 Test node MME39, S41, S42

Correctness of DG traversal slicing algorithm:

This section presents the correctness proof of our

algorithm.

Theorem 4.1:

Our algorithm computes correct and precise

dynamic slices for a given slicing criterion.

Proof:

Our proposed algorithm works on dynamic graph,

which is constructed on the execution trace of an

object-oriented program. Dynamic graph is an arc

classified graph represented as follows:

Gh = (Nd, Ed), where Nd is set of nodes and Ed is

the set of edges in the dynamic graph. Nd = {n | n

represents the statements of a program}, Ed = {e | e

represents data and/or control dependencies between

ni and nj, where (ni , nj) є Nd }.

Here, | Nd | is finite; hence our algorithm will

execute for finite number of times and terminate

safely without entering into an infinite loop.

Now, we will prove the correctness of our

algorithm. Our algorithm works on the control and

data dependence analysis among the nodes in the

dynamic graph. During the traversal of the dynamic

graph, it lists those nodes in the dynamic slice which

really affects the slicing node. Let us consider that

dynamic graph has only one statement s1. The

computed dynamic slice for s1 will contain only the

statement s1. Then the dynamic slice for s1 is correct.

Suppose there are two statements s1 and s2 in the

execution trace. Than the dynamic slice with respect

to s2 will contain s1 and s2 if there is a control and/or

data dependence between the statements s2 and s1.

Otherwise it will contain statement s2. So, dynamic

slice at statement s2 is correct. Let us assume that the

dynamic slice of all the statements before statement su

is correct. It can be proved that the dynamic slice at

statement su must contain the statements that actually

affect the slicing node i. e. statement su.

Hence this proves that our algorithm computes

correct and precise slice for every statement of the

execution trace.

Complexity Analysis of DG traversal slicing

algorithm`

This section presents the complexity of our proposed

algorithm in terms of space and time.

Space complexity analysis:

Our algorithm works on dynamic graph which

contains n numbers of nodes. If the execution trace

contains n numbers of statements, then the space

complexity of our proposed algorithm is O(n
2
).

Further, we have used a one dimensional array, named

DS which contains the nodes in the dynamic slice list

during the traversal of the dynamic graph. To store

those nodes, we require at most O(n) space if there are

n number of nodes in our dynamic graph.

So the space complexity of our DG traversal

slicing algorithm is O(n2).

Time complexity analysis :

Let n numbers of statements are there in the

execution trace of our program under consideration.

O(n
2
) time is required to construct the dynamic graph.

For traversal of the dynamic graph, the time required

is O(En), where E is the total numbers of edges

between n number of nodes. Substituting the value of

E, we get the time complexity as O((n-1)n), which is

O(n
2
). So, total time complexity is O(n

2
) + O(n

2
) =

2O(n
2
). Ignoring the constant term, we have the time

complexity of our proposed algorithm is found to be

O(n
2
).

V. IMPLEMENTATION OF THE PROPOSED

ALGORITHM

In this section we discuss the architecture of our

tool which will implement our algorithm and then we

discuss some of the experimental results during

implementing our algorithm.

 A. Architecture of the proposed tool

Fig 5. Architecture of the proposed tool DSOOP

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 28 Number 3 – October 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 142

We have developed a tool in Java for implementing

our proposed algorithm. We have named our tool

“Dynamic Slicer for Object-Oriented Programs

(DSOOP)”.

In this section, we discuss the tool architecture of

our proposed tool DSOOP, which can be used to

compute the dynamic slice of object-oriented

programs. Fig 5 shows the architecture of our

proposed tool DSOOP.

Our proposed tool DSOOP takes an object-oriented

program written in Java as an input. Then the program

runs with a set of input values and the execution trace

is found out. Now based on the execution trace of the

program, the DG constructor constructs the dynamic

graph (DG). Then a slicer component computes the

dynamic slice by traversing the dynamic graph

provided with a slicing node. Basically, slicing node is

a node on which the dynamic slice has to be

computed.

B. Experimental Results

The proposed DG traversal slicing algorithm is

implemented using Java. During the implementation,

several object-oriented programs are considered for

computing the dynamic slices. It is observed that the

proposed algorithm works efficiently and computes

correct and precise dynamic slices. The proposed

algorithm do not traverse the whole System

Dependence Graph (SDG), rather it traverses the

dynamic graph (DG) only, which is constructed by

taking into consideration the dependence information

within the statements of the execution trace of the

program under consideration

The experimental results of our implementation are

shown in Table 3.

Table 3. Experimental results

Fig. 6. Graph showing No. of Dep.Vs Dynamic

Slice Computation Time in Milli Sec.

In Fig 6, we have shown a comparison between the

number of dependence and the slice computation time

in milli second. During the implementation, it is

observed that the time for computing the dynamic

slices is independent of the number of nodes in the

execution trace. However the slice computation time

increases when the number of dependencies increases

among the nodes in the execution trace.

VI. COMPARISON WITH RELATED WORKS

This work has been influenced with the work done

by Mund et al. [7]. Mund et al. [7] have not

considered data dependence in their work. They have

considered only the control dependence in their

intermediate program representation. But we have

considered data dependence along with the control

dependence in our intermediate program

representation. So our proposed intermediate program

representation is a better way to represent the

dependencies present in an object-oriented program.

Jain et al. [12] proposed d-u chain which will be

large for the large program. As this paper computes

dynamic slice based on the execution trace of the

program under consideration, thus the slice generated

is more precise and correct.

Du et al. [11] used System Dependence Graph as

the intermediate program representation to compute

the dynamic slices of a program. This paper proposes

an intermediate representation called dynamic graph

(DG), which contains the required dependence edges

only i.e. data and control dependence. Hence, dynamic

graph is simple and can be traversed faster for

generating precise dynamic slices for various software

engineering applications.

Moreover, although number of nodes increases, the

time of computing slices does not increase, rather it

depends on the number of dependencies (control

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 28 Number 3 – October 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 143

and/or data) in the dynamic graph (DG). This is

another advantage of the proposed algorithm.

While comparing our work and work done by

Wang et al. [16], we found that our intermediate

representation is more applicable because in their

work although they have focused on data and control

dependencies, they are being suppressed inside a

phase. But focused on the dependencies at inter-phase

level. But it is essential to address those dependencies,

which is done in our work. Our intermediate program

representation in a more compact way of representing

the dependencies.

Threats to validity:

 Our proposed algorithm can compute dynamic

slice of the object-oriented programs in presence of

inheritance. But it does not address the other object-

oriented features like polymorphism, Dynamic

binding, message passing etc.

Further, it cannot handle the situation where the

objects are passed as parameters when a methods is

being called.

 The dynamic graph may be complicated and

difficult to handle, when the number of statements in

the execution trace is very large. So our algorithm can

handle only moderate sized applications and cannot

handle large sized industrial applications.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented an algorithm called DG

traversal slicing algorithm to compute the dynamic

slices of object-oriented programs in presence of

inheritance. This paper used an intermediate

representation called dynamic graph (DG) to represent

the data and control dependencies present among the

statements of the execution trace.

The proposed algorithm is not influenced by the

number of nodes in the dynamic graph but it is

influenced by the number of data and control

dependencies in the intermediate program

representation. This paper does not consider

polymorphism, dynamic binding and message passing,

which are also very important features of object-

oriented programs. So in future, our work will focus

on the above said features and computing the dynamic

slice. Also, we will be focusing on computing slices of

concurrent object-oriented and distributed object-

oriented programs.

REFERENCES
[1] ,M. Wieser : Program slicing. In Proceedings of the 5th

international conference on Software engineering.IEEE
Press.(1981)439–449.

[2] J. Zhao: Dynamic Slicing of Object-oriented

Programs.Journal of natural sciences. 6(2001)391-397.
[3] K., Ottenstein, L. Ottenstein : The program dependence

graph in software.Symposium on Practical Software

Development Environments.19(1984)177-184.

[4] S. Horwitz, T. Reps, D. Binkley : Interprocedural slicing

using dependence graphs.ACM Transactions on

Programming Languages and Systems.12(1990)26-61.

[5] B. Korel, J. Lask : Dynamic Program Slicing.Information

Processing Letters.29(1988)155-163.
[6] H. Agrawal, J. Horgan : Dynamic program slicing. In

Proceeding of the ACM SIGPLAN Conference on

programming Languages Design and Implementation.25
(1990)246-256.

[7] G.B. Mund : An efficient inter-procedural dynamic slicing

method. The Journal of Systems and software.79(2006)791-
806.

[8] G.B. Mund, R. Mall, S. Sarkar : Computation of intra-

procedural dynamic program slices. Information and
Software Technology.45(2003)499-512.

[9] L. Larsen, M. J. Harrold : Slicing Object-oriented Software.

In proceeding of ICSE.(1996)495-505.
[10] L. DU, G. Xiao, Y. Yu : Research on algorithm for object-

oriented program slicing.Journal of Convergence

Information Technology.6(2011).
[11] P. Jain, N. Garg : A Novel Approach for Slicing of Object

oriented programs.ACM SIGSOFT Software Engineering

Notes.38(2013)1-4.

[12] A. G. Beszedes : Graph-less dynamic dependence-based

dynamic slicing algorithm. ixth IEEE International Workshop

on Source Code Analysis and Manipulation.6(2006)21–30.
[13] J. D. Ferrante, J. Ottenstein, K. J.: The program dependence

graph and its use in optimization.ACM Transaction On
Program Languages And Systems.9(1987)319-349.

[14] Tao Wang, Abhik Roychoudhury : Hierarchical dynamic

slicing. Proceedings of the 2007 international symposium on
Software testing and analysis.2(2007)228-238.

[15] J. Korpi, J. Koskinen : Constructive Dynamic Program

Slicing Research. Int. J. Adv. Comp. Techn.2(2010)7-23.
[16] A. Treffer, M. Uflacker : Dynamic slicing with soot.

Proceedings of the 3rd ACM SIGPLAN International

Workshop on the State of the Art in Java Program Analysis.
(2014)1-6.

[17] O. Chebaro, N. Kosmatov, A. Giorgetti, J. Julliand : Program

slicing enhances a verification technique combining static
and dynamic analysis. Proceedings of the 27th Annual ACM

Symposium on Applied Computing.(2012)1284-1291.

[18] G. Sai Raghunath , Bhaludra Raveendranadh Singh , Moligi

Sangeetha:"Perpetuate Data Report based on the Slicing

Approach". International Journal of Computer Trends and

Technology (IJCTT) V16(2):68-72, Oct 2014. ISSN:2231-

2803. Published by Seventh Sense Research Group.
[19] D. Mohanapriya , Dr. T.Meyyappan :"Slicing Technique For

Privacy Preserving Data Publishing"International Journal of

Computer Trends and Technology (IJCTT),V4(5):1355-
1361 May Issue 2013 .ISSN 2231-2803.www.ijcttjournal.org.

Published by Seventh Sense Research Group.

http://www.ijettjournal.org/

