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Abstract -- Apriori algorithm has been vital algorithm in 

association rule mining. The main idea of this algorithm 

is to find useful frequent patterns between different set 

of data. It is a simple and traditional algorithm, 

Apriori employs an iterative approach known as level 

wise search. But, this algorithm yet have many 

drawbacks. Based on this algorithm, this paper 

indicates the limitation of the original Apriori 

algorithm of wasting time for scanning the whole 

database searching on the frequent itemsets, and 

presents an improvement on Apriori by reducing that 

wasted time. 
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I.      INTRODUCTION 
Data Mining is a way of obtaining undetected patterns 

or facts from massive amount of data in a database. 

Data Mining is also known as knowledge discovery in 

databases (KDD). Data mining is about solving 

problems by analyzing the data present in the database 

and identifying useful patterns. Patterns allow us to 

make prediction on new database. Data mining is 

more in demand because it helps to reduce cost and 

increases the revenues. The various applications of 

data mining are customer retention, market analysis, 

production control and fraud detection. Data Mining is 

designed for different databases such as object-

relational databases, relational databases, data 

warehouses and multimedia databases. Data mining 

methods can be categorized into classification, 

clustering, association rule mining, sequential pattern 

discovery, regression etc.  It helps to find the 

association relationship among the large number of 

database items and its most typical application is to 

find the new useful rules in the sales transaction 

database, which reflects the customer purchasing 

behaviour patterns, such as the impact on the other 

goods after buying a certain kind of goods. These 

rules can be used in many fields, such as customer 

shopping analysis, additional sales, goods shelves 

design, storage planning and classifying the users 

according to the buying patterns, etc. The techniques 

for discovering association rules from the data have 

traditionally focused on identifying relationships 

between items telling some aspect of Human 

behaviour, usually buying behaviour for determining 

items that customers buy together. All Rules of this 

type describe a particular local pattern. The group of 

association rules can be easily interpreted and 

communicated. Apriori algorithm is the traditional 

algorithm used for generating the frequent itemsets 

from the itemsets in the transactions of the data bases. 

A basic property of apriori algorithm is “every subset 

of a frequent item sets is still frequent item set, and 

every superset of a non-frequent item set is not a 

frequent item set”. This property is used in apriori 

algorithm to discover all the frequent item sets. 

Further in the paper we will see more about the 

Apriori algorithm steps in detail.  
 
II. TRADITIONAL APRIORI ALGORITHM 
 
Apriori is very much basic algorithm of Association 

rule mining. It was initially proposed by R. Agrawal 

and R Srikant for mining frequent item sets. This 

algorithm uses prior knowledge of frequent item set 

properties that is why it is named as Apriori algorithm.  
 
Before starting the actual Apriori algorithm, first we 

will see some the terminologies used in the apriori 

algorithm. 
 

Itemset - Itemset is collection of items in a database 

which is denoted by  

I = {i1, i2,…, in}, where n is the number of items.  

 

Transaction – Transaction is a database entry which 

contains collection of items. Transaction is denoted by 

T and T  I. A transaction contains set of items 

T={i1,i2,..,in}.  
 

Minimum support – Minimum support is the 

condition which should be satisfied by the given items 

so that further processing of that item can be done. 

Minimum support can be considered as a condition 

which helps in removal of the in-frequent items in any 

database. Usually the Minimum support is given in 

terms of percentage.  
 

Frequent itemset (Large itemset) – The itemsets 

which satisfies the minimum support criteria are 

known as frequent itemsets. It is usually denoted by Li 

where i indicate the i-itemset.  
 

Candidate itemset – Candidate itemset are items 

which are only to be consider for the processing. 

Candidate itemset are all the possible combination of 

itemset. It is usually denoted by Ci where i indicate 

the i-itemset.  
 

Support – Usefulness of a rule can be measured with 

the help of support threshold. Support helps us to 

measure how many transactions have such itemsets 

that match both sides of the implication in the 

association rule.  

Consider two items A and B. To calculate support of 
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A  B the following formula is used,  
 
Supp(AB)=(number of transactions containing both 

A &B) / (Total number of transactions)  

Confidence –Confidence indicates the certainty of the 

rule. This parameter lets us to count how often a 

transaction’s itemset matches with the left side of the 

implication with the right side. The itemset which 

does not satisfies the above condition can be 

discarded.  

Consider two items A and B. To calculate confidence 

of A  B the following formula is used,  

Conf(AB)=(number of transactions containing both 

A & B)/(Transactions containing only A)  

Note: Conf(AB) might not be equal to conf(BA).  
 

Apriori Algorithm - It employs an iterative approach 

known as a breadth-first search (level-wise search) 

through the search space, where k-itemsets are used to 

explore (k+1)-itemsets. The working of Apriori 

algorithm is fairly depends upon the Apriori property 

which states that” All nonempty subsets of a frequent 

itemsets must be frequent”. It also described the anti 

monotonic property which says if the system cannot 

pass the minimum support test, all its supersets will 

fail to pass the test. Therefore if the one set is 

infrequent then all its supersets are also frequent and 

vice versa. This property is used to prune the 

infrequent candidate elements. In the beginning, the 

set of frequent 1-itemsets is found. The set of that 

contains one item, which satisfy the support threshold, 

is denoted by L. In each subsequent pass, we begin 

with a seed set of itemsets found to be large in the 

previous pass. This seed set is used for generating new 

potentially large itemsets, called candidate itemsets, 

and count the actual support for these candidate 

itemsets during The pass over the data. At the end of 

the pass, we determine which of the candidate 

itemsets are actually large (frequent), and they become 

the seed for the next pass. Therefore, L is used to find 

L!, the set of frequent 2-itemsets, which is used to find 

L , and so on, until no more frequent k-itemsets can be 

found. The basic steps to mine the frequent elements 

are as follows: · 
 
 • Generate and test: In this first find the 1-itemset 

frequent elements L by scanning the database and 

removing all those elements from C which cannot 

satisfy the minimum support criteria.  

 

• Join step: To attain the next level elements Ck join 

the previous frequent elements by self join i.e. Lk-1* 

Lk-1 known as Cartesian product of Lk-1. I.e. This 

step generates new candidate k-itemsets based on 

joining Lk-1 with itself which is found in the previous 

iteration. Let Ck denote candidate k-itemset and Lk be 

the frequent k-itemset.  
 
• Prune step: Ck is the superset of Lk so members of 

Ck may or may not be frequent but all K ' 1 frequent 

itemsets are included in Ck thus prunes the Ck to find 

K frequent itemsets with the help of Apriori property. 

I.e. This step eliminates some of the candidate k-

itemsets using the Apriori property A scan of the 

database to determine the count of each candidate in 

Ck would result in the determination of Lk (i.e., all 

candidates having a count no less than the minimum 

support count are frequent by definition, and therefore 

belong to Lk). Ck, however, can be huge, and so this 

could involve grave computation. To shrink the size of 

Ck, the Apriori property is used as follows. Any (k-1)-

itemset that is not frequent cannot be a subset of a 

frequent k-itemset. Hence, if any (k-1)-subset of 

candidate k-itemset is not in Lk-1 then the candidate 

cannot be frequent either and so can be removed from 

Ck. Step 2 and 3 is repeated until no new candidate set 

is generated.   

              Table 1 SAMPLE DATA SET 
 

TID Items 

T1 A, C, D 

T2 B, C, E 

T3 A, B, C, E 

T4 B, E 
 

Performing the first step that is scanning the database 

to identify the number of occurrences for a particular 

item. After the first step we will get C1 which is 

shown in Table 2.      
   Table 2       C1 

Items Support count 

{A} 2 

{B} 3 

{C} 3 

{D} 1 

{E} 3 
 

 The next step is the pruning step in which the 

itemset support is compared with the minimum 

support. The itemset which satisfies the minimum 

support will only be taken further for processing. 

Assuming minimum support here as 2. We will get L1 

from this step.  
 

Table 3 shows the result of pruning.  
 
     Table 3     L1 
 

Items Support count 

{A} 2 

{B} 3 

{C} 3 

{E} 3 
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Now the candidate generation step is carried out in 

which all possible but unique 2-itemset candidates are 

created. This table will be denoted by C2. Table 4 

shows all the possible combination that can be made 

from Table 3 itemset  

   
      Table 4    C2 

 

 
 

 

 

 

 

 

 

 

 

 Now pruning has to be done on the basis of minimum 

support criteria.          From Table 4 two itemsets will 

be removed. After pruning we get the   following 

results.  
 

    Table 5   L2 
 

 
 

 

 

 

 

 

The same procedure gets continued till there are no 

frequent itemsets or candidate set that can be 

generated. The further processing is described in 

Table 6 and Table 7.  
 

  Table 6   C3 
 

Items Support count 

{A, B, C}  1 

{A, B ,E}  1 

{B, C, E}  2 
 

      Table 7  L3 

 

Items Support count 

{B, C, E}  2 

 

Pseudo Code -  

Ck: Candidate itemset of size k  

Lk : frequent itemset of size k  

L1 = {frequent items};  

for (k = 1; Lk !=; k++) do begin  

Ck+1 = candidates generated from Lk;  

for each transaction t in database do increment the 

count of all candidates in Ck+1 that are contained in t  

Lk+1 = candidates in Ck+1 with min_support  

end  

returnkLk;  
 
It is no doubt that Apriori algorithm successfully finds 

the frequent elements from the database. But as the 

dimensionality of the database increase with the 

number of items then:  
 

• More search space is needed and I/O cost will 

increase.  

• Number of database scan is increased thus candidate 

generation will increase results in increase in 

computational cost.  
 

Therefore many variations have been taken place in 

the Apriori algorithm to minimize the above 

limitations arises due to increase in size of database. 

These subsequently proposed algorithms makes an 

improvement over the traditional Apriori Algorithm 

by  

 

• Reducing the no.of passes of transaction database 

scans  

• Shrink number of candidates  

• Facilitate support counting of candidates  

 

III. Review On Various Improved Apriori Algorithms 

 

3.1 Improved apriori based on matrix 
 
Events: One transaction of commodity is an event. 

That is an Event equals one Transaction containing 

various Items. Event Database (D): An event T in D 

can be shown as Ti , Where Ti is unique in the whole 

Database. First step in this improved apriori is to make 

a Matrix library. The matrix library (mat) contains a 

binary representation where 1 indicates presence of 

item in transaction and 0 indicates the absence. 

Assume that in the event Matrix library of database D, 

the matrix is A mxn , then the corresponding BOOL 

data item set of item Ij(1<= j <= n)in Matrix Amxn is 

the mat of Ij, Mati is items in the mat. Table 8 shows 

the Sample database and the 3rd column is binary 

representation of the items in the transaction  

 
 Table 8   SAMPLE DATA BASE 
 

TID    List of Items  I1  I2  I3  I4   I5 

T1 I1, I3, I4 1    0   1   1   0 

T2 I2, I3 0    1   1   0   0 

T3 I5, I2 0    1   0   0   1 

T4 I2, I3 0    1   1   0   0 

T5 I3, I4, I5 0    0   1   1   1 

T6 I2, I4 0    1   0   1   0 

T7 I4, I5 0    0   0   1   1 

T8 I2, I1, I5 1    1   0   0   1 

T9 I3, I4, I5 0    0   1   1   1 

Items Support count 

{A, B}  1 

{A, C}  2 

{A, E}  1 

{B, C}  2 

{B, E}  3 

{C, E}  2 

Items Support count 

{A, C}  2 

{B, C}  2 

{B, E}  3 

{C, E}  2 
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For 1-itemset matrix represented is used (i.e.)  

MAT(I1) = 100000010  

MAT(I2) = 011101010  

MAT(I3) = 110110001  

MAT(I4) = 100011101 

MAT(I5) = 001010111 
 
Now by counting the number of 1’s in the matrix we 

can easily find the occurance of that item.  

For 2-itemset we can multiply the binary 

representation of the items to get the occurance of that 

items together. To find how many times item Ij and Ik 

are appearing together we have to multiply the 

MAT(Ij) and MAT(Ik). (i.e) MAT(Ij ,Ik)=MAT(Ij) * 

MAT(Ik).   

 

MAT(I3,I4) = MAT(I2) * MAT(I4) = 011101010 * 

100011101 = 000001000 

MAT(I3,I4) = 000001000 

 

Then support of these two items can be calculated as 

follows:  

Support (I3,I4)= (Nos. of times Appearing 

together/Tot. Transaction) = 1 / 9 Similarly the same 

procedure can be followed for all possible itemset. 

This algorithm needs to scan the database only once 

and also does not require to find the candidate set 

when searching for frequent itemset.Table 9 provides 

the computational time of Apriori and improved 

apriori.  

 
         Table 9 
 

Record 

number  

Apriori 

Computing 

time(ms)  

Improved Apriori 

Computing time(ms)  

500 1787 35 

1000 8187 108 

1500 44444 178 

2000 46288 214 

2500 97467 292 

3000 199253 407 

3500 226558 467 

4000 310379 569 

5000 155243 470 

 
3.2  Optimized Algorithm 
 
In the Apriori algorithm, Ck-1 is compared with 

support level once it was found. Item sets less than the 

support level will be pruned and Lk-1 will come out 

which will connect with itself and lead to Ck. The 

optimized algorithm is that, before the candidate item 

sets Ck come out, further prune Lk-1, count the times 

of all items occurred in Lk-1, delete item sets with this 

number less than k-1 in Lk-1. In this way, the number 

of connecting items sets will decrease, so that the 

number of candidate items will decline. 

   
 The Realization of Algorithm 
  According to the properties of frequent item 

sets, this algorithm declines the number of candidate 

item sets further. In other words, prune Lk-1 before Ck 

occur using Lk-1. This algorithm can also be described 

as following:  

Count the number of the times of items occur in Lk-1 

(this process can be done while scan data D);  

Delete item sets with this number less than k-1 in Lk-1 

to get Lk-1. To distinguish, this process is called Prune 

1 in this study, which is the prune before candidate 

item sets occur; the process in Apriori algorithm is 

called Prune 2, which is the prune after candidate item 

sets occur. Thus, to find out the k candidate item sets, 

the following algorithm can be taken: 
 
Prune l(Lk-1), that is executing Prune 1 to Lk-1; 

           Use Lk-1 to connect with its elements and get 

the k 

           candidate item sets Ck; 

           Prune 2(Ck), that is executing Prune 2 to and 

finally get the k items candidate set which should 

calculate its support level 

          (the superset of k items frequent set) 

          The following is the description of the 

optimized 

           algorithm: 

  Input:   affairs database D: minimum support level 

threshold is minsup 

Output: frequent item sets L in D 

1) L1=frequent_1-itemsets(D); 

2) For (k=2;Lk-1≠φ;k++); 

3) Prune1(Lk-1); 

4) Ck=apriori_gen(Lk-1;minsup); 

5) for all transactions t∈D 

{ 

6) C= sumset (Ck,t); find out the subset including Ck 

7) for all candidates c∈Ct 

8) { c.count ++; } 

9) Lk ={c∈Ck|c.count≥minsup} //result of Prune 

2(Ck) } } 

10) Return Answer∪k Lk 

 

Algorithm: Prune Function: 
 

Input: set k-1 frequent items of Lk-1 as input parameter 

Output: go back and delete item sets with this number 

less 

than k-1 in Lk-1 

Procedure Prune 1(Lk-1) 

1) for all itemsets L1∈Lk-1 

2) if count(L1)≤k-1 

3) then delete all Lj from Lk-1 (L1∈Lk-1) 

4) reture L'k-1 // go back and delete item sets with this 

number less than k-1 in Lk-1 
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Chart 3-1 shows the process of the algorithm finding 

out the frequent item sets, the minimum support level 

is 2. 
 

                     TABLE 10: CANDIDATE ITEM SETS C1   

  FREQUENT ITEM SETS L1 

TID ITEM LIST 

T1 A, B, C 

T2 A, B, C, D 

T3 A, B, D, E 

T4 B, E, F 

T5 A, B, D, F 

T6 A, C, D, E 

 

      From the above dataset, the Candidate Item Set C2 
 

   Table 11 

ITEM SET SUPPORT 

LEVEL 

ITEM 

SET 

SUPPORT 

LEVEL 

A, B 4 B, F 2 

A, C 2 C, D 2 

A, D 5 C, E 1 

A, E 2 C, F 0 

A, F 1 D, E 2 

B, C 1 D, F 1 

B, D 4 E, F 1 

B, E 2   

 

 Occur Frequent Item Set L2 
  Table 12 

ITEM 

SET 

SUPPORT 

LEVEL 

ITEM SET SUPPORT 

LEVEL 

A, B 4 B, E 2 

A, C 2 B, F 2 

A, D 5 C, D 2 

A, E 2 D, E 2 

B, D 4   
 

Now further prune the candidate table, by counting the 

items and compariong it with the minimum support 

count. 
 

        Table 13 

ITEM SUPPORT LEVEL 

A 4 

B 4 

C 2 

D 4 

E 3 

F 1 

As item F has lower support count than the minimum 

support count,    remove the itemsets which contain F 

in them. 

 

 L’2 after further pruning 

 
              Table 14 

ITEM 

SET 

SUPPORT 

LEVEL 

ITEM SET SUPPORT 

LEVEL 

A, B 4 B, E 2 

A, C 2 C, D 2 

A, D 5 D, E 2 

A, E 2   

B, D 4   

 

 Occur Candidate Item Set C3 
            Table 15 

ITEM 

SET 

SUPPORT 

LEVEL 

ITEM SET SUPPORT 

LEVEL 

A, B, C 1 A, D, E 2 

A, B, D 4 B, D, E 1 

A, B, E 1 B, C, D 1 

A, C, D 2 C, D, E 1 

A, C, E 1   

 
 After pruning 

  Table 16 

ITEM SET SUPPORT 

LEVEL 

A, B, D 4 

A, C, D 2 

A, D, E 2 

 
Further pruning, by counting the items after pruning is 

empty 

 
             Table 17 

ITEM SET SUPPORT LEVEL 

A 3 

B 1 

C 1 

D 3 

E 1 

  
Advantage of the optimized Algorithm: The basic 

thought of this optimized algorithm is similar with the 

apirori algorithm, which is they all get the frequent 

item set L1 which has support level larger or equal to 

the given level of the users via scan the database D. 
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Then repeat that process and get L2，L3……Lk. 

 But they also have differences. The 

optimized algorithm prunes Lk-1 before Ck is 

consisted. In other words, count the frequent item set 

Lk-1 which is going to connect. According to the 

result delete item sets with this number less than k-1 

in Lk-1 to decrease the number of the connecting item 

set and remove some element that is not satisfied the 

conditions. This will decrease the possibility of 

combination, decline the number of candidate item 

sets in Ck, and reduce the times to repeat the process. 

For large database, this algorithm can obviously save 

time cost and increase the efficiency of data mining. 

This is what Apriori algorithm do not have.  

 Although this process can decline the number 

of candidate item sets in Ck and reduce time cost of 

data mining, the price of it is pruning frequent item 

set, which could cost certain time. For dense database 

(such as, telecom, population census, etc.), as large 

amounts of long forms occur, the efficiency of this 

algorithm is higher than Apriori obviously. 

 

3.3  Matrix based Algorithm 
 
The method we propose involves the mapping of the 

In items and Tm transaction from the database into a 

matrix A with size mxn. The rows of the matrix 

represent the transaction and the columns of the 

matrix represent the items. The elements of matrix A 

are: 

  

  A= [aij] = 1, if transaction i has item j  

   = 0, otherwise  

 

 We assume that minimum support and 

minimum confidence is provided beforehand.  

 

 In matrix A, The sum of the jth column 

vector gives the support of j thitem.  

And the sum of the ith row vector gives the S-O-T, 

that is, size of ith transaction (no. of items in the 

transaction).  

 Now we generate the item sets.  

  

 For, 1–frequent item set, we check if the 

column sum of each column is greater than minimum 

support. If not, the column is deleted. All rows with 

rowsum=1 (S-O-T) are also deleted. Resultant matrix 

will represent the 1- frequent item set.  

 Now, to find 2-frequent itemsets, columns 

are merged by AND-ing their values. The resultant 

matrix will have only those columns whose 

columnsum>=min_support. Additionally, all rows 

with rowsum=2 are deleted. Similarly the kth frequent 

item is found by merging columns and deleting all 

resultant columns with columnsum <min_support and 

rowsum=k.When matrix A has 1 column remaining, 

that will give the kth frequent item set  
 

Algorithm 
1. Create matrix A 

2. Set n=1 

3. While(n<=k)  

  If(columnsum(colj<min_support) 

  If(rowsum(row i)==n)  

   Delete row i; 

         Merge(col j, col j+1) 

         n=n+1  

4. end while 

5. display A 

Consider the following example: 

 
 Table 18 

Transactions Items 

T1 A, B, E 

T2 B, C, D 

T3 C, D 

T4 A, B, C, D 

 

The above example shows the number of transactions 

and items in table. Consider minimum support to be 

given as 2. Now, we will draw the matrix from above 

table to show the occurrence of each item in particular 

transaction, i.e.:  
 

 

 

 

 

 

 

 
Now, to find 1-frequent item set, remove those 

columns whose sum is less than minimum support i.e. 

2 and those rows that sum is equal to finding frequent 

item set which is 1 for above case. So, the matrix after 

removing particular row and column would be:  
 

 

 

 

 

 

 

 

 
So, the above matrix represents the items present in 1-

freq item set. Combine the item by taking AND to get 

matrix of 2-freq item set, which can be represented as:  
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Now, after removing rows and columns following the 

above method, the reduced matrix would be like:  
 

 

 

 

 

 

 
 

For finding 3-frequent set, follow the same procedure 

and combine item sets as follow:  
 

 

 

 

 

 

 

 
Remove those columns whose sum is less then 2(min 

support) and those rows whose sum is less than 3, so 

the reduced matrix is:So, this is the final reduced 

matrix for above given example. The final frequent 

item set (3-freq item set) is BCD.  
 
IV Conclusion and Future scope  
 
In this paper, Apriori algorithm is improved based on 

the properties of cutting database. The typical Apriori 

algorithm has performance bottleneck in the massive 

data processing so that we need to optimize the 

algorithm with variety of methods. The improved 

algorithm we proposed in this paper not only 

optimizes the algorithm of reducing the size of the 

candidate set of k-itemsets, but also reduce the I / O 

spending by cutting down transaction records in the 

database. The performance of Apriori algorithm is 

optimized so that we can mine association information 

from massive data faster and better. Although this 

improved algorithm has optimized and efficient but it 

has overhead to manage the new database after every 

generation of Matrix. So, there should be some 

approach which has very less number of scans of 

database. Another solution might be division of large 

database among processors.  
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