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Abstract— Water treatment and distribution is undoubtedly of 
high priority to ensure that communities could gain access to safe 
and affordable drinking water. Therefore the distribution 
network should be designed systematically. We propose a 
nonlinear stochastic optimization model for tackling this 
problem under the consideration of reliability in water flows. 
The nonlinearities arise through pressure drop equation. We 
adopt sampling and integer programming based approch for 
solving the model. A direct search algorithm is used to solve the 
integer part.  
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I. INTRODUCTION 

This document is a template.  An electronic copy 
can be downloaded from the conference website.  
For questions on paper guidelines, please contact 
the conference publications committee as indicated 
on the conference website.  Information about final 
paper submission is available from the conference 
website. 

One fundamental issue regarding to the increase 
of population correlated to the increase of industrial 
and agriculture activities has motivated the need for 
a more rational use of water resources. A well 
planned of water resources development, their 
distribution, and their utilization has been put 
forward for research, particularly in North Sumatera 
Province, Indonesia. This type of plan belongs to 
the management of what is called Water Resources 
Management (WRM). Traditionally, the objectives 
of WRM are to preserve limited water resources 
and to utilize them effectively based on 
environmental consideration. From mathematical 
point of view we can cast the WRM problem as an 
optimization model ([15], [16], [17]). In real world 
situation, particularly in North Sumatera Province, 

the WRM problems contain a multiperiod feature. 
In this case the associated mathematical 
optimization models consist of thousand of 
constraints and variables depending on the level of 
adherence required in order to reach a significant 
representation of the system. Another complicated 
situation, these problems are typically characterized 
by a level of uncertainty about the value of 
hydrological exogenous inflows and demand 
patterns. On the other hand inadequate values 
assigned to them could invalidate the results of 
the study. When the statistical information on 
data estimation is not enough to support a 
stochastic model or when probabilistic rules  are  
not  available,  an  alternative  approach could be in 
practice that of setting up the scenario analysis 
technique [2], [7], and [5]. The scenario generating 
approach considers a set of statistically 
independent scenarios, and exploits the inner 
structure of their temporal evolution in order to 
obtain a robust decision [13]. Another examples of 
scenario approach in WR management can found 
in [12] and [14]. 

In this paper we treated the uncertainties in 
demand and water flow to be in reliability pattern. 
Therfore, in this case, the optimization model of 
WRM considering reliability can be written as a 
stochastic constrained programming (SCP). [19]  
who firstly proposed SCP. This type of 
programming is mainly concerned with the 
problem in which decision maker must give a 
decision before the random variables are revealed. 
The decision may not satisfy the reliability 
constraints in some degree, but the probability of 
decision satisfying these constraints cannot be less 
than some given confidence level α. 
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Traditionally, we can solve the SCP by 
converting the stochastic problem into an 
equivalent deterministic linear programming, and 
then we solve the result using deterministic 
algorithm [18]. However, generally SCP cannot be 
converted into deterministic linear programming 
and convex programming. Under some assumption 
it is possible to write a mixed integer programming 
(MIP) model for SCP [20].In this paper we solve 
the MIP problem using direct search approach. 

 

II. MODEL FORMULATION  

A.  For Deterministic Case  
Firstly  we formulate a WRM model in a 

deterministic framework Meaning that we have  a  
previous  knowledge  of  the  time sequence of 
inflows and demand. For a wider time horizon we 
could extend sufficiently the analysis by We 
extend the analysis to a sufficiently by assuming 
a time step (period), t. In order to get a 
representative of the variability of hydrological 
inflows and water demands in the system, the 
scale and number of time-steps considered 
must be adequate. Due to the static form,we 
should be able to represent the physical system by 
a direct graph. In graph, nodes could represent 
sources, demands, reservoirs, water resources ,  
hydropower station site, etc. A dynamic 
multiperiod network derived by replicating the 
basic graph for each period supports the dynamic 
problem. We then connect the corresponding 
reservoir nodes for different consecutive periods 
by additional arcs carrying water stored at the 
end of each period.  
The elements considered in the mathematical 
formulation are not expressed in detail. 
However, the reduced model is still adequate to 
reveal the uncertainties in WRM.   

It is understood that  to define a general 
mathematical model for WRM problem quite 
difficult , It can be seen in the model that we  take 
into  account  the  elements of a system as 
general as possible based on the most typical 
characterization of a problem considered. 
Different elements can be considered or 
ignored updating constraints and objective. In 
this paper we describe only some of them. For  

detailed description of this approach can be found 
in [14], [8], and [6]. In the following we refer to the 
dynamic network G = (N, E) where N is the set of 
nodes and E is the set of arcs. T represents the set 
of time-steps t. 
 
Nomenclature. 

 
Set (Nodes) : 

rN  set  of  reservoir  nodes:  the set  represents 
surface  water  resources along with 
 storage capacity. 

dN     set of demand nodes: these are for 
civil and industrial  irrigation  among  
others.  

hN  set of hydroelectric nodes: these are for  
non-consumptive nodes associated with 
hydroelectric plants 

cN  set of confluence nodes: for example,  
river confluence, withdraw connections 
for demands satisfaction, etc. 

R  set of capacitated arcs: arcs with flow that 
provide a cost or a benefit per  unit  of  
flow. 

TF    set  of    arcs  which transfer works in 
operational or in project state. 

There are other sets of arcs are, such as, 
emergency transfers, spilling arcs, among others 
  
Parameters for rN  

maxjY   max storage volume for inter-periods 
transfer. 

max
t
j   ratio between max volume usable in each 

period t and the reservoir capacity. 

min
t
j   ratio between min stored volume in each 

period and reservoir capacity. 
j  gradient of the relationship between the 

reservoir surfaces and volumes. 
jl   evaporation losses per unit of reservoir 

surface. 
t
jinp   hydrological input to the reservoir 
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t
jc  spilling cost 

jM   max allowed capacity 

jm   min allowed capacity 

j  construction costs;  
 
Parameter for dN  

jP  population 
t
jd  unitary demand 
t
j  request program 

jc  deficit cost; 

maxjP  max population 

minjP   min population 

j  net construction benefits 

j           operating cost; 
 
Parameters for  hN  

jH  production capacity. 
t
j   production program . 

jb   production benefit. 

maxjH   max production capacity 

minjH  min production capacity 

j  construction cost; required data for a 
confluence node j: 

t
jI  hydrologic input (if arcs are natural 

streams);  
 
Parameter for TF 

aF  transfer capacity 

max
t
a   ratio between max transferred volumes and 

capacity 

min
t
a   ratio between min transferred volumes and 

capacity 
ac  operating cost. 

maxaF  max transfer capacity 

minaF  min transfer capacity  

a  construction cost 
 
Variables 

We can devide the variables considered in the 
model as flow and project variables.  Flow 
variables may refer to different type of water 
transfer such as: water-transfer in space along arc 
connecting different nodes at the same time, water 
transfer in arc connecting homologous nodes at 
different time and so on.  Other variables which 
refer to the project state and they are associated 
to the dimension of future works: reservoirs 
capacities, pipes dimensions, irrigation areas, are 
called project variables Constraints in the model 
include: mass balance equations, demands for the 
centers of water consumption, evaporation at 
reservoirs, conservation of mass, and conservation 
of energy. Relations between flows variables and 
planning works, upper and lower bounds on 
decision variables. Therefore we can define some 
variables and corresponding constraints as follows. 
 t

jy  portion of stored water at reservoir k at the 
end of period t that can be used in next    
periods.  

 
t
jp  water demand at civil demand center j in 

period t.  

ht
j  water trough hydropower plant j 

(hydroelectric power station) in period t.  
t
ax  flow on arc a.  

 
Due to  the multiperiod dynamic network 

structure, mass balance constraints are defined 
in each node i N . Moreover, lower and upper 
bounds constraints are defined in some arcs 
a A  to represent some particular limits as for 
transfer arcs TF. 
 
 
Constraints 
For  each time period t, there are several constraints 
needed. 
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min max max min
t t t
k j j k jY y Y    

this  constraints  ensures  that,  in  each period, 
the used volume   of the reservoir k  be  in  the  
prescribed  range.  In an operational state is a 
data while in a project state it is a decision 
variable. In the last case it is bounded by: 

max ,    j j j rm Y M j N     

Constraints to ensure the fulfillment of the demand. 
 

,   t t t
j j j j dp d P j N    

 jP  is a data while in a project state it is a 
decision variable. In the last case it is bounded 
by:  

min max ,j j j dP P P j N     

Cosntarints for flow on production capacity. 

,   t t
j j j j hh H j N     

In an operational state jH  is a data while in a 
project state it is a decision variable. In the last 
case it is bounded by: 

min max ,   j j j hH H H j N     

 
Constraint  for transferred volume 

min max ,   t t t
a a a a aF x F a    TF  

In this constraints  the transferred volume in arc a 
should be in the prescribed range. In project state 

aF  is a decision variable. It is bounded  by: 

min max ,   a a aF F F a   TF  
 
Water flow for each arc in each period t 
should meet civil water demand. This 
can be written as 
             ,t t

a j a
a TF

x d p a TF


    

 
 

It is necessarily to include conservation of mass 
in the network system. Normally, conservation of 
mass states that, for a steady system, the flow into 

and out of the system must be the same. This 
relationship must be met for the entire network and 
for individual nodes. A node is included in a 
network model at (1) a demand location and/or (2) a 
junction where two or more pipes combine. The 
mass balance equation is written for each node in 
the network as: 

in out demandQ Q Q    

where Qin and Qout are the flows in pipes entering or 
exiting the node and Qdemand is civil demand at that 
location. These demands are uncertain since they 
are estimated from the local user base that cannot 
be predicted exactly since they vary nearly 
continually. In addition, the demand is typically 
represented as a lumped demand for users near the 
node. 

The second important governing equation is a 
form of conservation of energy that describes the 
relationship between the energy loss and pipe flow. 
The most commonly used head loss equation for 
water networks, the Hazen-William s equation, will 
be the only such relationship considered in this 
paper. In English units, the equation is written as: 

4.73

1.852 4.87

4.73
i j l

LQH H h
C D

    

where D is the pipe diameter, L is the pipe length, Q 
is the pipe flow, and C is the Hazen-Williams pipe 
roughness coefficient. hl is the head or energy loss 
in the pipe. Hi and Hj are the energy at nodes at the 
ends of the pipe measured in dimensions of length. 
Using this equation, conservation of energy can be 
written in several ways. Most often, it is written for 
energy loss around a loop. The two conservation 
relationships can be used to develop a set of 
nonlinear equations that can be solved for the pipe 
flows, Q, and nodal heads, H. 

 
Objective function 

The  objective  function  considers  weights  
on variables,  that  is  costs  and  benefits  as  well 
as penalties, associated to flow and project 
variables. Following simplified notation defined in 
this paper the objective function is expressed as: 
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max
r d d

d

j j j j j j a a
j N j N j N a

t
a a j j

a j N

Min Y P H F

c x H

   


   

 

   



   

 
TF

R

 

B. For chance dynamic model 

The presented model is called chance-model 
to put in evidence that we need assurance that 
water demand and water flow are met as expected. 
Therefore the model will take what is called 
chance constrained programming. 

In the next section, we address the stochastic 
chance constraint programming and how to solve 
the problem.  
 

III. CHANCE CONSTRAINED 
PROGRAMMING 

 
Mathematically a chance-constrained 

optimization problem can be formulated as follows 
[4]. 
 
min ( )  subject to  Pr{W( , ) 0} 1 (1)
x X

f x x  


  
      

   
 

where nX R  is defined as a deterministic feasible 
region, : nf R R  represents the objective to be 
minimized,   is a random vector whose probability 
distribution is supported on set nR  ,  

: n d mW R R R   is a constraint mapping, 0 is an 
m-dimensional vector of zeroes, and  0,1   is a 
confidence parameter. Problem (1) seeks a decision 
vector x from the feasible set X that minimizes the 
function  f x  while satisfying the chance 

constraint  , 0W x    with probability at least 
1  .  The probability distribution of   is assumed 
to be known. 

From the model of water distribution network 
mentioned earlier, there are two constraints can be 
written as probabilistic constraint, such as: 

 
 

Pr 1

Pr 1

l l
j j j j

l l
j j j j

p d P

h H

 

  

  

  
 

In this paper we consider an approximation of 
the chance constraint problem (1) where the true 

distribution of  is replaced by an empirical 
distribution corresponding to a Monte Carlo sample. 
In this case a sample average approximation 
problem can be used for solving the problem. The 
sampled approximation problem is a chance-
constrained problem with a discrete distribution and 
can be quite difficult. We address an integer 
programming based approaches for solving it. 

IV.SAMPLE AVERAGE APPROXIMATION 

For simplicity, we assume, that the constraint 
function W : n dR R R   in (1) is scalar valued. 
Some constraints  Wi(x, )  0, i = 1, …, m, can be 
equivalently replaced by one constraint W(x, ) := 
max1im Wi(x, )  0. The chance-constrained 
stochastic program (1) can be rewritten as 

min ( ) subject to ( ) (2)
x X

f x q x 



             

 
where q(x) := Pr{W(x, ) > 0} 

Now let 1, … N be an independent identically 
distributed (iid) sample of N realizations of random 
vector . Given x  X  define 

1
(0, )1

ˆ ( ) : 1 ( ( , )),
N

j
N j

q x N W x 


   

where (0, )1 : R R   is the indicator function of (0, 
). That is, ˆ ( )Nq x  is equal to the proportion of 
realizations with ( , )jW x   > 0 in the sample. For 
some given   (0, 1) consider the following 
optimization problem associated with a sample 
1, …, N, 

ˆmin ( ) subject to ( ) (3)Nx X
f x q x 




         
 

we can say that the problems (2) and (3) as the true 
and sampled average approximate (SAA) problems, 
respectively, at the respective risk levels  and . 

From the model, it is assumed that X is compact, 
f(.) is continuous, W(x, .) is measurable function for 
every nx R , and ( , )W   is continuous for almost 
every ξ . Then the functions q(x) and ˆ ( )Nq x  are 
lower-semicontinuous, and the true problem (1) and 
the SAA problem (3) are guaranteed to have 
optimal solutions if they are feasible. Let X*() and 
ˆ ( )NX   denote the set of optimal solutions of the 

true and SAA problems, respectively, v() and 
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ˆ ( )Nv   denote the optimal value of the true and 
SAA problems, respectively. 

III. SOLVING SAMPLE APPROXIMATIONS 

As mentioned in the previous Section that we 
can generate as well as validate candidate solutions 
to the chance constrained problem (2) by solving 
(several) sampled approximations. In this section 
we discuss  approaches for solving these problems. 

If   = 0, from Eq. (3)  the SAA problem reduces 
to 
  
min ( ) subject to ( , ) 0, 1,..., (4)j

x X
f x W x j N


 

   
 (5) 
When the functions f() and W(, j) for  j = 1, …, 

N are convex (linear) and the set X is convex 
(polyhedral) then (4) is a convex (linear) program, 
and can be solved  using the usual method. We can 
then consider increasing the risk level  in the SAA 
problem. However with  > 0 the SAA problem is a 
chance constrained optimization problem (with a 
finite distribution) and is NP-hard even in very 
simple settings [18]. In this paper we consider an 
integer programming based approach. 

The SAA problem (3) can be formulated as the 
following mixed-integer problem (MIP) 

1

min ( )
Subject to

( , ) 1,...,

{0,1}

j
j j

N

jj

j

f x

W x M z j N

z N

z

x X






 

 



              (5)
 (6) 
where zj is a binary variables and Mj is a large 
positive number such that Mj  maxxX W(x, j) for 
all j = 1, …, N. Note that if zj is 0 then the 
constraint W(x, j)  0 corresponding to the 
realization j in the sample is enforced. On the other 
hand zj = 1 does not pose any restriction on W(x, j). 
The cardinality constraint 1

N
j jz N   requires that 

at least N of the N constraints W(x, j)  0  for j = 
1, …, N are enforced. 

Even in a linear setting (i.e., the functions f and 
W are linear in x and the set X is polyhedral) 
moderate sized instances of the MIP (10) are 
typically very difficult to solve. The difficulty is 
due to the fact that the continuous relaxation of (5) 
(obtained by dropping the integrality restriction on 
the z variables) provides a weak relaxation, and 
hence slows down the branch-and-bound algorithm. 
This difficulty can be alleviated by strengthening 
the formulation (5) by addition of valid inequalities 
or reformulation. Such improved formulations have 
tighter continuous relaxation gaps and can serve to 
significantly cut down solve times. 

A variety of approaches for strengthening special 
classes of the MIP (5) have been proposed. Here we 
discuss an approach for the case of joint 
probabilistic constraints where the uncertain 
parameters only appear on the right-hand side, i.e., 

1,...,
( , ) max{ ( )}i ii m

W x W x 


   

Note that the facility sizing example (2) is of this 
form. By appropriately translating, we assume that 

0i
j   for all i and j. The MIP (5) can then be 

written as 

   

1

min ( )
subject to     

( ) 1,...,

1,..., , 1,...,

{0,1} 1,...,

, 0 1,...,

i i
j j

i i j i

N
j j

j

i

f x

W x v i m
v z i m j N

z N
z j N
x X v i m

 



 

   

 

 

   (6)
 

Note that we have introduced the auxiliary 
variables vi for i = 1, …, m to conveniently 
represent Wi(x). As before, if zj is 0 then the 
constraints ( ) j

i iW x  for i = 1, …, m corresponding 
to the realization j in the sample is enforced. 

V.THE ALGORITHM 

Let  x x fr  , 0 1fr   be the (continuous) 

solution of the relaxed problem,  x  is the integer 
component of non-integer variable x  and fr  is the 
fractional component. 
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Step 1. Get row *i  the smallest integer 
infeasibility, such that 

 * * *min ,1i i if f    

Step 2. Do a pricing operation  * *
1T T

i iv e B .  

Step 3. Calculate *
T

ij jiv a   with j  corresponds to 

min j
j

ij

d


  
 
  

  

I. For nonbasic j  at lower bound 
If 0ij   and * ii

f   calculate 

 *1
i

ij






 


 

If  0ij    and * 1 ii
f    calculate 

 *1
i

ij






   

If  0ij    and * 1 ii
f    calculate 

*i

ij




 


 

If  0ij   and * ii
f   calculate 

*i

ij




   

II. For nonbasic j  at upper  bound 
If 0ij   and * 1 ii

f    calculate 

 *1
i

ij






 


 

If  0ij    and * ii
f   calculate 

 *1
i

ij






   

If  0ij   and * 1 ii
f    calculate 

*i

ij




   

If  0ij    and * ii
f   calculate 

*i

ij




 


 

Otherwise go to next non-integer nonbasic 
or superbasic j  (if available). Eventually 

the column *j  is to be increased form LB 
or decreased from UB. If none go to next 

*i . 
Step 4. Calculate * *

1
j j

B a   i.e. solve 

* *j jB   for *j . 

Step 5. Ratio test; there would be three 
possibilities for the basic variables in order 
to stay feasible due to the releasing of 
nonbasic *j  from its bounds. 

 If  *j  lower bound 

 Let '

*
* *

'

' | 0
min i

ij

B i

i i
ij

x l
A

  

    
  

, 

'

*
* *

'

' | 0
min i

ij

i B

i i
ij

u x
B

 


 

      
, C    

 The maximum movement of *j  
depends on:  * min , ,A B C   

 If  *j  upper bound 

 Let '

*
* *

'

' | 0
' min i

ij

B i

i i
ij

x l
A

  

    
  

, 

'

*
* *

'

' | 0
' min i

ij

i B

i i
ij

u x
B

 


 

      
, 'C    

 The maximum movement of j* depends 
on:   * min ', ', 'A B C   

Step 6. Exchanging basis for the three possibilities 
 1.  If A  or 'A  

 
'iBx  becomes nonbasic at lower 

bound 'il  
 *jx  becomes basic (replaces 

'iBx ) 

 *i
x  stays basic (non-integer) 

 2.  If B  or 'B  

 
'iBx  becomes nonbasic at upper 

bound 'iu  
 *j

x  becomes basic (replaces 
'iBx ) 

 *ix  stays basic (non-integer) 



International Journal of Computer Trends and Technology (IJCTT) – volume 17 Number 4 Nov 2014 

ISSN: 2231-5381                    http://www.ijcttjournal.org  Page 189 

 3.  If C  or 'C  

 *j
x  becomes basic (replaces *ix ) 

 *ix  becomes superbasic at integer-
valued 

 Repeat from step 1. 
              Stop if there are no infeasible basic 

variable to be processed. 

VI. CONCLUSIONS  

This paper presents a chance constrained 
programming model for water resources 
management planning. We use sample average 
approximation to transform the stochastic model 
to become a deterministic mixed integer 
programming. Then we use a direct search 
approach for solving the result model. 
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