
International Journal of Computer Trends and Technology Volume 68 Issue 4, 33-43, April 2020

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V68I © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

A Model-Driven Approach for Developing WEB

Users Interfaces of Interactive Systems

Thierry Noulamo
1
, Bernard Fotsing Talla

2
, Merlin WANE

3
, Loïs Hurel Nzothiam Takou

4

1234
Department of Computer Engineering, University of Dschang, LAIA, PO Box 134 Bandjoun, CAMEROON

Received Date: 28 February 2020

Revised Date: 15 April 2020

Accepted Date: 16 April 2020

Abstract - Nowadays, User Interfaces are complex

software components that play a vital role in the

development of interactive applications. Its development

requires, as for another phase, the use of a process that

integrates the development of visual models and a

standardized notation for this visualization. We propose

two metamodels: a generic source metamodel called DD-

IHM for Description Diagram for Human Machine

Interfaces and a target metamodel called AbstractForm

based on the PEAR framework, more specifically its

HTML QuickForm package. Then we apply a set of

generic rules to make the models operational in HMI. The

first transformation performed with ATL (M2M) will

transform a source model compliant with DD-IHM into a

target model compliant to AbstractForm. Then, we

implement M2T rules transformation using the template

approach with Xpand to transform our target model into

PHP code directly usable in a web application. The

proposed metamodels are implemented in Eclipse with

ECORE. We apply our proposal to the HMI of an online

registration application.

Keywords — Interactive Systems, Model-Driven

Engineering, Model Transformation, DSML, ATL, Xpand.

I. INTRODUCTION

The interactive systems modelling activity differs

from conventional software engineering modelling activity

in that the interactions described in the interaction models

focus on the relationships between the user and the system.

The development models of interactive systems must

ensure the usability, i.e. the usability of a given software

by a given user or category of users, or more generally, its

acceptability by the users [1, 2]. The need to implement

the application interfaces with the same rigor as that

granted to the application itself is essential in critical

systems in particular, for security reasons, and in computer

applications in general for reasons of cost and usability.

Model-Driven Engineering (MDE) has led to several

significant improvements in the development of complex

systems by focusing on a more abstract concern than

conventional programming [15]. This is a form of

generative engineering in which all or part of an

application is generated from models [7]. One of the key

ideas is to use as many different Domain-Specific

Modeling Languages as the chronological or technological

aspects of development [5, 4].

We are interested in this paper by the production of

software that uses a multi-layer architecture. We focus in

this paper on the presentation layer, more precisely on the

automatic production of Human Machine Interface for the

development of interactive Web applications. We,

therefore, want to use the IDM concepts [10] to automate

the production of forms.

This paper presents an automatic production approach

of Human Machine Interfaces for the development of

interactive Web applications. For this purpose, we, first of

all, propose a metamodel (independent of all platforms) for

the production of interface models independent of any

platform, named DD-IHM (Description Diagram - Human

Machine Interface), then we propose a metamodel called

AbstractForm specific to the Framework PEAR, that will

be used as a target metamodel in the overall process of

developing a WEB application. In a second step, we set up

a graphical editor to create the DD-IHM compliant models

and then we will define a set of generic transformation

rules based on the ATL language that will allow us to

transform a model conforming to our metamodel (DD-

IHM) to a template based on a PEAR based target

metamodel, we end with the proposal of a transformation

template (M2T) with Xpand. The proposed metamodels

are implemented in Eclipse with ECORE. We apply our

proposal to the HMI of a registration application.

This work is structured as follows: In section 2, we

review the work done on HMI modelling in the interactive

system development process. In section 3, we present our

design approach. The source and target metamodels are

presented in section 4. The target metamodel is based on

the Framework PEAR. In section 5, we propose via a

model the generic rules to transform the source model into

a target model. Section 6 presents the physical architecture

of our approach and highlights the components necessary

for the implementation of an HMI according to this

approach. Section 7 presents, through an example, the

graphical interface of a registration request. We present a

model DD-HMI, a model of AbstractForm obtained after

application of the rules of transformation of a model to

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

34

Model and the rules of transformation of Model into text.

We conclude in section 8 by identifying some future work.

II. LITERATURE REVIEW

Many commercial tools, often generically referred to

as User Interface Management Systems (UIMS), is

currently being proposed to facilitate the implementation

of the interactive systems presentation layer by

unspecialized programmers Combemale [2]. However, the

use of such tools does not promote the automation of the

entire process of developing inter-asset systems and is, for

the most part, proprietary.

Still, with the goal of providing better support for user

interface modelling, UMLi introduces a diagram notation

for presentation layer modelling. UMLi extends the

activity diagram to describe the collaboration between

interaction and domain objects. In [7], the design of an

HMI is seen as a series of correspondences between five

metamodels: User tasks, domain concepts, workspaces,

inter-actors and finally, program. The transition from one

metamodel to another is done through a series of

correspondences and transformations. The authors

proposed a generic metamodel for the design of graphical

user interfaces for mobile applications. But this metamodel

does not support some interface features and does not

implement events on different components.

Mohamed Lachgar presents in [13] an IDM approach

to automate code generation.

Xavier Blanc presents in [4] a metamodel for the PHP

language. This metamodel, designed for academic and

non-industrial purposes as presented by the author, is used

in an approach leading to the generation of PHP code. It

only allows the generation of variables, functions and

skeletons of PHP codes. This metamodel does not support

design and code generation for HMIs.

In [12], the authors present a study on three

metamodels based on Symbian, JavaME and .NET for the

HMIs, and a contribution to the implementation of a

common metamodel for these different mobile platforms.

On the other hand, the authors discussed the definition of

an abstract syntax for the target platforms. The fragment

contained in [7] for the Java interface has the advantage

that it contains almost all the elements of a GUI in Java,

but it does not highlight the attributes of each class.

Similarly, the authors have not provided a mechanism for

managing the rules applied to the elements of a form. In

the same vein, the authors of [5] propose two other

metamodels: A metamodel for Symbian and a .NET

Compact Framework metamodel. However, they did not

present an approach for generating code from the created

PSM model. In [7], authors have put in place a high-level

model for the design and layout of the HMIs. They present

the metamodel of the SNI in the Form of three packages:

SNI UD, SNI Node and SNI Port. The SNI transformation

JSP pages in Suns JSF framework automatically generate a

website layout in Suns JSF framework.

Our approach in this work is similar to that described

by [13, 4 and 5] for the design of a generic metamodel,

PHP code generation and the automation of the

construction of JSP pages in Suns JSF framework.

Specifically, we will propose two metamodels. The first

(DD-IHM) is platform-independent, and the second

(AbstractForm) is based on the Framework PEAR globally

and specifically on its package HTML_QuickForm2. We

implement transformation rules (M2M) via ATL, allowing

passing models from DDIHM to AbstractForm models,

and we implement (M2T) rules, using Xpand

transformation to obtain PHP code from AbstractForm

models. All these are implemented in Eclipse for the

generation of web HMI using the Framework PEAR as a

gateway.

III. DESIGN APPROACH

Figure 1 presents the different design steps of our

HMI approach, as we stated above.

Fig. 1 The different stages of the design approach

We use the DD-IHM metamodel (1) to build a source

model (3). The Model to model transformation (4) is

implemented to transform a source model into a target

model (5) that conforms to the AbstractForm metamodel

(2). The target metamodel (5) is obtained by using the

Model to Text transformation (6) to produce the final code

(7).

IV. PRESENTATION OF THE METAMODELS

A. Source metamodel DD-IHM

The unified modelling language (UML)[3] is an

essential standard in the modelling of systems. The DD-

IHM we propose is a generic metamodel based on UML

and will be used to model the presentation layer of

interactive systems. We use the UML metamodel class

diagram and activity diagram to build new design elements.

The metamodel is saved in the XML Meta-data

Interchange (XMI) file. Figure 2 illustrates the DD-IHM

source metamodel.

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

35

B. Graphical editor DD-IHM

The success of model-based software development is

largely due to the use of a graphical editor to design

models graphically. A graphical editor allows more

expressions and facilities for a developer. We use the Open

Source technology Sirius (based on Eclipse) to create a

graphical editor which allows creating models that

conform to our metamodel DD-IHM. Figure 2 represents

the metamodel elements DD-IHM.

Table 1. The elements of our DD-IHM source metamodel

Element’s

names
Representation semantics

Form_Class

The

main

element

that

encapsul

ates

other

elements

Group_Elt

Group

element

Menu Node

Field_Text

Allows

to create

of an

HTML

Text

Field

Long_Field_Te

xt

Allows

to create

of an

HTML

Long

Text

Field

Bouton

Allows

to create

an

HTML

Button

Date

Allows

to create

an

HTML

Date

CheckBox

Allows

to create

of an

HTML

CheckB

ox

Radio

Allows to

create of an

HTML

Radio Field

Initial_Node

Beginning

of the

diagram,

UML

Element

End_Node

End of the

diagram,

UML

Element

Transition_No

de

Materialize

s the

transition

between

two

elements,

UML

Element

Test_Node

Use as a

bridge

between

two or

more form

elements,

UML

Element

Synchronizatio

n_ Node

Materialize

the

synchroniz

ation

between

the form

elements,

UML

Element

Label Node

Use to

create the

label in a

forme

Condition

Node
[Cond]

A logical

condition

associated

with the

decision

nodes

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

36

C. Description of DD-IHM :

formulas: This represents a form with its attributes. It is

composed mainly of two classes: class Node and class

Attribut. node is composed of three classes: Donnes,

Règles and groupeELT. The class Donnes is similar

To the expression label in HTML, it allows pasting a

label (Name) to an element of the Form. The class Règles

materializes the set of validation constraints that can be

assimilated to a component of the Form. A Node is

composed of at most one element group (groupELT). In a

group, you can have several subgroups.

Menu: As its name suggests, it allows navigating in an

application. The menu can be vertical or horizontal. An

HMI interface can contain several menus.

Node: It determines all the routing units in the diagram.

Routing brings together the objects of the diagrams that

make it possible to navigate from a menu to a form, for

example. We distinguish the decision node, the merge

node and the bifurcation node.

Port: A port is an abstract object attached to a node for

making connections. We can associate to an entry a guard

who plays the role of transitory precondition, which makes

it possible to prohibit or to accept the entry in an object. In

the same way, we can associate a guard that conditions the

transition (postcondition) output until it is verified.

Presentation: As its name suggests, it allows to carry

information on a page. The presentation can be a Message,

an object, or even an object collection

.

 Fig. 2. DD-IHM meta-model class diagram

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

37

D. Target meta-model AbstractForm

a)The framework PEAR: PEAR (PHP Extension and

Application Repository) is a collection of PHP libraries. It

is a framework that allows us to manage libraries (install

or update a library). Html_ QuickForm is a PEAR package

defining methods for creating, validating and dynamically

processing HTML forms. It allows developers to make

complex forms without having to deal with the HTML

code. In addition, this package offers a number of features,

including the validation and the control of the seizures.

There are indeed other classes generating forms (oohform

of phplib, for example). The advantage of the Framework

PEAR is that it can be used with other packages with very

powerful features like Html_QuickForm controller or DB

DataObject form builder, which allows us to generate

forms directly from information extracted from a database

without having to write either SQL code or HTML code.

We will work mainly on its second version

(HTML_Quickform2), which is a rewrite in PHP5 of both

Html_QuickForm and HTML _QuickForm Controller [15].

Features of HTML_QuickForm2:

 Supports all form elements defined by the HTML

standard, provides several custom elements,

 Server-side and client-side validation, several

common rules provided,

 Multi-page forms (tabular forms and wizards)

 Pluggable items, rules, rendering engines, and

rendering plugins.

b) AbstractForm metamodel diagram: Figure 4

represents the metamodel AbstractForm it contains the set

of elements allowing to build a form in conformity with

HTML_ QuickForm2. As can be seen in figure 4, a form

consists of a set of containers and a set of elements. A

container is a node that can contain other nodes.

A container is a node that can contain other nodes and a

set of rules that recursively apply to its contents. An

element contains an attribute, data, filter, and a set of rules.

The meta-class Model represents an HMI Model, and the

meta-class Form a form of the Model.

 A Model can contain one or more forms that will be

spread across multiple pages and managed by a controller

(meta-aggregation associations between ’Model’

and ’Form’). Similarly, a form has several Node. These

nodes can be containers or basic elements of a form (Meta-

inheritance association of Element and Container to Node).

A node contains, in addition to a set of attributes, a set of

data and options necessary for the creation of the Node.

We have represented this data by the meta-class Data,

containing one attribute for the Name of the data and

another for the associated value. To all the nodes of the

Form (text fields, buttons, checkbox, etc.), validation rules

can be applied (Fields that must not be empty, a minimum

number of characters, a minimum number of choices to be

made, etc.). We represent this by the meta-class Rule; it

contains a ’message’ attribute containing the message to

display if the Rule is violated and a ’config’ attribute that

allows configuring certain rules when the Rule is applied

to a group. Hierarchical choice lists are some special types

of elements represented here by the meta-class HierSelect.

It is a group of several lists of choices connected to each

other and whose Choice of an element of the parent’s list

produces the possible choice elements of the child list

automatically. Unlike a simple choice list represented here

by the meta-class select, the HierSelects are linked by a

meta-association of aggregation to the meta-class Hoption,

which represents here the options from the first list to

choose from. It is the Choice made on this that triggers the

loading of the possible choices in the second list

represented here by the meta-class Choice; hence the

aggregation meta-relationship between the two meta-

classes, Hoption and Choice. A select with only one list of

choices is directly linked to the meta-class Choice by an

aggregation meta-association

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

38

 Fig. 3 Abstractform Meta-modele

I. TRANSFORMATIONS APPROACHES

A. External transformation: DD-IHM toward Abstract

Form

For this purpose, we use ATL (Atlas transformation

language), which is a model to model transformation

language. In the Field of IDM, ATL provides a set of

mechanisms for transforming a source model into a target

model. A transformation is, therefore, an operation that

takes models (source) as input and outputs models (target).

That does why we first create a source model that

conforms to our DD-IHM, and then we apply a set of

generic rules to get a target model that conforms to the

abstract Form. We will represent here an excerpt from our

transformation rules:

V. TABLE II

EXTERNAL TRANSFORMATION: FROM DD-IHM TO ABSTRACT FORM

11 rule FormClass2Form {

12 from fcl : ddihm ! FormClass

13 to fo : abstractform ! Form (

14 id <- f c l . Id FormClass ,

15 method <- fcl.Methode ,

16 description <- fcl.action

17)

18 }

19

20 rule Regles2Email {

21 from reg : ddihm ! Regles (reg.type = ’email ’)

22 to rl : abstractform ! Email (

23 message <- reg.message ,

24 type <- reg.type

25)

26 }

27

28 r ule Rgeles2Compare {

29 from reg : ddihm ! Regl es (reg.type

= ’compare’)

30 t o com : abstractform ! Compare (

31 message <- reg.message ,

32 type <- reg.type

33)

34 }

35

36 rule Regles2Regex {

37 from reg : ddihm ! Regles (reg.t ype = ’r e g e

x ’)

38 to regex : abstract form ! Regex (

39 message <- reg.message ,

40 t ype <- reg . t ype

41)

42 }

43

44 r u l e Regles2Empty {

45 from reg : ddihm ! Regl es (reg.t yp e = ‘ empty ’)

1 module dihm2abstractform ;

2 create OUT : abstractform from IN : ddihm ;

3

4 rule ddihm2model {

5 from dd : ddihm ! DDIHM

6 to abs : abstractform ! Model (

7 Appname <- dd. nom ,

8 forms <- dd.formclass)

9 }

10)

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

39

B. Internal Transformation

We will present in this section the Template conceived

with Xpand containing all the rules allowing to pass from

a model of AbstractForm to PHP code.

The general structure of an Xpand template: The

Xpand template allows the control of code generation

corresponding to a model. The Model must conform to a

given metamodel [13]. The Template is stored in a file

with the extension .xpt. A template file consists of one or

more IMPORT statements to import meta-data-models,

zero or more EXTENSIONs with the Xtend language, and

one or more DEFINE blocks.

Template Xpand for AbstractForms models: Here,

we present an excerpt from the Template containing the

transformation rules from AbstractForm templates to PHP

code.

V. TABLE III

INTERNAL TRANSFORMATION: FROM ABSTRACT FORM TO TEXT

CODE

1 I M P O R T A b s t r a c t F o r m

2 D E F I N E main FOR M o d e l
3 F I L E Appname+” . php”<

4?php r e q u i r e

5 o n c e ’HTML/ QuickForm2 . php ’ ; r e q u i r e
 6 o n c e ’HTML/ head . php ’ ;

7

8 $ c o n t r o l e u r = new HTML QuickForm2 Controller (’p r o c e s
s ’ , f a l s e) ;

9 E X P A N D form FOREACH forms-

10 $ c o n t r o l e u r ->run () ;
11 E N D F I L E

12 E N D D E F I N E

13
14 D E F I N E form FOR F o r m

15 c l a s s P a g e t h i s . i d e x t e n d s A bstr a ctF orm}

16 p r o t e c t e d f u n c t i o n popul at eForm ()
18 }

19 $ t h i s ->addTabs () ;

20 $form = $ t h i s ->getForm () ;
F O R E A C H node AS n

22 I F n . metaType == Group j j n . metaType ==F i e l d s e t

23 $f=$form ;
24 E X P A N D node FOR n-

25 E L S E

26 I F n . metaType == S e l e c t j j n . metaType

== Date j j n . metaType == H i e r S e l e c t

27 $f=$form ;

28 E X P A N D el em e nt FOR n-
29 E L S E

30 $ e l = $form->addElement (E X P A N D el em e nt

FOR n-) ;
31 F O R E A C H n . r u l e s AS r

32 $ el->addRule (E X P A N D r u l e FOR r) ;

33 E N D F O R E A C H
34 E N D I F

35 E N D I F

36 E N D F O R E A C H
37 $ t h i s ->addGlob alSubmit () ;

38}

39
40 $ c o n t r o l e u r ->addPage (new P a g e t h i s . i d (new HTML

QuickForm2 (’ t h i s . i d ’))) ;

41 E N D D E F I N E
42

 43 D E F I N E el ement FOR I n p u t
44 ’ t h i s . metaType . t o S t r i n g () . s u b S t r i n g (1 6 , t h i

s .metaType . t o S t r i n g () . l e n g t h) ’ , ’ t h i s .n a m e ’ , [F

O R E A C H t h i s . a t t r i b u t AS a t
E X P A N D a t t r i b u t FOR at- I F t h i s .a t t r i b u t != n u l l

&& t h i s . a t t r i b u t . l a s t () != a t

, E N D I F E N D F O R E A C H] ,
45 [F O R E A C H t h i s . d a t a AS d t E X P A N D d a t a

FOR dt- I F t h i s . d a t a != n u l l && t h i s . d a t a. l a s t () != d

t , E N D I F
E N D F O R E A C H]

46 E N D D E F I N E

47

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

40

The first line imports the metamodel; lines 2 to 12

define the main block of the transformation model. It

contains the declaration of the output file (line 3) and the

call of the production rules of the different forms of the

Model (line 9). Blocks 14 to 41 define the rules used to

expand a form. This is the block called on the 9th line. In

this block, we also call production rules for the different

elements of the Form. Some rules for producing these

elements are given in lines 43-46 for the input element

and 48-67 for the fieldset node.

VI. PHYSICAL MODEL

Once Pear and the package HTML QuickForm2 are

installed, we will have a tree structure represented by

figure 5).

 PHP Server: The folder in which the web server

and PHP are installed,

 PEARDIR: The PEAR installation folder,

 HTML: The installation folder for HTML

packages,

 QuickForm2: The installation folder of HTML

QuickForm2.

The PHP source file obtained after transforming the

AbstractForm model is stored in the PEARDIR folder.

And can therefore be run via the URL

http://localhost/peardir/registration.php. A file named

head.php containing the definition of the personalization

data of the page is placed in the HTML folder of our tree.

This file contains the reference of the stylesheet

files(quickform.css) and JavaScript (js/quickform.js),

both placed in a folder named data, located in the

PEARDIR folder.

Fig. 4. Deployment architecture

Fig. 5. Registration form in our graphical editor.

VII. APPLICATION

A. Example of interface

We will design the HMI of an on ligne registration

platform. The registration process will be done via a form.

Anyone wishing to register will have to complete a set of

fields, some of which may be required. As Field, we will

have the Name, first name, sex, date of birth and spoken

languages, as well as a set of rules such as regex applied

to the first and last name, which only imposes certain

alphabetic characters for these fields. And required set to

2 for the language group requiring the Choice of at least

two languages.

B. Case Study Model

Figure 6 illustrates the drawing in our model editor of

the practical case described in the preceding paragraph.

http://localhost/peardir/registration.php

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

41

This Model conforms to our DD-IHM. The following

code (table III) represents an XMI code snippet of the

HIM model shown in the preceding paragraph.

VII. TABLE IV

XMI CODE OF THE SOURCE MODEL OF OUR CASE STUDY

By analyzing this code, we realize that elements form-

class, TextFields, rules, Node, data ... are concepts of the

source metamodel, so this Template is consistent with

DD-IHM.

C. Transformation of the practical case

 Transforming DD-IHM Model into AbstractForm

model: The transformation of the preceding model lead to

the following abstract form Model.

VII. TABLE V

XMI CODE OF THE TARGET MODEL OF OUR CASE STUDY

Line 10 shows the transformation result for the fieldset

Node. Line 11 shows the input text for the Name present

in the fieldset, the line 12 shows the ’required’ Rule

applied to the inputText Field. We can also see the submit

and reset buttons on the 23rd and 24th lines.

AbstractForm model transformation toward PHP

code: In AbstractForm, an internal transformation is done

to obtain a PHP code runnable with PEAR. Bellow is the

result of that transformation applied to the former XMI

code.

VII. TABLE VI

RESULT OF THE INTERNAL TRANSFORMATION TOWARD PHP

CODE

1 <?xml v e r s i o n =” 1 . 0 ” e n c o di n g

=”UTF-8”?>

2 <ddihm :DDIHM

3 xmi : v e r s i o n =” 2 . 0 ”

4 xmlns : xmi=” h t t p : / / www. omg . org /XMI”

5 xmlns : x s i =” h t t p : / / www. w3 . org / 2 0 0 1 /

6 XMLSchema-i n s t a n c e ”

7 xmlns : ddihm=” h t t p : / / ddihm . com”

8 x s i : s ch em aLo c ation=” h t t p : / / ddihm .

com

9 . . / MetaModel /DDIHM. e c or e ”>

10 <f o rm c l a s s

11 IdFormCl ass=”1” Methode=” p o s t ”

12 a c t i o n =” I nf o P e r s o n n e l l e s ”>

13 <noeud x s i : t y p e =” ddihm : Group eElt ”

14 nom=” i n f o p e r ” d e s c r i p t i o n =” I n f o

r m a t i o n s

15 p e r s o n n e l l e s ” t y p e =” f i e l d s e t ”>

16 <form el em ent

17 x s i : t y p e =” ddihm : ChampsTexte ”

18 i d =”1”

19 name=”nom”

20 t y p e =” i n p u t t e x t ”>

21 <r e g l e s

22 t y p e =” r e q u i r e d ”/>

23 <donn e es

24 nom=” l a b e l ”

25 c o nt e n u =”Nom”/>

26 </form el em ent>

27 .

28 .

29 .

30 <noeud x s i : t y p e =” ddihm : Button ”

31 nom=” Envoyer ”

32 v al u e =” s ubmit ”/>

33 <noeud x s i : t y p e =” ddihm : Button ”

34 nom=” Annul er ”

35 v al u e =” r e s e t ”/>

36 </ f orm cl a s s >

<37 /ddihm :DDIHM>

1 <?xml v e r s i o n =” 1 . 0 ” e n c o di n g =”UTF-

8”?>

2 <a b s t r a c t f o r m : Model

3 xmi : v e r s i o n =” 2 . 0 ”

4 xmlns : xmi=” h t t p : / / www. omg . org /XMI”

5 xmlns : x s i =” h t t p : / / www. w3 . org / 2 0 0 1 /

XMLSchema-

i n s t a n c e ”

1 <?php

2. r e q u i r e 2 o n c e ’HTML/ QuickForm2 . php ’ ;

3 r e q u i r e 3 o n c e ’HTML/ head . php ’ ;

4 $ c o n t r o l e u r = new HTML 4 QuickForm2

Controller (’

p r o c e s s ’ , f a l s e) ;

5 c l a s s Page1 e x t e n d s A bstr a ctF orm

6 {

7 p r o t e c t e d f u n c t i o n popul at eForm ()

8 {

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

42

Looking at this PHP code, we can see the code for the

fieldset at the 12th line, the InputText for the Name (line

13) and the required Rule applied to the InputText Node

at the 14th line.

D. Graphical result

The capture of the following figure 6 represents the

result of the execution of the preceding code without any

manual addition.

 Fig. 6. Graphical result of the practical case after transformation

We can see in red the instantaneous validations of the

rules that we have defined; executed on the client-side. VIII. CONCLUSION

15 $ e l = $ f s i n f o p e r ->addElement (’ T ext ’ , ’

prenom ’ , [] ,

[’ l a b e l ’=> ’ prenom ’]) ;

16 $ el->addRule (’ R e q uir e d ’ , ’ V e u i l l e z e n t r

e r v o t r e

nom ’ , n u l l , HTML QuickForm2 Rule : :

ONBLUR CLIENT SERVER) ;

17

18

19

20 }

21 }

22 $ c o n t r o l e u r ->addPage (new Page1 (new

HTML QuickForm2 (’1 ’))) ;

Thierry Noulamo et al. / IJCTT, 68(1), 33-43, 2020

43

This work focused on the automatic production of the

human-machine dialogue layer. It's part of a broader

research perspective aimed at fully automating the

software production process. Indeed it shows that it's

possible to increase productivity in software Engineering

by using the IDM approach. For this purpose, we first

propose a generic source metamodel and a target

metamodel specific to the framework PEAR. Then, we set

up a set of transformation rules using the ATL language,

which allows us to obtain a target model from a source

model. Then, from the target model generated, we use the

Xpand language to transform the latter and get a PHP

code. The results allow us to appreciate the gain in time

and efficiency in the production of robust HMI in PHP. In

the near future, we will propose a generalised approach,

including the data layer and the treatment layer. This

requires the extension of the metamodels so that they can

take into account all the elements of the treatments layer

and data layer.

REFERENCES

[1] Etienne Andre, Christine Choppy, and Thierry Noulamo,
Modelling timed concurrent systems using activity diagram

patterns, Springer, Advances in Intelligent Systems and
Computing, KSE’14, (2008) 1-15 .

[2] BENOIT COMBEMALE, Meta-modeling approach for ´model

simulation and verification: Application to process engineering, ´
PhD THESIS, Institut National Polytechnique de Toulouse, 11

(2008) 25–75

[3] [3] Ali Koudri, Joel Champeau, Denis Aulagnier, Operational
semantics for better meta-modeling, SéMo, 2007.Stein, L.D.,

Xavier Blanc’, MDA en action, EYROLLES, Paris, ISBN 2-212-

11539-3, (2008).
[4] Jean-Bernard Crampes, Nicolas Ferry, A high-level model for the

design and layout of HMIs, In: e-TI, Electronic Review of

Information Technologies, ISSN 1114-8802, http://www.
revueeti.net/index.php/eti/article/download/29/pdf, 5 (2008).

[5] Paulo Pinheiro da Silva, Norman W. Paton, User Interface

Modeling in UMLi, In: e-TI, Electronic Review of Information
Technologies, In: IEEE Computer Society, http://www.cs.man.

ac.uk/norm/papers/umli.pdf, (2008).

[6] Jean-Sébastien Sottet, Gaëlle Calvary, Jean-Marie Favre,
Engineering

[7] of Model-Driven Human-Computer Interaction, First Days on

Model-Driven Engineering,IDM’05, Paris, (2008).
[8] Jean Bezivin, On the Unification Power of Models, in Software

and Systems Modeling, 4(2) (2005) 171-188.

 DOI: 10.1007/s10270-005-0079-0, 2004.
[9] https ://-pear.php.net/package/html quickform2]quickform2

Package information : Html quickform2,

https ://pear.php.net/package/html quickform2
[10] Jean Philippe Baba, Model-driven engineering: emf modeling

(eclipse modeling tools, http://lab-sticc.univ-

brest.fr/babau/cours/coursemf.pdf, (2019).
[11] Farah FOURATI, An idm approach of exogenous transformation

from wright to ada, National School of Engineers of Sfax, (2010).

[12] Levendovszky T. Madari I., Lengyel L., Modeling the user
interface of mobile devices with dsls, In 8th International

Symposium of Hungarian Researchers on Computational

Intelligence and Informatics, (2007).
[13] Mohamed Lachgar, MDA Approach to Automate Native Code

Generation for Cross-Platform Mobile Applications, PhD thesis,

Cadi Ayyad University (UCA); Faculty of Sciences and

Techniques Guéliz (FSTG); Laboratory and institution: Applied

Mathematics and Computer Science Laboratory (LAMAI), (2017).

[14] OMG, Meta Object Facility (MOF),
http ://www.omg.org/spec/QVT/1.2] qvt W3C XML Query

(XQuery), http://www.w3.org/XML/Query,

Query/View/Transformation (QVT).

https://www.researchgate.net/journal/1619-1366_Software_and_Systems_Modeling
https://www.researchgate.net/journal/1619-1366_Software_and_Systems_Modeling

