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Abstract -  Big data analytics is a promising research 

area, considering its capacity to add value in 

decision making for both business and academia. 

Massive numbers of tools available in the landscape 

of big data analytics solutions are provided for 

processing data in its lifecycle, namely, ingesting, 

analytics, storage and visualization. Large number of 

such solutions and sometimes interference among 

functionality of constituent components are stones in 

the road of implementing such solutions. In response 

to these complexities, this work grouped similar 

processing components in modules and showed 

interdependencies among them to facilitate 

synthesising big data analytics systems from extant 

solutions.   
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I. INTRODUCTION 

   The unprecedented exponential growth of data in 

the last few decades has been beneficial and 

challenging for businesses at the same time. 

Combining analytics results from both newly 

emerging data sources and traditional business data 

sources gives insightful sight supports decision 

making. However, processing and reporting results of 

big data analytics are challenging due to the nature of 

the so-called big data. Big data require special 

handling in order to address issues emerging from a 

heterogeneity of data sources and data, high rate of 

data generation and massive amounts of produced 

data. So, handling big data requires combining 

various processing paradigms, algorithms and tools in 

every single stage, starting from acquiring data from 

data sources and ending with presenting analytics 

results for the end-user. Big data applications involve 

business intelligence, information security, 

meteorology, astronomy, bioinformatics, and others 

[1], [2]. A thorough review of the big data ecosystem 

has been achieved through tracking data flow through 

the system and investigating system modules on the 

way, then grouping modules that collaborate to 

perform a broad task in one module. Each module, 

then, has been examined in terms of functionality, 

technologies and exemplary software solutions. The 

objective of this work is to optimize the process of 

engineering big data system that suits application or 

business requirements by using only needed 

submodules. The rest of this paper is organized as 

follow: section two introduces the general essentials 

of big data, section three is composed of four 

subsections; each investigates a processing module in 

the big data ecosystem, and section four draws 

conclusions from the review.  

II. BIG DATA 

     The evolving web 2.0 applications and internet 

of things (IoT) was accompanied by the exponential 

growth of data from various data sources such as 

social media, sensors, mail servers and e-commerce 

transactions [3], [4] and others, leading to the 

emergence of gold mines of data with new formats 

and opens appetite of data scientists to analyse such 

data. Such data is attributed to big data because it 

differs from data generated from traditional data 

sources in terms of volume, velocity and variety. Big 

data is growing exponentially and streams almost 

infinitely [4], which require distributed, parallel and 

scalable storage and processing systems to cope with 

such massive, continually changing data. Massive 

volume and high velocity of data also trigger the need 

for adopting a real-time processing model to handle 

data in motion and using algorithms to speed up 

processing such as map-reduce and direct acyclic 

graph (DAG). Furthermore, a considerable portion of 

data produced from big data sources is unstructured 

[4], [6] or semi-structured and not compatible with 

relational databases; as a result, NoSQL databases 

turns dominant in the area of big data. The nature of 

big data and business need for analysing such data 

were motivators for the emergence of the big data 

analytics trend [6]. In this paper, the researcher 

thoroughly highlights vital modules involved in the 

big data analytics process by studying their 

functionality, implemented technologies and data 

flow among the system. Figure 1 depicts modules 

related to functional requirements, other modules 
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such as security and orchestration modules are out of 

the scope of this review.  

 
Fig. 1 Big data ecosystem modules 

II. MODULES OF BIG DATA ECOSYSTEM 

 Big data is collected from various data sources 

such as data social media platforms, mail or web 

servers and sensors [3], [6], etc. Thereafter, it is fed 

into subsequent processing systems to eventually 

reflect analytics results to the end-user. A big data 

ecosystem could be viewed as a system of four 

interrelated modules; an ingestion module, a 

processing module, a storage module and a 

presentation module. 

A. Ingestion Module 

  Data is collected (perhaps after crawling) from 

different data sources and passed through several 

stages before it is fed to the processing module. 

Typical ingestion engine is liable of data acquisition, 

decompression/ compression, extraction, filtering, 

conversion and integration [7], [9], [10].  Data 

connectors ask for authentication from data sources 

to acquire data [10]. Popular connectors could be i) 

database/ SQL connectors that allow connecting 

relational databases using application programming 

interfaces (APIs), vendors of DBMSs are providing 

such connectors, Sqoop is an example, ii) proprietary 

(or open-source)  connectors, ii) custom connector 

[11] designed for particular data source through 

implementing APIs available by the data source. The 

well-known communication models adopted by 

connectors of real-time (stream) data sources are i) 

publish-subscribe messaging where interaction is 

taking place among a subscriber (consumer) 

subscribing to a broker who manages a number of 

topics (messaging queue) that receive messages from 

a publisher (data source) to subscribing consumers 

[11], [12], Apache Kafka and Amazon Kenisi are 

example frameworks implementing publish-subscribe 

messaging model [11] [12], ii) messaging queues 

connectors where producer pushes messages to 

message queues and consumer pulls them from these 

queues, these connectors fit the cases when the 

consumer pulls messages from publishers, RabbitMQ 

and Amazon SQS are implementing messaging 

queues model [11].    

B. Analytics Module 

Sub-modules that perform batch and real-time 

analytics are located in this module [8], [13], [14].  
 

a) Batch analytics  provides high throughput when 

processing massive data, but latency in performance 

could last for hours or days for completing one job 

[14]. Meanwhile, real-time processing is performed 

in applications where time matters and results are 

required in (near) real-time data production [15]. 

Map-reduce is an algorithm that allows writing 

programs able to partition (map) large data set among 

various processing units and process each 

individually [14], [16], [17], then combine (reduce) 

results of each processing step into a single result 

[13]. Apache’s Hadoop MapReduce and Amazon’s 

Elastic MapReduce (EMR) are example batch 

processing engines that are implementing map-reduce 

[14] for batch processing, directed acyclic graph 

(DAG) is another algorithm used for batch processing 

and implemented by Apache Spark [8]. 

 
b) Real-time analytics  (also called stream) -in 

contrast to batch analytics, which has a start and end 

timings- requires timely, continuous processing of 

data in motion (stream data) [13], [14], [15]. 

Processed streams are moved to memories in cluster 

nodes before transforming them to disks [13], [15]. 

Apache Spark Streaming and Apache Storm are 

examples of real-time processing engines where the 

later is used for in-memory processing cases [8]. 

Interactive querying engines interacting with 

analytics module and having a user interface 

provided to facilitate querying a data set using 

queries of dedicated query languages [13] like 

Apache Spark SQL and HiveQL of Apache Spark 

and Hive, respectively [8], [18].  

   In general, all analytics operations serve two 

categories of analysis, particularly direct analysis and 

exploratory analysis, which requires a real-time 

response (analytics) [1], [2]. Direct analysis answers 

predefined questions through analytics techniques. 

On the other hand, exploratory analytics is required 

when there is no predefined question; in such cases, 

the analytics engine searches data to find interesting 

findings [1].  

Data either flows from the analytics module to be 

visualised through the visualization module or may 

flow back to the analytics module for additional 

processing. 

Data collected from data sources are stored in the 

storage module and forwarded to the analytics 

module.    

C. Storage Module 

   Data collected from various data sources and 

analytics frameworks as final or temporary analytics 

results are stored and administered by this module, 

waiting for additional processing or visualization. 

Data stored either stored in a distributed file system 
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in the form of files with various file formats [10], 

retrieved through MapReduce jobs or stored in 

noSQL databases and retrieved via query languages 

of underlying noSQL DBMSs [13].  

 
a) Distributed File System 

   A file management system for parallel processing 

of data in multiple nodes, such file systems are 

assumed to allow scalability, ability to store files of -

typically – any size, and reliability, so that data 

availability is not affected by a node failure [19]. 

Hadoop distributed file system (HDFS) is a widely 

used choice in today’s big data implementations. 

Input and output of map and reduce functions are 

read and written on the top of HDFS, HDFS is 

Hadoop’s implementation of a distributed file system, 

other implementations of distributed file systems are 

IBM’s GPFS-FPO Intel’s Lustre[19]. 

NoSQL databases (also called stores) work as 

stores for temporary and final analysis results [20]. 

HDFS is managing file system in processing units of 

commodity servers (cluster) in data centres of the 

organization or those provided by technology giants 

in the form of the platform as a service (PaaS) [6], 

like in Amazon web services (AWS) cloud [21] and 

IBM’s cloud [22].    

b) Serving Databases 

    Non-relational database management systems 

(DBMSs) are a key storage component in the big data 

ecosystem [7] since they store data and analytics 

results for further tasks such as visualization [8]. 

NoSQL databases cope with the nature of big data 

and overcome shortcomings in relational databases 

[2], [23] in terms of providing requirements of 

databases that are distributed on a cluster(s) such as 

availability, scalability and fault tolerance [8], [13] 

and capability to handle non-structured and 

unstructured data. NoSQL databases are not 

following relational models [4]. Instead, they adopt 

new data models compatible with emerging data 

formats storage and processing needs [24]. It is 

worthy of mentioning that there is no standard query 

language for NoSQL databases since query languages 

are data model-dependent [25], [26]. Data models of 

NoSQL databases are key-value, document, graph, 

and column-oriented [13].  

Key-Value databases store data items in tables [5] 

of two columns. Each item in such databases is a 

combination of a unique alphanumeric string key 

used for search operations, and a value contains data 

itself in the form of primitive data type or an object 

[24] [27], key and value relationship is specified by 

the programming language used to create the object; 

this dispenses the need for strict data model [24]. 

Amazon’s Dynamo Riak are examples of key-value 

database management systems (DBMSs) [23], [27], 

and Redis is an in-memory DBMS [28]. 

Document databases are higher versions of key-

value databases since they have the same data model 

with more complicated values [23]. Document 

databases use using key-value data model where the 

key is an alphanumeric string that could represent a 

path or a Uniform Resource Identifier (URI) [4], and 

value is a collection of semi-structured texts such as 

JavaScript Object Notation (JSON) and extensible 

markup language (XML), unstructured texts such as 

portable document format (PDF) and Word files 

documents in addition to Binary JSON (BSON) 

format which is used for storing images and videos 

and binary serializing JavaScript object notation 

(JSON) files, and therefore, improve processing 

performance [4]. In contrast to key-value databases, 

data in document databases could be queried either 

through key or value [5], [27]. MongoDB and 

CouchDB are examples of document DBMSs [23] 

and MongoDB runs partially in-memory [28].  

Graph databases have been used to model graph-

like data structures [29], [30], with highly 

interconnected data; therefore, it could be represented 

using graphs, particularly in the form nodes and 

edges where nodes represent entities and directed 

edges representing relationships among them, both 

nodes and edges have descriptive attributes [4], [25]. 

Although there are various mathematical graph 

models, property graphs are meant here. A property 

graph is a directed graph where both nodes and edges 

are labelled and can have any number of properties 

(attributes) and any number of edges between any 

two nodes. Properties represent metadata of edges or 

nodes in the form of key-value pairs [29]. Neo4j and 

Titan are examples of graph DBMSs [23], [30], and 

Trinity and Bitsy are running in-memory [28].  

Column-oriented databases are in contrast to 

relational databases, where columns are defined on 

table level and are fixed for each row, columns in this 

data model are defined in row-level, this allows 

having various numbers of columns for various rows 

and adding columns whenever needed [5] which 

supports scalability when data is varied [15], HBase, 

Bigtable and Cassandra are example column-oriented 

DBMSs [8] where IM Column Store is running in-

memory [31]. 

Data may need additional processing and flow back 

to the analytics module, or it may flow to the 

presentation module to be processed and presented in 

human-readable formats. 

D. Presentation Layer 

Traditional visualization systems are not fulfilling 

the requirements of big data visualization due to the 

need for dynamic visualisation [2], [32] in some use 

cases and the nature of big data. The task of 

visualizing big data is a challenging task, to 

overcome challenges like performance latency and 

massive volume of data, techniques such as parallel 

rendering, pre-fetching and caching relevant 

predicted data to speed up response time [2], [32], in 

addition to use of filtering, sampling and aggregation 
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techniques (such as clustering) to address issues of 

presenting massive data [2], [32]. 

This is the front end of the big data ecosystem and 

a vital component that adds value to decision-makers 

[3], [6], [30], [33], [18]. It allows presenting (batch, 

real-time) analytics results for end-user in visual form 

(static or dynamic) [15], [32]. This way analyst’s eye 

could easily elicit meaningful information via 

relationships, trends, patterns [3], etc.  

  

 Furthermore, as mentioned in section B, it could 

provide an interface for user interaction through 

querying data set for getting analysis results via 

queries of dedicated query languages. The data set 

could be reprocessed for getting more accurate results 

[18]. Analytics results are visualized in traditional 

reports or dashboards or graphical forms [14], [3] that 

could be animated according to changes in data. 

Pygal and Seaborn are example visualization Python 

libraries [8], [33]. 

III. CONCLUSION 

The field of big data pulls attention in both 

academia and business. Thanks to extant technologies 

and algorithms such as parallel processing, 

distributed processing, batch processing, real-time 

processing, noSQL databases, map-reduce, to name a 

few. Integrating such technologies with these used 

for data acquisition from sources of big data and 

visualizing analytics results, and choosing from the 

wide spectrum of available solutions in the software 

market requires theoretically underpinning such 

technologies in terms of the nature of data and 

processing needs.       

In response to complexities attached with the 

development of customized solutions for big data 

analytics, the whole process of big data analytics had 

been studied, used technologies had been identified, 

and grouped into modules sharing the same broad 

objective. Based on this grouping, a graph shows 

interdependencies among modules have been 

designed. As shown in the previous sections, the 

whole system is heterogeneous, and modules 

themselves are heterogeneous in terms of used 

technologies in sub-modules. The modules of the 

system were dissected to illuminate data flow among 

system modules, used technologies and example 

solutions for different use cases. This way, with 

knowledge of the party’s requirements, this work 

serves in the synthesis of big data ecosystem modules 

using existing technologies and tools. Modules 

related to non-functional requirements of the system 

have not been covered. Future research might extend 

the investigation of covered modules to embrace 

security and orchestration modules. 
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