
 International Journal of Computer Trends and Technology Volume 71 Issue 7, 22-28, July 2023

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V71I7P104 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Framework for Continuous Testing

Divyeshkumar Patel

Financial Institute, North Carolina, USA.

Received: 22 May 2023 Revised: 28 June 2023 Accepted: 10 July 2023 Published: 27 July 2023

Abstract - In today's digital era, organizations increasingly embrace the DevOps approach for software development and

maintenance, with a strong emphasis on test automation. DevOps fosters seamless collaboration among teams, while test

automation is pivotal in ensuring superior software quality. This article delves into the significance of DevOps, its

comprehensive workflow, lifecycle, and the suite of tools employed. By conducting a comparative analysis of different testing

methodologies, the undeniable superiority of test automation is highlighted. Moreover, the article delves deep into the

intricacies of implementing test automation within the DevOps framework. It explores various testing approaches, underscores

the compelling need for automation testing, outlines the stages involved in successful automation, emphasizes the importance

of quality assurance (QA) in achieving reliable testing outcomes, unveils effective strategies for implementing automation

testing, showcases a range of cutting-edge testing tools, and addresses the challenges encountered along the way. By

providing a comprehensive overview of test automation within the context of DevOps, this article equips readers with valuable

insights and practical knowledge to drive successful software development initiatives in today's fast-paced and competitive

landscape.

Keywords - DevOps, Continuous testing, Automation, Framework, CI/CD tool, Test automation.

1. Introduction
Continuous testing, coupled with automation, plays a

vital role in DevOps practices by enabling development

teams to test software code regularly and automatically. This

proactive approach helps identify defects and vulnerabilities

early in the development cycle, leading to reduced time and

cost in software delivery and improved software quality.

2. About DevOps
DevOps is an approach that unifies software

development and IT operations to facilitate the efficient

delivery of software applications and services. DevOps

fosters collaboration and integration throughout the software

development cycle by breaking down barriers between

development and operations teams. In a DevOps

environment, development and operations teams work

closely together, sharing responsibilities and striving towards

common objectives. They collaborate on tasks like

continuous integration, continuous delivery, automation of

infrastructure, and proactive monitoring. This collaborative

approach enhances efficiency, flexibility, and software

quality, enabling organizations to rapidly and reliably

provide value to their customers. Fundamental principles of

DevOps include automation, which eliminates manual tasks

to boost efficiency and reduce errors; continuous integration,

where developers frequently merge their code changes into a

shared repository to identify bugs early on; continuous

delivery, which automates the build, testing, and deployment

of code changes to production environments; and continuous

monitoring, which proactively identifies and resolves issues

in systems. DevOps also promotes a culture of ongoing

learning and improvement, leveraging feedback loops and

data-driven insights to drive iterative enhancements in

processes and systems. Collaboration, transparency, and

shared ownership are core tenets of the DevOps mindset.

Ultimately, DevOps bridges the gap between development

and operations, empowering organizations to deliver

software applications and services with shorter time-to-

market, enhanced quality, and increased customer

satisfaction.

2.1. DevOps Stages

DevOps implementation involves several stages

organizations go through to adopt and integrate DevOps

practices into their software development processes.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Divyeshkumar Patel / IJCTT, 71(7), 22-28, 2023

23

2.1.1. Development

This phase focuses on writing code and building

software. Developers follow agile methodologies, such as

Scrum or Kanban, to break down tasks into manageable units

called user stories. They collaborate closely with operations

teams to ensure the software is designed for optimal

deployment and maintainability.

2.1.2. Continuous Integration (CI)

Continuous Integration is a crucial aspect of the DevOps

development stage. Developers regularly integrate their code

changes into a shared repository, enabling automatic builds

and tests. CI systems, such as Jenkins or GitLab CI/CD,

automatically compile code, run tests, and provide feedback

on the code quality. This practice helps identify and address

integration issues early in the development cycle.

2.1.3. Continuous Testing (CT)

Continuous Testing ensures that software is thoroughly

tested throughout the development process. Testers create

automated test scripts and perform unit tests, integration

tests, and system tests. They leverage tools like Selenium,

JUnit, or PyTest to automate testing and ensure that any code

changes do not break existing functionality. Continuous

Testing reduces the risk of introducing bugs and improves

the overall quality of the software.

2.1.4. Continuous Deployment (CD)

Continuous Deployment focuses on automating the

release and deployment process. Once the code passes all

tests, it is automatically deployed to production or staging

environments using tools like Kubernetes, Docker, or

Ansible. This practice enables faster and more frequent

releases, reducing the time between feature development and

its availability to end-users.

2.1.5. Monitoring

Monitoring is a vital aspect of the DevOps lifecycle,

ensuring the smooth operation of software systems and

enabling proactive identification and resolution of issues.

The monitoring stage in DevOps involves the continuous

collection, analysis, and visualization of data related to the

performance, availability, and security of applications and

infrastructure. It provides valuable insights into system

behavior, helps troubleshoot, and supports data-driven

decision-making for further improvements.

2.1.6. Feedback

The feedback stage in DevOps is a crucial part of the

software development lifecycle that focuses on gathering

feedback from end-users, stakeholders, and operations teams

to drive continuous improvement. It involves capturing user

experiences, identifying issues, and incorporating feedback

into the development process. The feedback stage helps

organizations iterate on their software, enhance its usability,

and align it with the evolving needs of the users and the

business.

2.1.7. Operations

The operation stage in DevOps is a critical phase in the

software development lifecycle where the focus shifts

towards the deployment, management, and maintenance of

software systems. It involves activities related to

infrastructure provisioning, configuration management,

monitoring, incident management, and ongoing support. The

operation stage ensures that the software is deployed

successfully, operates smoothly, and meets the required

service levels and performance targets.

The DevOps development stage is iterative and

continuous, driven by the principles of agility, automation,

and collaboration. It enables organizations to deliver

software faster, with higher quality, and improved stability.

By integrating development and operations processes, teams

can respond to market demands more effectively, innovate

rapidly, and deliver value to end-users efficiently.

2.2. DevOps Tools

DevOps tools play a critical role in enabling

organizations to implement and streamline their DevOps

practices. These tools automate and facilitate various stages

of the software development lifecycle, from source code

management to deployment and monitoring. Here is an

overview of the categories and examples of popular DevOps

tools:

Source Code Management Tools:

• Git: A distributed version control system for managing

source code.

• GitHub: A web-based platform for hosting Git

repositories, enabling collaboration and version control.

• Bitbucket: A Git-based repository management solution

with built-in CI/CD capabilities.

• GitLab: A complete DevOps platform that provides

source code management, CI/CD, and container registry

features.

Continuous Integration and Build Tools:

• Jenkins: An extensible automation server that facilitates

continuous integration and delivery.

• CircleCI: A cloud-based CI/CD platform that automates

software builds, tests, and deployments.

• Travis CI: A hosted CI service that integrates with

GitHub for building and testing projects.

• TeamCity: A powerful CI/CD server with advanced

build features and integrations.

Configuration Management and Infrastructure as Code

Tools:

• Ansible: An open-source automation platform that

simplifies configuration management and orchestration.

Divyeshkumar Patel / IJCTT, 71(7), 22-28, 2023

24

• Chef: A powerful configuration management tool that

allows infrastructure automation and application

deployment.

• Puppet: A declarative configuration management tool

that automates infrastructure provisioning and

management.

• Terraform: An infrastructure as a code tool that enables

the provisioning and management of cloud resources.

Containerization and Orchestration Tools:

• Docker: A popular containerization platform that allows

developers to package applications and their

dependencies.

• Kubernetes: An open-source container orchestration

platform that automates deployment, scaling, and

management of containerized applications.

• Docker Compose: A tool for defining and running multi-

container Docker applications.

• Amazon ECS: A fully managed container orchestration

service provided by Amazon Web Services (AWS).

Continuous Deployment and Release Automation Tools:

• Spinnaker: An open-source, multi-cloud continuous

delivery platform for deploying applications with

automated release management.

• Argo CD: A declarative continuous deployment tool for

Kubernetes that automates application updates and

rollbacks.

• AWS CodeDeploy: A fully managed deployment service

by AWS that automates application deployments to EC2

instances and other compute resources.

• Octopus Deploy: A deployment automation and release

management tool that simplifies application

deployments across different environments.

Continuous Testing Tools:

• Selenium: A popular open-source testing framework for

web application testing.

• JUnit: A Java unit testing framework for writing and

running automated tests.

• TestNG: A testing framework for Java that supports

various types of tests, including unit, functional, and

integration tests.

• Cucumber: A behavior-driven development (BDD) tool

for defining and executing acceptance tests in a human-

readable format.

• Tricentis Tosca: A GUI-based codeless test automation

tool.

Monitoring and Log Management Tools:

• Prometheus: An open-source monitoring and alerting

toolkit that collects and analyzes metrics from various

systems.

• Grafana: A visualization and monitoring tool that helps

create dashboards and explore time series data.

• ELK Stack (Elasticsearch, Logstash, Kibana): A popular

open-source log management and analytics platform.

• Datadog: A cloud-based monitoring and analytics

platform that provides real-time insights into application

performance and infrastructure monitoring.

Collaboration and Communication Tools:

• Slack: A team collaboration platform for real-time

messaging and communication.

• Microsoft Teams: A unified communication and

collaboration platform that integrates with various tools

and services.

• Jira: A project management and issue-tracking tool that

helps teams plan, track, and release software.

• Confluence: A collaborative wiki tool for creating,

organizing, and sharing documentation.

Cloud Platforms:

• Amazon Web Services (AWS): A comprehensive cloud

computing platform offering a wide range of services for

infrastructure, storage, databases, and more.

• Microsoft Azure: A cloud platform by Microsoft that

provides infrastructure services, data storage, and

various cloud-based services.

• Google Cloud Platform (GCP): A suite of cloud

computing services offered by Google for computing,

storage, and application development.

• IBM Cloud: A cloud platform by IBM that provides

infrastructure, AI, and data services, among others.

Infrastructure Monitoring and Management Tools:

• Nagios: An open-source monitoring system that

provides comprehensive monitoring and alerting for

networks, servers, and applications.

• Zabbix: An open-source monitoring solution that offers

real-time monitoring, alerting, and visualization of

metrics.

• New Relic: A SaaS-based application performance

monitoring (APM) tool that provides insights into

application performance and user experience.

• Datadog: A cloud-based monitoring and analytics

platform that offers real-time monitoring, alerting, and

infrastructure visibility.

Security and Compliance Tools:

• SonarQube: An open-source platform for continuous

code quality inspection, code analysis, and vulnerability

detection.

• OWASP ZAP: An open-source web application security

scanner for detecting vulnerabilities and security issues.

Divyeshkumar Patel / IJCTT, 71(7), 22-28, 2023

25

• Qualys: A cloud-based security and compliance platform

that helps identify and remediate vulnerabilities in IT

environments.

• Twistlock: A container security platform that provides

vulnerability management, compliance, and runtime

protection for containerized environments.

Version Control and Artifact Repository Tools:

• Nexus Repository: A repository manager that allows

organizations to store, manage, and distribute software

components.

• JFrog Artifactory: A universal artifact repository

manager that supports various package formats and

provides dependency management capabilities.

• GitLab Container Registry: A built-in container registry

provided by GitLab for storing and managing Docker

images.

• AWS Code Commit: A fully managed source control

service by AWS that enables hosting private Git

repositories.

3. Continuous Testing
Continuous testing is a fundamental practice in DevOps

that emphasizes the need for testing to be integrated

throughout the software development lifecycle. It aims to

provide rapid and continuous feedback on the quality of the

software being developed. The following principles underpin

the effective implementation of continuous testing:

3.1. Shift-Left Testing

The principle of shift-left testing advocates for testing

activities to start as early as possible in the software

development process. By involving testers, quality assurance,

and testing activities in the initial stages, such as

requirements gathering and design, defects and issues can be

identified and addressed early, reducing the overall cost and

effort required for testing.

3.2. Test Automation

Automation plays a crucial role in continuous testing. It

enables the execution of tests quickly, repeatedly, and

consistently. Test automation frameworks and tools, such as

Selenium, Appium, or JUnit, are used to automate various

types of tests, including unit tests, integration tests, and

functional tests. Automated tests are executed continuously

as part of the DevOps pipeline, providing prompt feedback

on the quality of the software.

3.3. Test Environments and Test Data Management

Continuous testing requires appropriate test

environments that closely resemble the production

environment. Test environments should be provisioned and

managed efficiently, allowing on-demand availability and

replicability. Additionally, managing test data is crucial to

ensure realistic and representative test scenarios. Test data

should be generated, provisioned, and cleaned up effectively

to support reliable and consistent testing.

3.4. Continuous Integration and Continuous Deployment

Continuous testing is tightly integrated with continuous

integration (CI) and continuous deployment (CD) processes.

As developers integrate their code changes frequently into

the shared codebase, automated tests are triggered to validate

the changes. Continuous deployment ensures that fully tested

and validated code is deployed to production or other

environments continuously and seamlessly.

3.5. Test Orchestration and Test Suite Design

Test orchestration involves coordinating and managing

the execution of tests in an orchestrated manner. It ensures

proper sequencing, parallel execution, and synchronization of

tests across different stages of the pipeline. Test suite design

focuses on creating a well-structured and maintainable test

suite that covers critical functionality, edge cases, and

potential failure scenarios. Test suites should be designed to

provide comprehensive coverage while optimizing execution

time and resource usage.

3.6. Continuous Feedback and Collaboration

Continuous testing fosters a culture of continuous

feedback and collaboration among developers, testers, and

other stakeholders. It encourages effective communication

and close collaboration between these teams to address issues

promptly and iteratively improve the quality of the software.

Prompt feedback from tests helps identify defects,

performance bottlenecks, and other issues, enabling fast

resolution and iterative improvements.

3.7. Monitoring and Production Feedback

Continuous testing is not limited to pre-production

testing. It also extends into the production environment

through monitoring and feedback loops. Real-time

monitoring of production systems helps identify anomalies,

performance degradation, or errors that may impact end-

users. This feedback improves test coverage, refines test

scenarios, and enhances the overall testing strategy.

By adhering to these principles, organizations can

establish a robust and effective continuous testing approach

within their DevOps initiatives. Continuous testing ensures

the delivery of high-quality software, reduces the risk of

defects reaching production, and enables faster and more

frequent releases while maintaining a high level of

confidence in the software's functionality and performance.

4. Challenges to Implement Continues Testing
While continuous testing offers numerous benefits,

implementing it in practice can present several challenges.

Organizations need to address these challenges to ensure the

successful adoption and effective implementation of

continuous testing within their DevOps initiatives. The

Divyeshkumar Patel / IJCTT, 71(7), 22-28, 2023

26

following are some common challenges faced when

implementing continuous testing:

4.1. Test Automation Complexity

Test automation plays a critical role in continuous

testing. However, implementing and maintaining a robust

test automation framework can be complex and time-

consuming. Organizations need to invest in skilled resources

with expertise in test automation tools and frameworks.

Additionally, test scripts and test data need to be created,

updated, and regularly maintained to keep pace with

evolving software changes, which can be a significant effort.

4.2. Test Environment Management

Continuous testing requires access to reliable and

representative test environments that closely mirror the

production environment. Setting up and managing these test

environments can be challenging, especially in complex

systems with multiple dependencies and configurations.

Provisioning and managing test environments efficiently,

ensuring data consistency, and coordinating resources across

various teams can pose logistical and technical challenges.

4.3. Test Data Management

Test data plays a crucial role in executing meaningful

and comprehensive tests. However, managing test data for

continuous testing can be complex. Organizations must

generate and maintain diverse test data sets covering various

scenarios, including edge cases and realistic production-like

data. Ensuring the privacy and security of sensitive data can

be another challenge, particularly when working with

regulated industries or data privacy regulations.

4.4. Cultural and Organizational Challenges

Implementing continuous testing requires a shift in the

testing mindset and collaboration among teams. Resistance

to change and lack of awareness about the benefits of

continuous testing can be significant barriers. Organizations

need to foster a culture of quality and collaboration,

encouraging developers, testers, and other stakeholders to

work together seamlessly. Breaking down silos, aligning

goals, and promoting a shared responsibility for quality can

be challenging in traditional organizational structures.

4.5. Test Execution Time and Resource Constraints

Continuous testing demands fast and efficient test

execution. However, as the test suite grows larger and more

comprehensive, execution time can become a bottleneck.

Long test execution times can delay feedback and hinder the

continuous delivery pipeline. Organizations need to optimize

test execution, parallelize tests, and leverage techniques such

as test prioritization to reduce the overall execution time.

Resource constraints, such as limited hardware or cloud

infrastructure, can impact test execution scalability.

4.6. Test Orchestration and Synchronization

Coordinating and managing tests across different

pipeline stages can be challenging. Ensuring proper

sequencing, parallel execution, and synchronization of tests

while maintaining data integrity and consistency can be

complex. Organizations need to implement effective test

orchestration and synchronization mechanisms, leveraging

tools and frameworks that support the seamless execution of

tests across various stages of the pipeline.

4.7. Continuous Monitoring and Feedback Loops

Incorporating production monitoring and feedback into

the continuous testing process can be challenging. Capturing

real-time feedback from production systems, identifying

anomalies or performance issues, and feeding that

information back into the testing process requires integrating

monitoring tools, metrics, and feedback loops. Organizations

need to establish effective processes and tools to ensure the

smooth integration of production feedback into the

continuous testing cycle.

Addressing these challenges requires combining

technical solutions, process improvements, and

organizational changes. Organizations should invest in

appropriate tooling, provide training and support to teams,

foster a culture of collaboration, and continuously iterate and

improve their continuous testing practices. By doing so, they

can overcome these challenges and reap the rewards of

enhanced software quality, faster feedback, and accelerated

delivery cycles.

5. Continues Testing Framework
The proposed workflow for test automation and test

management involves a series of steps to ensure efficient

execution, tracking, and management of tests and defects.

Here are more details about each step:

• Event Triggers in the CI/CD Tool: The workflow begins

with event triggers in the CI/CD (Continuous

Integration/Continuous Deployment) tool, such as

Divyeshkumar Patel / IJCTT, 71(7), 22-28, 2023

27

Jenkins or GitLab CI/CD. These triggers initiate the

execution of the automated tests when specific

conditions are met, such as code commits or successful

build deployments.

• Retrieval of Necessary Files from the Nexus Repository:

Once triggered, the workflow retrieves the necessary

files, such as application builds or artifacts, from the

Nexus repository. Nexus is a repository manager that

stores and manages software components. The retrieved

files are used for testing purposes.

• Execution of Test Scripts Using the Chosen Test

Automation Tool: The workflow proceeds to execute the

test scripts using the selected test automation tool, such

as Tricentis Tosca or Selenium. These tools provide

capabilities for designing, executing, and managing

automated tests. The test scripts interact with the

application under test, validating its functionality,

performance, or other specific criteria.

• Transfer of Test Results to the Test Case Management

Tool via the qTest Pulse API: After the test execution,

the workflow transfers the test results to the test case

management tool using the qTest Pulse API. qTest Pulse

is an integration platform that facilitates data exchange

between different testing tools. The test results include

information such as test status (pass/fail), test duration,

and any relevant logs or screenshots.

• Creation and Attachment of Defects to the Respective

Test Executions Using a Defect Tracking Tool like Jira:

If any defects or issues are identified during the test

execution, the workflow creates and attaches them to the

respective test executions using a defect tracking tool

like Jira. Jira is a popular issue-tracking and project-

management tool that enables teams to track, manage,

and prioritize defects and other project-related tasks.

6. Continues Testing Framework Benefits
The proposed workflow offers several benefits:

• Automation Efficiency: The workflow leverages event

triggers in the CI/CD tool to automate the test execution

process. This eliminates the need for manual

intervention, reducing human error and ensuring

consistent and timely test execution.

• Faster Feedback: By integrating test automation with the

CI/CD pipeline, the workflow provides fast feedback on

the application's quality. Test execution is triggered

automatically, allowing for early detection of defects

and issues, enabling teams to address them promptly.

• Seamless Test Execution: The retrieval of necessary files

from the Nexus repository ensures that the correct

application builds or artifacts are used for testing. This

eliminates the risk of using outdated or incorrect

versions, ensuring accurate and reliable test results.

• Comprehensive Test Coverage: The chosen test

automation tool, such as Tosca or Selenium, facilitates

the execution of a wide range of automated tests. This

enables teams to achieve comprehensive test coverage,

validating different aspects of the application's

functionality, performance, and user experience.

• Centralized Test Management: Transferring test results

to the test case management tool using the qTest Pulse

API centralizes the test data and results. This provides a

unified view of test executions, enabling teams to track

progress, analyze trends, and generate reports for

stakeholders.

• Efficient Defect Management: The creation and

attachment of defects to the respective test executions

using a defect tracking tool like Jira streamline the

defect management process. This ensures defects are

associated with the specific test cases identified,

facilitating efficient communication, prioritization, and

resolution.

• Collaboration and Traceability: Integrating various tools

in the workflow promotes collaboration and traceability

among different teams involved in testing and

development. Testers, developers, and other

stakeholders can access relevant information, such as

test results and associated defects, in a centralized

manner, enhancing communication and accountability.

• Continuous Improvement: The workflow supports a

continuous improvement mindset by providing feedback

loops and data-driven insights. Test results, defects, and

other metrics collected through the workflow can be

analyzed to identify patterns, areas of improvement, and

trends, enabling teams to refine their testing processes

over time.

7. Conclusion
The adoption of DevOps practices and test automation is

essential for organizations in the fast-paced digital landscape.

DevOps fosters collaboration, leading to improved software

quality and faster time-to-market. Test automation brings

benefits such as faster feedback, increased efficiency, and

reliable results. It enables early defect identification,

comprehensive test coverage, and improved software quality.

Integrating test automation into the CI/CD pipeline and

implementing efficient test management processes enhances

collaboration and traceability. While challenges exist,

organizations must embrace DevOps and test automation to

remain competitive, achieve superior software quality, and

drive success in their software development endeavors.

Author Literature
[1] Chaos Testing: Improving System Resilience –

https://ally.tech/chaos-testing-improving-system-resilience-

f88a4a6458ba

[2] Chaos Testing: Strengthening System Resilience with a

Proactive Approach –

https://www.softwaretestingmagazine.com/knowledge/chaos-

testing-strengthening-system-resilience-with-a-proactive-

approach/

Divyeshkumar Patel / IJCTT, 71(7), 22-28, 2023

28

References
[1] Len Bass, Ingo Weber, and Liming Zhu, DevOps: A Software Architect's Perspective, 2015. [Google Scholar] [Publisher Link]

[2] Jez Humble, and David Farley, Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation,

2010. [Google Scholar] [Publisher Link]

[3] Gene Kim et al., The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations,

2021. [Google Scholar] [Publisher Link]

[4] Gene Kim et al., The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology Organizations, IT

Revolution Press, 2016.

[5] Len Bass, Ingo Weber, and Liming Zhu, DevOps: A Software Architect's Perspective, Addison-Wesley Professional, 2015. [Google

Scholar] [Publisher Link]

[6] G. Wiedemann, Practical Guide to Continuous Delivery with Jenkins and Kubernetes, A press, 2019.

[7] Gary Gruver, Tommy Mouser, and G. Fary, Leading the Transformation: Applying Agile and DevOps Principles at Scale, IT Revolution

Press, 2016. [Google Scholar] [Publisher Link]

[8] M. Fowler, and J. Highsmith, The Agile Manifesto: Principles behind the Agile Manifesto, Agile Alliance, 2001. [Google Scholar]

[9] Sam Newman, Building Microservices: Designing Fine-Grained Systems, O'Reilly Media, 2015. [Google Scholar] [Publisher Link]

[10] A. Eberhardinger et al., Continuous Delivery in Java: Essential Tools and Best Practices for Deploying Java Apps to the Cloud, Apress,

2018. [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DevOps%3A+A+Software+Architect%27s+Perspective&btnG=
https://www.oreilly.com/library/view/devops-a-software/9780134049885/
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuous+Delivery%3A+Reliable+Software+Releases+through+Build%2C+Test%2C+and+Deployment+Automation&btnG=
https://books.google.co.in/books?hl=en&lr=&id=6ADDuzere-YC&oi=fnd&pg=PT30&dq=Continuous+Delivery:+Reliable+Software+Releases+through+Build,+Test,+and+Deployment+Automation&ots=-wwwSNQcq4&sig=5vwNA90TrR61pQLQbK20TDvwReM&redir_esc=y#v=onepage&q=Continuous%20
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+DevOps+Handbook%3A+How+to+Create+World-Class+Agility%2C+Reliability%2C+and+Security+in+Technology+Organizations&btnG=
https://books.google.co.in/books?hl=en&lr=&id=8kRDEAAAQBAJ&oi=fnd&pg=PT8&dq=The+DevOps+Handbook:+How+to+Create+World-Class+Agility,+Reliability,+and+Security+in+Technology+Organizations&ots=uLTDwiPFCk&sig=urNCMts62Ek26P11gbXxwsqbNV0&redir_esc=y#v=onepage&q
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DevOps%3A+A+Software+Architect%27s+Perspective&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DevOps%3A+A+Software+Architect%27s+Perspective&btnG=
https://books.google.co.in/books?hl=en&lr=&id=fcwkCQAAQBAJ&oi=fnd&pg=PT13&dq=DevOps:+A+Software+Architect%27s+Perspective&ots=KSBxu8FPQ9&sig=7BWTAfxCAsnetZJ_W3z1kcXAIPk&redir_esc=y#v=onepage&q=DevOps%3A%20A%20Software%20Architect's%20Perspective&f=false
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Leading+the+Transformation%3A+Applying+Agile+and+DevOps+Principles+at+Scale&btnG=
https://books.google.co.in/books?hl=en&lr=&id=olFECgAAQBAJ&oi=fnd&pg=PT20&dq=Leading+the+Transformation:+Applying+Agile+and+DevOps+Principles+at+Scale&ots=Ebo1vFggh6&sig=RORIGlZUGLptWGNwSJO18NlXO8I&redir_esc=y#v=onepage&q=Leading%20the%20Transformation%3A%
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Agile+Manifesto%3A+Principles+Behind+the+Agile+Manifesto&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Building+Microservices%3A+Designing+Fine-Grained+Systems&btnG=
https://books.google.co.in/books?hl=en&lr=&id=ZvM5EAAAQBAJ&oi=fnd&pg=PT8&dq=Building+Microservices:+Designing+Fine-Grained+Systems&ots=uhcnez4HRm&sig=1jWaQ4Klj79RWC97ozRmdzJQ4P0&redir_esc=y#v=onepage&q=Building%20Microservices%3A%20Designing%20Fine-Grained
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuous+Delivery+in+Java%3A+Essential+Tools+and+Best+Practices+for+Deploying+Java+Apps+to+the+Cloud&btnG=
https://books.google.co.in/books?hl=en&lr=&id=TG15DwAAQBAJ&oi=fnd&pg=PP1&dq=Continuous+Delivery+in+Java:+Essential+Tools+and+Best+Practices+for+Deploying+Java+Apps+to+the+Cloud&ots=GRgACNXOPa&sig=K6pOXTrskhMChucWzRp-02T9fQo&redir_esc=y#v=onepage&q=Continuo

