
International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 93

Improving Efficiency of Apriori Algorithm

Ch.Bhavani, P.Madhavi
Assistant Professors, Department of Computer Science, CVR college of Engineering, Hyderabad, India.

Abstract -- Apriori algorithm has been vital algorithm in

association rule mining. The main idea of this algorithm

is to find useful frequent patterns between different set

of data. It is a simple and traditional algorithm,

Apriori employs an iterative approach known as level

wise search. But, this algorithm yet have many

drawbacks. Based on this algorithm, this paper

indicates the limitation of the original Apriori

algorithm of wasting time for scanning the whole

database searching on the frequent itemsets, and

presents an improvement on Apriori by reducing that

wasted time.

Keywords – apriori algorithm, frequent itemsets,
support.

I. INTRODUCTION
Data Mining is a way of obtaining undetected patterns

or facts from massive amount of data in a database.

Data Mining is also known as knowledge discovery in

databases (KDD). Data mining is about solving

problems by analyzing the data present in the database

and identifying useful patterns. Patterns allow us to

make prediction on new database. Data mining is

more in demand because it helps to reduce cost and

increases the revenues. The various applications of

data mining are customer retention, market analysis,

production control and fraud detection. Data Mining is

designed for different databases such as object-

relational databases, relational databases, data

warehouses and multimedia databases. Data mining

methods can be categorized into classification,

clustering, association rule mining, sequential pattern

discovery, regression etc. It helps to find the

association relationship among the large number of

database items and its most typical application is to

find the new useful rules in the sales transaction

database, which reflects the customer purchasing

behaviour patterns, such as the impact on the other

goods after buying a certain kind of goods. These

rules can be used in many fields, such as customer

shopping analysis, additional sales, goods shelves

design, storage planning and classifying the users

according to the buying patterns, etc. The techniques

for discovering association rules from the data have

traditionally focused on identifying relationships

between items telling some aspect of Human

behaviour, usually buying behaviour for determining

items that customers buy together. All Rules of this

type describe a particular local pattern. The group of

association rules can be easily interpreted and

communicated. Apriori algorithm is the traditional

algorithm used for generating the frequent itemsets

from the itemsets in the transactions of the data bases.

A basic property of apriori algorithm is “every subset

of a frequent item sets is still frequent item set, and

every superset of a non-frequent item set is not a

frequent item set”. This property is used in apriori

algorithm to discover all the frequent item sets.

Further in the paper we will see more about the

Apriori algorithm steps in detail.

II. TRADITIONAL APRIORI ALGORITHM

Apriori is very much basic algorithm of Association

rule mining. It was initially proposed by R. Agrawal

and R Srikant for mining frequent item sets. This

algorithm uses prior knowledge of frequent item set

properties that is why it is named as Apriori algorithm.

Before starting the actual Apriori algorithm, first we

will see some the terminologies used in the apriori

algorithm.

Itemset - Itemset is collection of items in a database

which is denoted by

I = {i1, i2,…, in}, where n is the number of items.

Transaction – Transaction is a database entry which

contains collection of items. Transaction is denoted by

T and T  I. A transaction contains set of items

T={i1,i2,..,in}.

Minimum support – Minimum support is the

condition which should be satisfied by the given items

so that further processing of that item can be done.

Minimum support can be considered as a condition

which helps in removal of the in-frequent items in any

database. Usually the Minimum support is given in

terms of percentage.

Frequent itemset (Large itemset) – The itemsets

which satisfies the minimum support criteria are

known as frequent itemsets. It is usually denoted by Li

where i indicate the i-itemset.

Candidate itemset – Candidate itemset are items

which are only to be consider for the processing.

Candidate itemset are all the possible combination of

itemset. It is usually denoted by Ci where i indicate

the i-itemset.

Support – Usefulness of a rule can be measured with

the help of support threshold. Support helps us to

measure how many transactions have such itemsets

that match both sides of the implication in the

association rule.

Consider two items A and B. To calculate support of

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 94

A  B the following formula is used,

Supp(AB)=(number of transactions containing both

A &B) / (Total number of transactions)

Confidence –Confidence indicates the certainty of the

rule. This parameter lets us to count how often a

transaction’s itemset matches with the left side of the

implication with the right side. The itemset which

does not satisfies the above condition can be

discarded.

Consider two items A and B. To calculate confidence

of A  B the following formula is used,

Conf(AB)=(number of transactions containing both

A & B)/(Transactions containing only A)

Note: Conf(AB) might not be equal to conf(BA).

Apriori Algorithm - It employs an iterative approach

known as a breadth-first search (level-wise search)

through the search space, where k-itemsets are used to

explore (k+1)-itemsets. The working of Apriori

algorithm is fairly depends upon the Apriori property

which states that” All nonempty subsets of a frequent

itemsets must be frequent”. It also described the anti

monotonic property which says if the system cannot

pass the minimum support test, all its supersets will

fail to pass the test. Therefore if the one set is

infrequent then all its supersets are also frequent and

vice versa. This property is used to prune the

infrequent candidate elements. In the beginning, the

set of frequent 1-itemsets is found. The set of that

contains one item, which satisfy the support threshold,

is denoted by L. In each subsequent pass, we begin

with a seed set of itemsets found to be large in the

previous pass. This seed set is used for generating new

potentially large itemsets, called candidate itemsets,

and count the actual support for these candidate

itemsets during The pass over the data. At the end of

the pass, we determine which of the candidate

itemsets are actually large (frequent), and they become

the seed for the next pass. Therefore, L is used to find

L!, the set of frequent 2-itemsets, which is used to find

L , and so on, until no more frequent k-itemsets can be

found. The basic steps to mine the frequent elements

are as follows: ·

 • Generate and test: In this first find the 1-itemset

frequent elements L by scanning the database and

removing all those elements from C which cannot

satisfy the minimum support criteria.

• Join step: To attain the next level elements Ck join

the previous frequent elements by self join i.e. Lk-1*

Lk-1 known as Cartesian product of Lk-1. I.e. This

step generates new candidate k-itemsets based on

joining Lk-1 with itself which is found in the previous

iteration. Let Ck denote candidate k-itemset and Lk be

the frequent k-itemset.

• Prune step: Ck is the superset of Lk so members of

Ck may or may not be frequent but all K ' 1 frequent

itemsets are included in Ck thus prunes the Ck to find

K frequent itemsets with the help of Apriori property.

I.e. This step eliminates some of the candidate k-

itemsets using the Apriori property A scan of the

database to determine the count of each candidate in

Ck would result in the determination of Lk (i.e., all

candidates having a count no less than the minimum

support count are frequent by definition, and therefore

belong to Lk). Ck, however, can be huge, and so this

could involve grave computation. To shrink the size of

Ck, the Apriori property is used as follows. Any (k-1)-

itemset that is not frequent cannot be a subset of a

frequent k-itemset. Hence, if any (k-1)-subset of

candidate k-itemset is not in Lk-1 then the candidate

cannot be frequent either and so can be removed from

Ck. Step 2 and 3 is repeated until no new candidate set

is generated.

 Table 1 SAMPLE DATA SET

TID Items

T1 A, C, D

T2 B, C, E

T3 A, B, C, E

T4 B, E

Performing the first step that is scanning the database

to identify the number of occurrences for a particular

item. After the first step we will get C1 which is

shown in Table 2.
 Table 2 C1

Items Support count

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

 The next step is the pruning step in which the

itemset support is compared with the minimum

support. The itemset which satisfies the minimum

support will only be taken further for processing.

Assuming minimum support here as 2. We will get L1

from this step.

Table 3 shows the result of pruning.

 Table 3 L1

Items Support count

{A} 2

{B} 3

{C} 3

{E} 3

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 95

Now the candidate generation step is carried out in

which all possible but unique 2-itemset candidates are

created. This table will be denoted by C2. Table 4

shows all the possible combination that can be made

from Table 3 itemset

 Table 4 C2

 Now pruning has to be done on the basis of minimum

support criteria. From Table 4 two itemsets will

be removed. After pruning we get the following

results.

 Table 5 L2

The same procedure gets continued till there are no

frequent itemsets or candidate set that can be

generated. The further processing is described in

Table 6 and Table 7.

 Table 6 C3

Items Support count

{A, B, C} 1

{A, B ,E} 1

{B, C, E} 2

 Table 7 L3

Items Support count

{B, C, E} 2

Pseudo Code -

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=; k++) do begin

Ck+1 = candidates generated from Lk;

for each transaction t in database do increment the

count of all candidates in Ck+1 that are contained in t

Lk+1 = candidates in Ck+1 with min_support

end

returnkLk;

It is no doubt that Apriori algorithm successfully finds

the frequent elements from the database. But as the

dimensionality of the database increase with the

number of items then:

• More search space is needed and I/O cost will

increase.

• Number of database scan is increased thus candidate

generation will increase results in increase in

computational cost.

Therefore many variations have been taken place in

the Apriori algorithm to minimize the above

limitations arises due to increase in size of database.

These subsequently proposed algorithms makes an

improvement over the traditional Apriori Algorithm

by

• Reducing the no.of passes of transaction database

scans

• Shrink number of candidates

• Facilitate support counting of candidates

III. Review On Various Improved Apriori Algorithms

3.1 Improved apriori based on matrix

Events: One transaction of commodity is an event.

That is an Event equals one Transaction containing

various Items. Event Database (D): An event T in D

can be shown as Ti , Where Ti is unique in the whole

Database. First step in this improved apriori is to make

a Matrix library. The matrix library (mat) contains a

binary representation where 1 indicates presence of

item in transaction and 0 indicates the absence.

Assume that in the event Matrix library of database D,

the matrix is A mxn , then the corresponding BOOL

data item set of item Ij(1<= j <= n)in Matrix Amxn is

the mat of Ij, Mati is items in the mat. Table 8 shows

the Sample database and the 3rd column is binary

representation of the items in the transaction

 Table 8 SAMPLE DATA BASE

TID List of Items I1 I2 I3 I4 I5

T1 I1, I3, I4 1 0 1 1 0

T2 I2, I3 0 1 1 0 0

T3 I5, I2 0 1 0 0 1

T4 I2, I3 0 1 1 0 0

T5 I3, I4, I5 0 0 1 1 1

T6 I2, I4 0 1 0 1 0

T7 I4, I5 0 0 0 1 1

T8 I2, I1, I5 1 1 0 0 1

T9 I3, I4, I5 0 0 1 1 1

Items Support count

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Items Support count

{A, C} 2

{B, C} 2

{B, E} 3

{C, E} 2

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 96

For 1-itemset matrix represented is used (i.e.)

MAT(I1) = 100000010

MAT(I2) = 011101010

MAT(I3) = 110110001

MAT(I4) = 100011101

MAT(I5) = 001010111

Now by counting the number of 1’s in the matrix we

can easily find the occurance of that item.

For 2-itemset we can multiply the binary

representation of the items to get the occurance of that

items together. To find how many times item Ij and Ik

are appearing together we have to multiply the

MAT(Ij) and MAT(Ik). (i.e) MAT(Ij ,Ik)=MAT(Ij) *

MAT(Ik).

MAT(I3,I4) = MAT(I2) * MAT(I4) = 011101010 *

100011101 = 000001000

MAT(I3,I4) = 000001000

Then support of these two items can be calculated as

follows:

Support (I3,I4)= (Nos. of times Appearing

together/Tot. Transaction) = 1 / 9 Similarly the same

procedure can be followed for all possible itemset.

This algorithm needs to scan the database only once

and also does not require to find the candidate set

when searching for frequent itemset.Table 9 provides

the computational time of Apriori and improved

apriori.

 Table 9

Record

number

Apriori

Computing

time(ms)

Improved Apriori

Computing time(ms)

500 1787 35

1000 8187 108

1500 44444 178

2000 46288 214

2500 97467 292

3000 199253 407

3500 226558 467

4000 310379 569

5000 155243 470

3.2 Optimized Algorithm

In the Apriori algorithm, Ck-1 is compared with

support level once it was found. Item sets less than the

support level will be pruned and Lk-1 will come out

which will connect with itself and lead to Ck. The

optimized algorithm is that, before the candidate item

sets Ck come out, further prune Lk-1, count the times

of all items occurred in Lk-1, delete item sets with this

number less than k-1 in Lk-1. In this way, the number

of connecting items sets will decrease, so that the

number of candidate items will decline.

 The Realization of Algorithm
 According to the properties of frequent item

sets, this algorithm declines the number of candidate

item sets further. In other words, prune Lk-1 before Ck

occur using Lk-1. This algorithm can also be described

as following:

Count the number of the times of items occur in Lk-1

(this process can be done while scan data D);

Delete item sets with this number less than k-1 in Lk-1

to get Lk-1. To distinguish, this process is called Prune

1 in this study, which is the prune before candidate

item sets occur; the process in Apriori algorithm is

called Prune 2, which is the prune after candidate item

sets occur. Thus, to find out the k candidate item sets,

the following algorithm can be taken:

Prune l(Lk-1), that is executing Prune 1 to Lk-1;

 Use Lk-1 to connect with its elements and get

the k

 candidate item sets Ck;

 Prune 2(Ck), that is executing Prune 2 to and

finally get the k items candidate set which should

calculate its support level

 (the superset of k items frequent set)

 The following is the description of the

optimized

 algorithm:

 Input: affairs database D: minimum support level

threshold is minsup

Output: frequent item sets L in D

1) L1=frequent_1-itemsets(D);

2) For (k=2;Lk-1≠φ;k++);

3) Prune1(Lk-1);

4) Ck=apriori_gen(Lk-1;minsup);

5) for all transactions t∈D

{

6) C= sumset (Ck,t); find out the subset including Ck

7) for all candidates c∈Ct

8) { c.count ++; }

9) Lk ={c∈Ck|c.count≥minsup} //result of Prune

2(Ck) } }

10) Return Answer∪k Lk

Algorithm: Prune Function:

Input: set k-1 frequent items of Lk-1 as input parameter

Output: go back and delete item sets with this number

less

than k-1 in Lk-1

Procedure Prune 1(Lk-1)

1) for all itemsets L1∈Lk-1

2) if count(L1)≤k-1

3) then delete all Lj from Lk-1 (L1∈Lk-1)

4) reture L'k-1 // go back and delete item sets with this

number less than k-1 in Lk-1

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 97

Chart 3-1 shows the process of the algorithm finding

out the frequent item sets, the minimum support level

is 2.

 TABLE 10: CANDIDATE ITEM SETS C1

 FREQUENT ITEM SETS L1

TID ITEM LIST

T1 A, B, C

T2 A, B, C, D

T3 A, B, D, E

T4 B, E, F

T5 A, B, D, F

T6 A, C, D, E

 From the above dataset, the Candidate Item Set C2

 Table 11

ITEM SET SUPPORT

LEVEL

ITEM

SET

SUPPORT

LEVEL

A, B 4 B, F 2

A, C 2 C, D 2

A, D 5 C, E 1

A, E 2 C, F 0

A, F 1 D, E 2

B, C 1 D, F 1

B, D 4 E, F 1

B, E 2

 Occur Frequent Item Set L2
 Table 12

ITEM

SET

SUPPORT

LEVEL

ITEM SET SUPPORT

LEVEL

A, B 4 B, E 2

A, C 2 B, F 2

A, D 5 C, D 2

A, E 2 D, E 2

B, D 4

Now further prune the candidate table, by counting the

items and compariong it with the minimum support

count.

 Table 13

ITEM SUPPORT LEVEL

A 4

B 4

C 2

D 4

E 3

F 1

As item F has lower support count than the minimum

support count, remove the itemsets which contain F

in them.

 L’2 after further pruning

 Table 14

ITEM

SET

SUPPORT

LEVEL

ITEM SET SUPPORT

LEVEL

A, B 4 B, E 2

A, C 2 C, D 2

A, D 5 D, E 2

A, E 2

B, D 4

 Occur Candidate Item Set C3
 Table 15

ITEM

SET

SUPPORT

LEVEL

ITEM SET SUPPORT

LEVEL

A, B, C 1 A, D, E 2

A, B, D 4 B, D, E 1

A, B, E 1 B, C, D 1

A, C, D 2 C, D, E 1

A, C, E 1

 After pruning

 Table 16

ITEM SET SUPPORT

LEVEL

A, B, D 4

A, C, D 2

A, D, E 2

Further pruning, by counting the items after pruning is

empty

 Table 17

ITEM SET SUPPORT LEVEL

A 3

B 1

C 1

D 3

E 1

Advantage of the optimized Algorithm: The basic

thought of this optimized algorithm is similar with the

apirori algorithm, which is they all get the frequent

item set L1 which has support level larger or equal to

the given level of the users via scan the database D.

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 98

Then repeat that process and get L2，L3……Lk.

 But they also have differences. The

optimized algorithm prunes Lk-1 before Ck is

consisted. In other words, count the frequent item set

Lk-1 which is going to connect. According to the

result delete item sets with this number less than k-1

in Lk-1 to decrease the number of the connecting item

set and remove some element that is not satisfied the

conditions. This will decrease the possibility of

combination, decline the number of candidate item

sets in Ck, and reduce the times to repeat the process.

For large database, this algorithm can obviously save

time cost and increase the efficiency of data mining.

This is what Apriori algorithm do not have.

 Although this process can decline the number

of candidate item sets in Ck and reduce time cost of

data mining, the price of it is pruning frequent item

set, which could cost certain time. For dense database

(such as, telecom, population census, etc.), as large

amounts of long forms occur, the efficiency of this

algorithm is higher than Apriori obviously.

3.3 Matrix based Algorithm

The method we propose involves the mapping of the

In items and Tm transaction from the database into a

matrix A with size mxn. The rows of the matrix

represent the transaction and the columns of the

matrix represent the items. The elements of matrix A

are:

 A= [aij] = 1, if transaction i has item j

 = 0, otherwise

 We assume that minimum support and

minimum confidence is provided beforehand.

 In matrix A, The sum of the jth column

vector gives the support of j thitem.

And the sum of the ith row vector gives the S-O-T,

that is, size of ith transaction (no. of items in the

transaction).

 Now we generate the item sets.

 For, 1–frequent item set, we check if the

column sum of each column is greater than minimum

support. If not, the column is deleted. All rows with

rowsum=1 (S-O-T) are also deleted. Resultant matrix

will represent the 1- frequent item set.

 Now, to find 2-frequent itemsets, columns

are merged by AND-ing their values. The resultant

matrix will have only those columns whose

columnsum>=min_support. Additionally, all rows

with rowsum=2 are deleted. Similarly the kth frequent

item is found by merging columns and deleting all

resultant columns with columnsum <min_support and

rowsum=k.When matrix A has 1 column remaining,

that will give the kth frequent item set

Algorithm
1. Create matrix A

2. Set n=1

3. While(n<=k)

 If(columnsum(colj<min_support)

 If(rowsum(row i)==n)

 Delete row i;

 Merge(col j, col j+1)

 n=n+1

4. end while

5. display A

Consider the following example:

 Table 18

Transactions Items

T1 A, B, E

T2 B, C, D

T3 C, D

T4 A, B, C, D

The above example shows the number of transactions

and items in table. Consider minimum support to be

given as 2. Now, we will draw the matrix from above

table to show the occurrence of each item in particular

transaction, i.e.:

Now, to find 1-frequent item set, remove those

columns whose sum is less than minimum support i.e.

2 and those rows that sum is equal to finding frequent

item set which is 1 for above case. So, the matrix after

removing particular row and column would be:

So, the above matrix represents the items present in 1-

freq item set. Combine the item by taking AND to get

matrix of 2-freq item set, which can be represented as:

http://www.ijettjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – volume 27 Number 2 – September 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 99

Now, after removing rows and columns following the

above method, the reduced matrix would be like:

For finding 3-frequent set, follow the same procedure

and combine item sets as follow:

Remove those columns whose sum is less then 2(min

support) and those rows whose sum is less than 3, so

the reduced matrix is:So, this is the final reduced

matrix for above given example. The final frequent

item set (3-freq item set) is BCD.

IV Conclusion and Future scope

In this paper, Apriori algorithm is improved based on

the properties of cutting database. The typical Apriori

algorithm has performance bottleneck in the massive

data processing so that we need to optimize the

algorithm with variety of methods. The improved

algorithm we proposed in this paper not only

optimizes the algorithm of reducing the size of the

candidate set of k-itemsets, but also reduce the I / O

spending by cutting down transaction records in the

database. The performance of Apriori algorithm is

optimized so that we can mine association information

from massive data faster and better. Although this

improved algorithm has optimized and efficient but it

has overhead to manage the new database after every

generation of Matrix. So, there should be some

approach which has very less number of scans of

database. Another solution might be division of large

database among processors.

REFERENCES

[1] “Data Mining - concepts and techniques” by Jiawei Han and
MichelineKamber.

[2] “Improved Apriori Algorithm using logarithmic decoding and

pruning” paper published by SuhaniNagpal, Department of
Computer Science and Information Technology, Lovely

Professional University, Punjab (INDIA).

[3] “Improving Efficiency of Apriori Algorithm Using Transaction
Reduction” by Jaishree Singh*, Hari Ram**, Dr. J.S. Sodhi,

Department of Computer Science & Engineering, Amity School of

Engineering and Technology, Amity University, Sec-125 NOIDA,
(U.P.),India.

[4] Wanjun Yu; Xiaochun Wang; Erkang Wang; Bowen Chen;,

“The research of improved apriori algorithm for mining association
rules,” Communication Technology, 2008. ICCT 2008 11th IEEE

International Conference on, vol., no.,pp.513-516, 10-12 Nov. 2008.

[5] Luo Ke,Wu Jie.Apriori algorithm based on the improved
techniques. Computer Engineering and application ,2001,20:20.

[6]Li Xiaohong,Shang Jin.An improvement of the new Apriori

algorithm [J].Computer science, 2007,34 (4) :196-198. 2007.
[7] Sheng Chai, Jia Yang, and Yang Cheng, “The Research of

Improved Apriori Algorithm for Mining A

ssociation Rules” Proceedings of the Service Systems and Servic
Management ,2007.

http://www.ijettjournal.org/

