
International Journal of Computer Trends and Technology Volume 68 Issue 11, 24-42, November 2020

ISSN: 2231 – 2803 / https://doi.org/10.14445/22312803/IJCTT-V68I11P104 © 2020 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Scalable multiple representation and dynamic

classification by multiple specialization of

objects in OO-Prolog

Macaire Ngomo
1

 CM IT CONSEIL – Engineering and Innovation Department – 32 rue Milford Haven 10100 Romilly Sur Seine

(France)

Received Date: 30 September 2020

Revised Date: 13 November 2020

 Accepted Date: 14 November 2020

Abstract - This study takes place within the framework of the

representation of knowledge by objects and within the

framework of our work on the marriage of logic and objects.

On the one hand, object-oriented programming has proved

to be appropriate for constructing complex software

systems. On the other hand, logic programming is

distinguished by its declarative nature, integrated inference,

and well-defined semantic capabilities. In particular,

inheritance is a refinement mechanism whose mode of

application leaves several design choices. In the context of

this marriage, we describe the semantics of multiple

inheritances in a non-deterministic approach, the conceptual

choices of integration of multiple inheritances made for the

design of the OO-Prolog language (an object-oriented

extension of the Prolog language respecting logical

semantics) as well as its application to multiple evolutionary

representations that support classificatory reasoning and to

dynamic classification by multiple specifications of logical

objects.

Keywords - Object-oriented logic programming, object-

oriented representation, multiple inheritances, multi-point of

view, classificatory reasoning.

I. INTRODUCTION
Inheritance is a refinement mechanism whose mode of

application leaves a number of design choices. In this article,

we describe the semantics of inheritance [11] [12] in a non-

deterministic approach as well as the conceptual choices of

integration of monotonous multiple inheritances made for the

design of the OO-Prolog language (an object-oriented

extension of the Prolog language respecting logical

semantics) [72] [73] [74] [75] [76] [77] [78] [79] as well as

its application to the dynamic classification by multiple

specializations of logical objects. Our work concerns the

multiple and evolutionary representation of objects that

supports reasoning by classification [68] [21] [24] [17] [14]

[30] [52] [53] [54] [55] [57] [NEBEL 90] [QUI93] [58] [35].

This representation must, therefore, allow a dynamic

classification of logical objects and follow classificatory

reasoning. Reasoning by classification consists of finding the

most specialized class or category to which an object belongs

and retrieving knowledge related to this location.

The inheritance management model of the OO-Prolog

language is based on the non-determinism of logic

programming, on explicit naming, and on the concept of full

attribute naming, which allows conflicts to be resolved

before they arise. The OO-Prolog language adopts a dynamic

inheritance for both attributes and methods. This is a

difference with classical models such as the ObjVLisp model

from which it was inspired. Let us recall that ObjVLisp

makes a static inheritance of the instance variables, which

results in the flattening of the inheritance graph regarding the

state of an object. The result is that an object in ObjVLisp is

a vector of instance variables where all inheritance

information has disappeared.

II. THE OBJECT PARADIGM AND ITS

DIMENSIONS

The paradigm of object-based programming, born with

Smalltalk [37] at the end of the 1970s, has become very

popular: object-based languages, object-based

representations in artificial intelligence, object databases,

object-based design in software engineering, etc. The

paradigm of object-based programming is now being used in

many different fields. It gives great power of expression,

ease of maintenance, and reusability superior to other

paradigms: imperative (example with C), functional

(example with LISP [89] [90] [90]) or logical (example with

PROLOG [88] [91] [90]), etc. However, it requires a greater

abstraction capacity than imperative or functional

programming to choose the "objects" to be reified and define

inheritance and composition between classes in a meaningful

and coherent way.

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

25

The main dimensions of the object paradigm which are

classification, inheritance which introduces the notions of

generalization and specialization, encapsulation and

polymorphism (generic functions), were brought together for

the first time in Smalltalk 76 [37], although the ideas of class

and instance, and inheritance had matured with SIMULA

[23]. Classes were seen as objects, created by metaclasses, in

the object languages created above Lisp, then in Smalltalk

80 [37]. This vision was taken up again in Java, where

everything is an object, the elements of world representation,

the elements of graphical interfaces, and the elements of the

language like functions, classes, events, errors, and

exceptions. The composition was later added as an

autonomous dimension with UML and is present in modern

languages such as Java.

A. Encapsulation

In the object paradigm, encapsulation concerns the

grouping of variables and functions into classes and the

grouping of classes and interfaces into packages. Classes,

functions, and packages are also namespaces that ensure

uniqueness within the names of the elements composing

them. From the outside, it may be necessary to prefix the

names of imported public elements by the name of the class

or package from which the referenced element comes (or by

this or by super). Encapsulation ensures the grouping in the

same elements (classes or packages) of lower-level elements

strongly linked. It ensures the protection and partial

visibility of the elements outside. Encapsulation ensures the

independence between a class's layout, a function, a

package, and how it is presented concerning the other

objects using it. The public presentation of an element

ensures that a contract will bind that element about what it

does, but not how it does it, which is the responsibility of its

implantation. Therefore, it can be changed without affecting

the operation of the other elements that use it, for example,

to change internal variables or the algorithms used. The

encapsulation and access levels (private, public, etc.) give

rise to the reusability of software elements and software

evolution.

B. Inheritance

The organization of classes in specialization hierarchies

makes it possible to create complex classes from more

general classes by refining the general description. A

subclass is built from another class by adding members or

restricting members existing in the other class. The

mechanism by which a class retrieves information inherited

from its superclasses is called inheritance. Inheritance is,

therefore, a mechanism for sharing information by factoring

in members. Inheritance between classes allows the reuse of

the structures or behaviours introduced, and facilitating

updating, avoiding duplication of information. When several

classes have common characteristics, it is possible to create

a more general classifier that groups together these

structures (classes) or behaviour (interface) properties. It

reduces the need to specify redundant information and

simplifies updating and modification because it is located in

one place. Inheritance makes it possible to infer all the class

members not explicitly given there by searching for them in

the higher classes (ancestors) in order from the most refined

to the most general. This inference mechanism comes back

to an algorithm for browsing the class graph according to a

defined strategy.

a)Simple inheritance

Inheritance has long been seen as an inheritance of

structure first and behaviour second. This is no longer the

case with Java and UML, which distinguish two forms of

inheritance: class inheritance is an inheritance of structures

and behaviours, interface inheritance is only an inheritance

of behaviours. An inherited class is generally an abstract

class, which will have no instance, but which constitutes an

algebraic type (a structure with operations). You can have as

many levels of inheritance as you want. When a class

inherits from a more abstract class, it inherits its attributes

and its operations or methods.

b)Multiple inheritances

Multiple inheritance is an extension to the simple

inheritance model where one class is allowed to have several

parent classes to model multiple generalizations. An object

can be considered from several points of view. This is the

main reason we have to consider multiple inheritances. For

example, the cathedral of Notre-Dame de Paris is both a

work of art and a place of worship. Care must be taken to

avoid homonymy, which should not mix two structures

instead of giving them two different names. At first glance,

it seems that one class can inherit from several classes

because an object can have several parts, and the object has

been attributed to the properties of its parts (metonymy).

However, only the question of points of view corresponds to

inheritance because if an object is composed of several parts,

it will be constructed by a compositional mechanism. At the

design stage, it is legitimate to describe a class inheriting

from several classes. If the programming language used does

not allow multiple inheritances, the problem will have to be

solved at the implementation stage.

The use of multiple inheritances is not without its

problems. For example, if the two base classes have

attributes or methods with the same name, there are naming

collisions that need to be resolved. In programming,

managing multiple inheritances of structures is difficult

because if inheritance causes a conflict over attributes, you

have to rename an attribute in one of the classes or see the

design error that causes the Conflict. If inheritance causes a

conflict of methods, a conflict resolution strategy, i.e., a

choice or combination procedure as in CLOS [6] [22] [43],

should be used. This is why some languages such as

Smalltalk or Java prohibit multiple inheritances of

structures. Some languages prefix the name of the attribute

by its class of origin. If multiple inheritances are allowed, it

is not advisable to do multiple inheritances on several levels.

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

26

It is better to do it only for instantiable classes and that these

classes are not inherited. The notion of an interface in Java

avoids multiple inheritances for classes while allowing the

inheritance of behaviours. An interface only defines static

constants and declares abstract methods. It represents a

promise of services. There can be multiple inheritances

between interfaces, and a class can implement several

interfaces without conflicts since no instance variable and no

method is defined.

We will come back to this dimension to describe the

conceptual choices of integration of multiple inheritances

made for the design of the OO-Prolog language and the

strategies for resolving inheritance conflicts.

C. Polymorphism
Polymorphism is that several functions can have the same

name if they do the same thing on different objects. The

function is then said to be generic. The form in which a

function is called does not completely determine the function

that will be executed since functions are generic: they only

define a contract on how they behave. Their call parameters

have a type that will select the concrete function that will be

executed. And therefore, the same function call can trigger

different methods depending on the objects passed to it. Even

if the variables have a type, several objects can correspond to

this type because of inheritance between classes and between

classes and interfaces. The object will execute the method

defined in the most specialized class of which it is a part. A

generic function call must first resolve which method applies

and then apply it to the call's arguments. In some cases, the

decision may be made statically, once and for all, and the

method call at compile-time may replace the function call. In

other cases, the same call may correspond to objects of

different types, and resolution can only be made at runtime.

D. The composition
When an object is composed of several parts, its

composition is constructed because variables will reference

the object's attributes and parts. The object's behaviour can

be distributed on its parts and accessible by calling methods

on the object's parts via its variables.

III. INHERITANCE SEMANTICS

Almost all object languages implement a notion of

inheritance between classes. As we have just seen, the

Principle is to specialize and factorize. This allows

knowledge to be shared efficiently to obtain, on the one

hand, a more compact code and, on the other hand, a finer

representation of the problem to be solved. The programming

of an application in these languages will consist of grouping

the most general information into classes, which are then

specialized step by step into sub-classes implementing more

specific behaviours. The classes are organized in an

inheritance graph, which allows visualizing the links between

them. However, inheritance is a refinement mechanism

whose mode of application leaves a certain number of design

choices. In particular, the mode of composition of the

properties must be defined. To do this, we are faced with two

design choices: the semantics of inheritance [11] [12] and the

path strategy of the inheritance graph, i.e., the order in which

the classes will be considered.

In this section, we come back to this concept of

inheritance to describe its semantics and the choices that

were retained for the OO-Prolog language conception.

The traditional definition of inheritance presupposes

non-monotonous semantics in the composition of the

different inherited classes. This means that when a subclass

redefines a method, this redefinition replaces or hides the

definition already given in the overclass. Thus, if an

instance of this class receives a message that must be

answered by executing this method, the subclass's

definition will be executed. In practice, a mechanism is

often provided to override this. For example, this sends a

message to super in Smalltalk-80, which explicitly

designates the definition in the classes above.

Several languages and models are based on this

inheritance model. In these languages, the semantics of

inheritance is non-monotonic. Generally, these languages

use the same strategies as common object languages, such

as the linearization of the inheritance graph classes.

Examples are ObjVProlog [48] [49] [50] and Prolog++ [66]

[47]. Others support multiple inheritances and offer no

means of resolving conflicts (e.g., the systems of Kowalski

[44] [45] and Zaniolo [94]).

Gallery [32], Leonardi, and Mello [46] propose object-

oriented logic programming to replace non-monotonous

semantics with monotonous semantics backtracking would

explore all the definitions vertically, from the subclasses to

the superclasses. This approach is interesting from the point

of view of first-order logic, which is monotonous. However,

it poses a major problem. Indeed, if the inheritance is used to

build based on another class, which supports the idea of

monotonous semantics, it is also used to differentiate

behaviours. It often happens that an entity is modelled by a

class, saying: my instances will be like those of such and

such a class (inheritance) except for such and such behaviour

(differentiation). This last interpretation, therefore, requires

non-monotonous semantics. This necessity to have a way to

reintroduce non-monotonous semantics of inheritance has led

Gandilhon [33] to propose a new form of cut to prevent

backtracking on definitions in inherited classes. He calls this

cut "cut_inheritance."

Monotonous semantics provides a solution from the point

of view of first-order logic programming. However, OO-

Prolog adopts non-monotonic inheritance semantics because

it is more common in object-oriented programming

languages.

For the design of OO-Prolog, we have retained the non-

monotonous semantics of inheritance for two main reasons:

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

27

 because the traditional definition of inheritance assumes

non-monotonic semantics in the composition of the

different inherited classes

 It is the most common in object languages and is

necessary in many cases to differentiate objects'

behaviour.

IV. TECHNIQUES FOR RESOLVING INHERITANCE

CONFLICTS

Inheritance is a mechanism for both hierarchical and

deductive information sharing, defined on a set of objects

partially ordered by a specialization relationship. This

deductive aspect is of particular interest here. Each of these

classes has properties (attributes or methods): the inheritance

object: the subclasses inherit them from their superclasses.

As a first approximation, these properties have values

(scattered in the inheritance graph) and a name (or selector).

Multiple inheritances allow more flexible modelling of an

application by avoiding the multiplication of useless classes.

On the other hand, this form of inheritance can introduce

conflicts. The problem of conflicts falls within the general

framework of Fig. 1 taken from [69] [25] [26], where and are

two direct superclasses, both of which have the property P,

each without Conflict.

Fig. 1 Primitive scene

There is no universal technique for resolving these kinds

of conflicts, and there are a wide variety of techniques for

resolving them. Different views on how to resolve them are

often contradictory. In software engineering, the risks of

error and confusion must be avoided at all costs: conflicts are

therefore generally prohibited because they are incompatible

with a programming framework based on rigour and

reliability. In artificial intelligence, multiple inheritances are

a natural and indispensable principle for modelling real-

world situations and entities. We describe below the common

techniques [8][7] [59] [60] [61] [62].

A. Conflict resolution by mistake

Error-based conflict resolution occurs when the

language's semantics consider the collision illegal and cause

an error in compiling the inheriting subclass.

B. Conflict resolution by equivalence

We speak of conflict resolution by equivalence when the

semantics of language consider the same name introduced by

different classes as referring to the same field.

C. Conflict resolution by renaming

Conflict resolution by renaming occurs when the

language's semantics consider the same name introduced by

different classes as referring to distinct fields, thus

duplicating the renamed components. The expressions

"conflict resolution by duplication" and "conflict resolution

by renaming" are synonymous. The Eiffel language uses this

Principle. The program example below shows how this is

done in the Eiffel language (renaming of conflicting

attributes and methods) [8].

For example :

 CLASS Problem

 EXPORT origin, priority...

 FEATURES ...

 END

 CLASS Document

 EXPORT origin, priority...

 FEATURES ...

 END

 CLASS Of_delay

 EXPORT ...

 INHERIT

 problem RENAME origin

AS hazard_manufacturing,

 AS priority priority1 ;

 document RENAME origin

AS programme_fabrication,

 AS priority priority2 ;

 FEATURES .

 END

D. Conflict resolution by qualification

We speak of conflict resolution by qualification when

the semantics of language requires that all references to the

selector fully qualify the source of its statement. In C++, for

example, the attribute name includes the overclass's name,

so references to the name fully qualify the source of its

declaration.

E. Conflict resolution by points of view

Here is an object-oriented description of the Computer

with a technical and an accounting interpretation. In the

example below, multiple inheritance conflicts over the

Duration and Priority attributes are handled by viewpoints in









P P

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

28

OBJLOG [27] [28] [15].

Fig. 2 Points of view

Let us imagine the Computer class (see Fig. 2). This

class inherits the Accounting Service and Computer

Workshop classes. The Accounting Service class will have a

Lifetime attribute (depreciation period), and the Technical

Service class will also have a Lifetime attribute (warranty

period). When you want to access this attribute, you will

have to specify by some means or other if you want to access

its value from a "technical" or "accounting" point of view.

"A point of view is an interpretation of all or part of the data

of a class corresponding to an abstraction of the real world"

[8]. A class may, therefore have several points of view. The

sum of these points of view, i.e., the whole class, will be

called perspective. "A perspective is a composite class

representing different interpretations (points of view) of the

same abstraction of the real world" [8].

Languages that resolve multiple inheritance conflicts

based on their classes' decomposition into viewpoints will

somehow shorten the path's qualification more intuitively

than languages. All references to the selector fully qualify

the source of its statement (see conflict resolution by

qualification). We will speak of conflict resolution by

points of view when the semantics of the language use the

modelling of perspective classes decomposed by the

delimitation of points of view. This concept is fundamental

in knowledge representation [84], where different types of

knowledge do not have the same meaning in different

domains of discourse. For example, the OBJLOG language

defines a mother class as a perspective for a daughter class.

Unlike CLOS, which resolves possible conflicts using a

precedence list, OBJLOG enshrines the point of view. The

conflict resolution algorithm will reason by difference or

equivalence of points of view.

F. Conflict resolution by a combination of methods

The combination of methods aims, when sending a

message, to combine the execution of different methods of

the same object. These methods which have the same

selector are in call conflict. This technique, used, for

example, in the FLAVORS system, consists of labelling the

methods to determine a certain sequence. It is the notion of

a demon that is used here. In the KEE language, these

labels aim at managing specialization to avoid arbitrary

masking of the method's code (overloading) or, more

generally, conflicts in multiple inheritances [8]. In this case,

a parameterization of the path of the inherited classes is

given by the combination. This Principle of method

combination is based on the generic functions introduced in

the CLOS language [6] [22] [43]. We speak of conflict

resolution by method combination when the semantics of

the language use method labelling (daemon) to allow

certain chaining. Moreover, the combination provides a

parameterization of the path of the inherited classes.

G. The path of the inheritance graph

In many languages, inheritance conflicts are resolved by

defining an order in which outliers will be examined to find

the property definition used to respond to a message.

Classically, this is equivalent to defining a total or partial

order in the inheritance graph or in the subgraph whose

source is the instantiation class of the object that receives the

message. If the searched property is located at different

places in the hierarchy, the first-class found by the path

algorithm's execution will be selected; hence the importance

of knowing the algorithm used during programming to

predict the result. Here the direction of the graph will play a

role in resolving the Conflict since it will, to a certain extent,

specify the classes' priorities. Linear techniques have the

major disadvantage of systematizing each Conflict's

treatment without considering the semantics of the properties

involved. As Masini [Masini & al. 89] points out, conflict

Computer

Attributes
Lifetime
Membership

 ...

Computer

Attributes
Lifetime (warranty) =

Membership =

...

Computer
Attributes

Lifetime (amortization)

=

Membership =

...

Computer workshop

 Attributes
Lifetime

 Priority

...

Accounting department

Attributes
Lifetime

 Priority

 ...

Computer

Attributes

Lifetime (point of view=IT workshop)=

Belonging (viewpoint=accounting department)=

Priority (single viewpoint)=1

 ...

computer workshop

5 years. 3 years.

fiscal year 1993

maximum warranty renewal period

depreciation period

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

29

resolution can only be reliable if it considers the knowledge

related to the application. Systematically applying a default

solution cannot, therefore, correctly resolve each case.

Therefore, the algorithms used in the graph must be taken

into account according to the problems' nature to be solved

[8]. Certain modes of conflict resolution (collisions and

repeated inheritances) prevent this arbitrary choice, dictated

by class specialization's chronology.

V. INHERITANCE MECHANISMS IN OO-PROLOG

OO-Prolog is one of the many hybrid languages

resulting from work on the integration of object-oriented

programming paradigms and logic programming paradigms

[9] [39] [42] [40] [5][18] [19] [34] [38] [80] [1][2][3][31]

[20] [41] [51] [56] [92] [67] [48] [49] [50] [66] [72] [73] [74]

[75] [76] [77] [78] [79] [35][36][85][86][87].

OO-Prolog supporte l'héritage multiple avec une

sémantique non-monotone. Pour résoudre les conflits

d'héritage en OO-Prolog, nous adoptons une solution basée

sur la résolution non-déterministe, sur la notion de point de

vue et sur le concept de nom complet d’attribut.

Pour beaucoup de langages à objets usuels, une stratégie

par défaut de parcours du graphe est nécessaire. Les

stratégies linéaires restent, pour l'instant du moins, le

meilleur compromis [Masini & al. 89]. Pour certains, elles

sont actuellement les seules techniques acceptables [69][25][

26]. Cependant, trois raisons nous amènent à proposer, pour

la programmation logique par objets, une approche non-

linéaire, non-déterministe. Premièrement, comme le souligne

Masini, il n'existe sans doute pas une stratégie linéaire

universelle, idéale, satisfaisante dans tous les cas [Masini &

al. 89]. Deuxièmement, les techniques linéaires ont

l'inconvénient majeur de systématiser le traitement de chaque

conflit, sans tenir compte de la sémantique des données qui y

sont impliquées. Enfin, la possibilité qu’offre Prolog

d'explorer, par retour arrière, toutes les alternatives possibles,

permet, en cas d'ambiguïtés, de considérer un objet avec tous

ses points de vue (sans aucune discrimination).

OO-Prolog adopts a dynamic inheritance for both

attributes and methods. However, attribute inheritance and

method inheritance are treated differently.

A. Attribute inheritance

For the choice of the inheritance model of the OBJLOG

language, Dugerdil and Chouraki hypothesized that the

conflicting attributes do not have the same semantics [27]

[28] [15]. We take up some of OBJLOG's ideas and retain

this hypothesis to provide the means to resolve name

conflicts before they arise. In OO-Prolog, attribute name

conflicts are resolved by the concept of full name [29]. If an

attribute is defined in a class, its full name is the term whose

functor is equal to the attribute name and whose only

argument is the definition class. This means that two

attributes with the same name but not having the same origin

(definition class) have different full names and are

considered semantically different. This is the case here for

the 'department' attributes defined in the classes #' Employee'

and #' Student' (Fig. 3).

Fig. 3 Full name of an attribute in OO-Prolog

As we have already seen, an attribute is represented by a

Prolog term of arity one. Its argument corresponds to the

point of view that determines the interpretation of the

attribute: <name>(<interpretation>)

Each attribute inherited from an overclass, therefore, has a

different interpretation from the others. A class then inherits

all the attributes of its upgrades. Two attributes are

homonymous if they have the same name and if the

intersection of their labels is empty (for example,

department(#'Employee') and department(#' Student') are

homonymous). Conversely, two attributes are different if

their names are different (for example, name(#' Person') and

age(#' Person') are different).

Fig. 4 Interpretation of an attribute

As in OBJLOG, we define a mother class as a point of

view for a daughter class. Thus we can use the inheritance

relation to introduce the notion of disjunctive interpretation

of an attribute at the level of class C, i.e., the set of

interpretations of the same name's attributes (but not masked)

in the subgraph of C. It corresponds to the set noted

{c1,...,cn}, where ci are classes, maximum lower bounds for

this attribute at the level of class C. In the context of Fig. 4,

the disjunctive interpretation of the 'department' attribute at

class level #' Employee_Student' is {#' Employee,' #'

Student'}. The disjunctive interpretation of an attribute at its

#'Person'

name(#'Person')

#'Employee’

 ' Department (#'Employee')

#'Student’

 ' department(#'Student')

...

... ...

#’Person”

 #’Employee’

.department(#’Employee’)

 #’Student’

#’Employee_Student’

.department(#’Student’)

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

30

definition class is the singleton composed of this same class.

For example, the department attribute's disjunctive

interpretation at the class level #' Employee' is the singleton

{#'Employee'}. Thus, when a method called the

interpretation of an attribute is a free variable, it is unified

with each of the disjunctive interpretation elements at the

current class level. Therefore, let's be an instance of the class

#' Employee_Student, 'having for study department "La

Seine-Maritime" and work department "La Haute-Seine."

The processing of the following request is done as follows:

 first, find the disjunctive interpretation of the

"department" attribute at the level of the current class,

here Employee _Student: {#' Employee,' #' Student'},

 using backtracking, instantiate the variable Int with each

of the elements of this set and calculate the attribute's

value corresponding to each interpretation.

We then obtain:

O <- getval(department(Int),Val).

(1) {Int = # 'Employee', Val = La Haute-Seine}

(2) {Int = # 'Student',Val = La Seine-Maritime}

One of its subclasses can be specified as in the following

example. In this case, the attribute's value is calculated in the

same way, considering the disjunctive interpretation of this

attribute at the subclass level specified when calling the

method.

O <- getval(department(#'Employee_Student'),Val).

(1) {Val = La Haute-Seine}

(2) {Val = The Seine-Maritime}

B. The inheritance of methods

Here In this section, we discuss one aspect of inheritance,

which is the inheritance of behaviour. We are, in the most

general case, that of multiple inheritances. Behaviour

inheritance is a synthesis of the consequences of the

inheritance relation at the level of methods; it describes the

evolution of t classes' behaviour through user-defined

inheritance links [Royer 91b]. In OO-Prolog, method

inheritance is also dynamic but managed differently by three

complementary strategies, which can be combined

dynamically.

The non-deterministic strategy

OO-Prolog uses a partial order with backtracking to

consider an object with all its points of view in the case of

remaining ambiguities. By default, sending a message

activates all methods in Conflict, taking advantage of the

Prolog interpreter's backtracking in his exhaustive search

for solutions to a query. For example, in fig. 5 below,

#'Albert' designates an instance of the class #' Tri-

instrumentalist,' which itself inherits three classes: Pianist,

#' Violinist,' #' Guitarist.' In each of these classes, the

method play_a_score is defined. If Albert is asked to play a

score by sending him the following message "#' Albert' <-

play_a_score," which instrument will use #' Albert' to play

his score?

 Fig. 5 Points of view of #’ Albert.’

 In a linear approach in which classes are given priority,

Albert will consider the class with the highest priority and

use the instrument corresponding to that class by default.

For example, in CLOS, it will be a Pianist class. In OO-

Prolog, this message is transformed into or logical on the

maximum lower bounds of this method at the level of the

class #' Tri-instrumentalist' ({#' Pianist,' #' Violinist,' #'

Guitarist'}):

#'Albert' <- (#'Pianist'):play_a score.

or #'Albert' <- (#'Violinist'):play_a score.

or #'Albert' <- (#'Guitarist'):play_a score.

This prevents an arbitrary choice dictated by class

specialization's chronology and prevents the object from

being questioned from all points of view (or in all its

aspects). We can multiply examples of this kind. In the

context of Fig. 6, sending the message department(D) to the

object #' Paul' is equivalent to :

#'Paul' <- department(D) (as #'Employee')

or

#'Paul' <- department(D) (as #'Student')

Fig. 6 Student and Employee: which department/1 instance O uses

at the TTRA level?

#'Person'

#'Pianist' #'Violinist' #'Guitarist'

#' Tri_instrumentalist'

#'Albert'

play_a_score play_a_score play_a_score

#'Student' #'Employee'

#'Employee_Student'

#'TTRA'

 #'Paul'

:department/1 :department/1
: calendar_holidays/1 : calendar_holidays/1

#'Person'

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

31

Thus, by default, OO-Prolog does not deal with method

inheritance conflicts. Sending a message activates all the

conflicting methods, taking advantage of the Prolog

interpreter's feedback in his exhaustive search for solutions

to a query.

Thus, while in the monotonous approach, backtracking is

used to introduce monotonous inheritance semantics (Fig.

7.a), we use it here to avoid introducing a horizontal order

between classes. This makes it possible to consider an

object with all its points of view without any

discrimination. In classical approaches, a choice is made,

with no possibility of going back. In OO-Prolog,

backtracking allows the application of all conflicting

methods (Fig. 7.b).

Fig. 7.a Vertical backtracking

Fig. 7.b Horizontal backtracking

By default, the general rule is that sending a message

triggers all possible methods, taking advantage of the

Prolog interpreter's feedback in his exhaustive search for

solutions to a query. For example, in the context of Fig. 6,

sending the message department(D) to the object #' Paul' of

the TTRA class is equivalent to or logical:

#'Paul' <- department(D) (O as Employee)

or

#'Paul' <- department(D) (O as a Student)

and is dealt with by exploring conflicting classes by

backtracking. In our opinion, this strategy is more general

than a classical non-monotonous linear strategy such as

Pclos, P1, etc. Any solution obtained using such a linear

strategy can also be a solution to this approach. For example,

in the context of Fig. 6, P1 and Pclos consider the class #'

Student' as having a higher priority than the class #'

Employee.' The object will, therefore, respond to the

department(D) message as a student and eventually return to

its study department.

Linear strategy

The form "O <-- Message" is processed using a predefined

linear extension algorithm. As we have already pointed out,

linear strategies must be taken into account according to the

problems' nature. They do not always give the same result.

Therefore, the user must be given the possibility to introduce

his strategies or use several existing strategies (Pclos, P1,

Pflavors, etc.). The solution currently adopted in OO-Prolog

consists of making available to the programmer several path

strategies that he can use according to his needs. By default,

it is the inversion or P1 route strategy that will be considered

by the system.

O <-- department(D).

{Val = La Haute-Seine}

A simplified version of the inversion algorithm consists of

removing the nodes from the graph to stacking the deep path

first, without masking the nodes already visited: the result,

therefore, contains several occurrences of certain nodes. The

resulting list is then browsed in reverse, removing it along

the elements already encountered at least once. In this way,

only the last occurrence of each element in the initial list is

kept in the final list.

Fig. 8 Example of an inheritance graph

Let us consider the graph in Fig. 8 and calculate the

priority list of o7 using this algorithm. The list provided by

the depth path first is as follows: o7, o4, o1, o5, o2, o1, o6,

o2, o1, o3, o1.

The priority list obtained after removing duplicates is as

follows: o7, o4, o5, o6, o2, o3, o1.

Ci

Cj

Ck

:m

:m

:m

Ci

Ck

Cj

C

:m

:m

:m

Cl : m

o1

o2 o3

o4 o5 o6

o7

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

32

The definition of a linear strategy is done by defining the

predicate lookup(Class, Precedence, LookupName), where

the class is the class at which the graph starts, and

Precedence is the precedence list of the Class class. The

LookupName parameter is the name of the strategy. For

example:

lookup(Class,Precedence,pclos) :-

% definition of the CLOS strategy.

lookup(Class,Precedence,inversion) :-

% definition of CLOS strategy.

% definition of the strategy by inversion or P1.

Thus, it is possible to define several independent linear

strategies and use them in the same application. The choice

of a strategy is made by assigning an environment variable

the name of this strategy. The primitive set_lookup then

dynamically sets the strategy to be used: set_lookup(S), S

being the set strategy. For example, if the user defines

CLOS's strategy, to fix it, just execute the goal:

set_lookup(pclos).

The primitive get_lookup(S) unifies variable S with the

name of the current strategy:

get_lookup(X),set_lookup(pclos),get_lookup(Y).

{X = inversion, Y = pclos}

true

set_lookup(pclos),get_lookup(pclos).

{}

true

This assignment is temporary and defeated by

backtracking. Currently, only two linear strategies are

integrated into OO-Prolog. The in-depth course with a

reversal that we have described above. Other strategies,

such as PCLOS, will soon be available.

The explicit designation

It consists of explicitly designating a class to which a

method belongs. It is a tool made available to the user and

allowing him/her to have greater control over the

inheritance mechanism. By explicitly designating the class

of origin of a property, it is possible to make certain choices

"by hand," thanks to the other classes' horizontal masking.

A designation may be incomplete. This is when the

designated class is not the one in which the property is

defined but one of its superclasses. In this case, the basic

strategy will be used, starting from the designated class.

The explicit designation is introduced by the ":"/2 operator:

<(<object> <- (<class>):<message>

Still, in the context of Fig. 6, the application

O <- (#'Employee'):department(D).

{D = La Haute-Seine}

allows you to consider the object O, a direct instance of

the class #' Employee_Student,' as a direct instance of the

class #' Employee' and to hide horizontally the department/1

method defined in the class #' Student.'

(a) Explicit multiple designations

In OO-Prolog, the explicit designation can be multiple,

i.e., and several classes can be designated as follows:

<Object > <- ([class1 >, ..., Classen >]):<message >

The following examples give an illustration of this

mechanism.

(1) Using the example in Fig. 5, we can write :

#'Albert' <- ([#'Pianist',#'Guitarist']):play_a score.

(2) In the context of Fig. 9 below, we can write:

D <- ([#'Flying_Bird', #'Swimming_Bird']):mode(Mode).

Fig. 9 Modelling the different points of view of the duck

Although the designated classes are considered in this

order, it is not of great importance since the result is the same

regardless of the order given. Thus, we can also write :

?- D <- ([#'Swimming_Bird', #'Flying_Bird'])

:mode(Mode).

which leads to the same result, the only difference being

the order in which the solutions will be rendered: {fly,swim}

in the first case and {swim,fly} in the second.

(b) Explicit designation and masking

When a class is explicitly designated, a control mechanism

makes it possible to check that the Principle of vertical

masking is respected, i.e., that the method sought is not

defined in one of the designated class subclasses.

(c) Designation and path of the inheritance graph

It is also a means of reducing the complexity of the

inheritance graph methods. It consists of making a jump to

the designated class and reducing the method search graph,

thus avoiding unnecessary visits to all the intermediate

classes.

VI. APPLICATION TO THE CLASSIFICATION OF

OBJECTS

OO-Prolog In this section, we describe an application to

the inheritance management model we have just presented, a

dynamic classification mechanism based on the multiple

#'Bird'

#'Flying Bird'
#'Walking

Bird'

#'Swimming Bird'

#'Duck'

D

:mode(fly) :mode(walk) :mode(swim)

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

33

specializations of objects.

Before proposing our classification scheme, we begin by

defining the concepts and briefly describing two mechanisms

on which we have drawn inspiration.

A. Knowledge

Knowledge can be seen as a "way of understanding and

perceiving, the fact of understanding, knowing the properties,

characteristics, specific features of something" the world, and

a theory of knowledge as "the explanation of the relationship

between thought and the outside world" [definition of the

"Petit Larousse" ed. 1991, 2020].

Newell defines the knowledge of an intelligent agent in

terms of the goals to be achieved:

Knowledge is] whatever can be ascribed to an agent,

such that its behaviour can be computed according to the

Principle of rationality. [...] Principle of rationality: if an

agent knows that one of its actions will lead to one of its

goals, then the agent will select that action“ [71]: Knowledge

is] all that can be attributed to an agent so that the agent's

behaviour can be calculated according to the Principle of

rationality. ...] Principle of rationality: if an agent knows that

one of his actions can lead him to one of his objectives, then

he chooses that action.

Knowledge can, therefore, be defined as the perception

and understanding that an intelligent agent has an external

world; this knowledge will enable him to behave rationally

and goal-oriented.

Knowledge can, therefore, be defined as the perception

and understanding that an intelligent agent has an external

world; this knowledge will enable him to behave rationally

and goal-oriented.

B. Representation of Knowledge

The organization of knowledge [84] into categories of

similar individuals is a natural activity. Since the birth of

artificial intelligence, several knowledge representation

techniques and associated reasoning mechanisms have been

developed. These include classical logic systems that reason

by monotonous logical inferences, rule-based production

systems that use forward and backward chaining mechanisms

to simulate cause-effect reasoning, schemas or semantic

networks, and conceptual graphs to represent knowledge by

bipartite graphs. These schema systems follow analogical

reasoning, and finally terminological logics and object-

centered representations that use classification [17] [14] [30]

[52] [53] [54] [55] [57] [NEBEL 90][QUI93] [82] as the

basic reasoning mechanism.

There are specially adapted reasoning mechanisms for

each of these types of representation: modus ponens

deduction for logic, hypothetico-deductive reasoning for

production rules, an analogy for representations by

prototypes, and so on.

In declarative systems, also called "knowledge-based

systems," knowledge is separated from control. This

separation facilitates the modification of knowledge and the

addition of new information to the base. The reasoning is

entirely data-driven; it uses inference mechanisms that allow

problems for no explicit procedures in the program.

A knowledge-based system is, therefore, a system with a

knowledge representation part and a reasoning part.

To solve a problem, an agent reasons on an abstraction of

knowledge related to the world and the situation of the

problem. To represent this knowledge, the agent develops a

model of the world's elements, relationships, and behaviour

laws.

The representation of knowledge is, therefore, the

modelling of the different elements of the real world and the

determination of interpretation procedures linking the world

and the model, both at the time of knowledge acquisition and

model elaboration and during the manipulation of the

representation (to give explanations) and, finally, when

applying the results of the model to the real world. Based on

this representation and an appropriate reasoning capacity, the

system must adapt and exploit its environment

[BRA90][BAR&81].

The knowledge represented can be of different types:

concept, fact, method, model, heuristic, event, prototype,

object, etc. [BRA90] [BAR&81]. It can have different

modalities: static or evolving, fixed or adjustable, certain or

uncertain, valid or outdated. Moreover, it can be objective or

subjective.

C. Classification

The classification [17] [14] [30] [52] [53] [54] [55] [57]

[NEBEL 90][QUI93] is the fundamental process of

organising information during analysis. It constitutes a

process of abstraction that makes it possible to group objects

with the same properties and determine the range of these

properties' values. These properties are of several orders:

 attributes, which have a fixed value for an object in the

Class (colour, dimensions, etc.) or a variable value over

time (position, speed),

 the relationships between the objects created by the

classes (composition, association),

 the states that will vary over time according to the events

that affect the object, and which define the possible

operations on this object when it is in this state. The

notion of state is not distinct from the notion of an

attribute in object languages.

 Possible operations on objects.

Classification is the main reasoning mechanism for

object-based representations. Classification is a process that,

starting from a structured knowledge base and a new object,

finds the object's appropriate location in the base.

The classification of an instance consists of finding the

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

34

most specialized classes to which the instance belongs.

Classifying an instance consists of finding the classes for

which it satisfies the constraints. Given a particular

individual in the universe of discourse and a class structure,

classification here consists of finding the most specialized

classes for which the instance satisfies the constraints. This

mechanism starts from an instance of which one has total or

partial knowledge and a class graph. Its intention or structure

describes a class. It represents a potential set of instances

(those that satisfy the class structure); the class graph is

induced by an order relation that must be coherent with the

set inclusion relation between the different classes.

The term classification has been used to refer to three

types of mechanisms:

 categorization, i.e., the grouping of objects into classes,

 the classification of classes or the insertion of a new

category or class in a class graph,

 Finally, the classification of instances, which consists of

finding the most appropriate membership class in the

class graph, for instance.

Our work concerns this third type of classification.

Classification is one of the most powerful human

reasoning activities and a fundamental mechanism of

inference [16]. This mechanism is specially adapted to

object-based representations. Indeed, the structuring of

knowledge into classes, subclasses, and instances favours

classification to recover implicit knowledge, relations

between a new situation and already known situations.

D. Classification reasoning

Classificatory reasoning [Naples 92] consists of

comparing new knowledge with a set of known knowledge to

deduce information related to this new knowledge.

Classificatory reasoning is an essential inference mechanism.

Faced with a new situation, a person takes advantage of past

experiences to choose actions to be taken. He determines the

most appropriate position for this new situation in the

structure where he memorizes those already known. Then he

infers knowledge induced by this localization.

This type of reasoning is very often used in problem-

solving: Knowledge of the domain is expressed by a

taxonomy of known problem types, a taxonomy of solution

types, and heuristic links between them. To solve a problem,

a person classifies it in the taxonomy of problems, then

associates it with the most appropriate solution in the

taxonomy of solutions employing a heuristic, and finally

refines the solution by classification.

Among the various knowledge representation techniques,

object-based knowledge representations (OBKRs) offer the

necessary elements for taxonomic representation: they

structure knowledge of the world around two types of

objects: classes and instances. Classes represent categories of

similar objects and are organized by a specialization

relationship within a taxonomy. Instances describe

individuals, members of classes. Classificatory reasoning

finds its "natural space" in object representations. Thus, the

main reasoning mechanism of such a representation is the

classification of instances [93]. To classify an instance

consists of finding its most specialized membership classes

in taxonomy and then infer knowledge related to this

localization.

Our work takes place within the framework of

classification reasoning and concerns the classification of

instances in a representation of object-oriented knowledge.

Our contribution lies in the object-based representation as

well as in the mechanism of instance classification.

At the representation level, we will deal with the

inheritance conflict due to multiple specializations present in

most knowledge object representation systems.

When a class has several superclasses in taxonomy, and

these have a common attribute, the system has to decide

which superclass inherits the attribute. We argue that the

source of this Conflict is the combination, in a single class

graph, of several class graphs corresponding to different

considerations of the same object from different points of

view.

E. The classification model of TROPES

TROPES [Marino 89, 90, 93; Gensel 92, 93, 95]

[54][55] [13] is an object-based representation system [68]

[93] designed to support classificatory reasoning similar to

that exploited by SHIRKA [Rechenmann 88; Haton 91], its

predecessor, and by terminological languages [McGregor 92]

[10] [83]. TROPES is based on a class/instance approach. In

this model, a knowledge base is partitioned into independent

concepts that model different families of individuals. Several

points of view can be associated with a concept, each of them

allowing for a particular interpretation.

Fig. 10 The main entities of the TROPES system

Concept

Viewpoint
Class

Unidirectional
Gateway Gateway

Instance

Gateway
Bidirectional

is_a

sort-of

is_a

is_a

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

35

A point of view corresponds to a set of classes organized

in a hierarchy by the specialization relation, which translates

the inclusion of all the instances of a class - the class's

extension - in that of a superclass. In such a hierarchy, except

for the root, a class has a single direct superclass (the

hierarchy is, therefore, a tree). Moreover, extensions of direct

subclasses of the same class are disjoint (multi-instantiation

is impossible from the same point of view). Therefore, an

instance is attached to a single class in each point of view by

the "is-one" link and belongs to each class located on the

latter's path at the root (Fig. 10).

Since views on a concept represent different

categorizations (hierarchical class organizations) of the same

set of instances, it may be desirable to emphasize the

relationships between classes of distinct viewpoints. This is

achieved by defining gateways. In its simplest form, a

gateway requires the inclusion of a source class in a

destination class.

The classification of instances into TROPES [54][55]

[13] is a mechanism that consists of confronting the

knowledge acquired in the instance with the different

hierarchies (points of view) of classes of the concept.

Classification is based on matching, which compares the

attributes of the instance to be classified and the constraints

imposed in the class's definition by the facets of the

attributes. Concerning the belonging of an instance to a class,

a class is labelled as safe if the instance checks all the

constraints of the class, impossible if it does not check them,

possible if the information available in the instance is not

contradictory with the constraints, but is not sufficient to

decide on the belonging to the class. Once the matching is

done, the classification proceeds to a label propagation to

save future matches. Label propagation follows the

following rules:

 any upgrade from a safe class is safe,

 any subclass of an impossible class is impossible,

 any class at the same level as a safety class is

impossible.

The Principle of the algorithm is therefore based on a

marking of the classes as "Possible," "Impossible," or "Safe,"

according to the confrontation of the content of the instance

with the description of the candidate class, during a

descending course in each of the points of view (for more

details see [Marino 89, 90, 93; Gensel 93; 81]). The descent

of the instance to the class's subclasses to which it belongs

leads to a permanent interaction with the user in TROPES to

ask for the values for the different attributes [81]. As the

classification algorithm brings the object I down to the

different points of view, I's knowledge is enriched. Once new

information is obtained ("Obtaining Information" phase), the

matching procedure ("Matching" phase) compares the values

already given by the user for the different attributes with the

constraints of the attributes defined in the subclasses. For the

subclasses' attributes, the system asks the user for the

attributes they need. As a result of this comparison, the

procedure marks each of the revised classes as "impossible"

(instance I do not satisfy the class attribute constraints) or

"safe" (instance I satisfy all the attribute constraints of the

classes it belongs to) or they remain "possible." There is only

one class that can become "safe" from each point of view.

Once the classes have been marked, the procedure for

updating the information of the "safe" class from each point

of view retrieves all the aggregated information. Finally, the

"choice of viewpoint" procedure calculates the viewpoint to

be taken as current to continue the instance's classification.

To carry out this choice, the strategy that has been retained in

TROPES consists of ordering the points of view according to

the user's knowledge of them. This is a deterministic choice.

One of the reasons for our approach is to make this choice

non-deterministic so that all the points of view of an object

can be considered.

F. MIC (Multi-Instantiation by Classification)

MIC (Multi-Instantiation by Classification) [Rieu 91a,

91b; Olga Marino 24] [63] [64] [65] is another classification

mechanism implemented in the knowledge representation

system SHOOD [Escamilla 90b, 93] and which inspired our

approach. It is designed for the classification of evolving

objects that may be incomplete and go through incoherent

states. It is based on multi-instantiation.

That of multi-instantiation replaces instantiation by

perfect casting [Masini & al. 89] by flexible casting. Multi-

instantiation by flexible moulding allows the classification

mechanisms to be extended to simultaneously consider the

notions of incomplete and incoherent objects, points of view,

and knowledge evolution. Instantiation is one of the

fundamental concepts of object systems [Masini & al. 89]. It

allows linking an object to the conceptual entity that

describes it: it is class. In most object systems, an instance is

attached to only one class [37]. Multi-instantiation allows the

simultaneous attachment of an object to several classes [Van

De Riet 89]. We are talking here about explicit multi-

instantiation, which should not be confused with implicit

multi-instantiation induced by specialization links. Explicit

multi-instantiation allows the attachment of an instance to

classes that are not directly or indirectly specializations of

each other. It thus authorizes the attachment of an instance to

classes with semantics different from those drained by its

creation class. It is no longer a question here of refining or

questioning an object's point of view, but of enriching

semantically different knowledge, i.e., taking into account a

new point of view on an object. This is the case of "my

aircraft," which is attached to the collectables class because it

is of a respectable age. In this case, "my aircraft" can be seen

as an aircraft or a collector's item (Fig. 11).

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

36

Fig. 11 Multi-instantiation by flexible moulding

Multi-instantiation was chosen as a classification

mechanism in the SHOOD model, especially for :

 Preserve the identity of an object through its different

points of view.

 Avoid certain hollow classes, i.e., those with a low

cardinality of all instances.

 Avoid certain modifications to the class graph,

particularly the classes between points of view not

initially planned. If the case of collection planes has not

been foreseen when designing the classes, the class of

collection planes will have to be dynamically added.

 Dynamically consider new points of view as they are

developed: add an instantiation link between the object

and the view class's point.

However, once the instance is attached to its point of

view classes, as in multiple inheritances, the problem arises

from choosing a point of view when sending a message to

this object. This problem is analogous to that of the

management of multiple inheritances. Unless there is an

explicit method, an implicit strategy must then be planned,

adding processing cost. A particular reason for our approach

is to avoid this double processing, especially in multiple

inheritance systems. To do this, instead of multi-

instantiation, we have chosen various specifications as the

classification mechanism. Like multi-instantiation, numerous

specifications allow the preservation of the identity of an

object through its different representations. It avoids

additional processing. The only problem here is the one

underlined above: the dynamic addition of points of view

when these are not foreseen when designing classes.

However, it is possible to foresee a large number of them and

avoid creating them dynamically. Moreover, since the

viewpoint classes to be added dynamically are sheets of the

inheritance graph, their addition does not lead to

modifications of the initial graph but only create simple

specialization links between this class and its superclasses.

G. DCMSO (dynamic classification by multiple)

specialization of objects

OO-Prolog is equipped with a semi-automatic dynamic

classification mechanism, called CDSMO (Dynamic

Classification by Multiple Specialization of Objects), based

on multiple specializations. This mechanism uses a scheme

similar to MIC (Multi-Instantiation by Classification) [Rieu

91a].

The classification operation is a very important

manipulation of a knowledge base structured in a hierarchy

of classes. Classifying an instance consists of finding the

classes to which it belongs (cf. fig. 12). Initially, the object I

belongs to class C. Classification consists of moving the

object down into C's subclasses.

Fig. 12 Instance I already belongs to class C: The classification

process seeks to move it down to the lowest subclasses of C

Depending on the type of knowledge to be added to the

database, there are two classification types: classification of

terminal instances and classification of classes. These two

types of classification are extremely different. The

classification of instances is the most important manipulation

operation of a knowledge base structured in a hierarchy of

classes. Classifying an instance consists of attaching it to a

class hierarchy by determining its most specialized classes.

Placing a class in an existing hierarchy requires modifying

the links between classes, checking the database's

consistency, and possibly modifying the classes that link the

instances that already belong to the database. In what

follows, we limit ourselves to the classification of terminal

instances.

If we want to express that two classes C1 (plane) and C2

(collection) model two different points of view of the same

set {i1, i2, ...} of objects, we can use :

 Multi-instantiation, by directly attaching i1, i2, ... to

C1 and C2. As we have just seen, it is this solution

that has been chosen in the MIC mechanism.

Fig. 13 Multi-point of view by multi-instance

 Aggregation, by creating a class C'12 (col-air) in

which each attribute (a1 and a2) corresponds to the

point of view.

aircraft collection

my-aircraft

instance

class

instance-of
C Instance I

?

C1 C2

i1

i2

aircraft collection

my-aircraft

instance_of

class

instance

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

37

 Fig. 14 Multi-point of view by aggregation

 Spécialisation multiple, par la création d'une sous-classe

C12 (air-col) commune à C1 et C2 dont l'ensemble des

instances est {i1, i2, ...}.

Fig. 15 Multi-specialization viewpoint

Subsequently, classes C12 (air-col) or C'12 (air-col) are

called inter-view classes. Classes C1 (aircraft) or C2

(collection) are called the point of view classes. These

representations induce differences, notably on the following

points:

 Grouping information about different points of view in

the classes. In specialization and aggregation, the

different points of view cohabit within the same inter-

point of the view class. This is not the case of multi-

instantiation where this cohabitation is not materialized

by a class but by the different instantiation links linking

each instance to the viewpoint classes.

 Preservation of the identity of an object through its

different points of view. In the cases of multi-

instantiation and specialization, each instance i1, i2,

(my-aircraft) belongs to the point of view classes C1

(aircraft) and C2 (collection): it is the same object

perceived from different points of view. In aggregation,

two points of view of the same object have no reason to

be represented by the same identifier. Indeed, C'12 not

being a subclass of C1 and C2, one of its instances has

no reason to belong to C1 and C2; moreover, C1 and

C2 are not in most cases specializations of each other.

Aggregation, therefore, does not make it possible to

express that they are indeed the same subject.

Our mechanism is based on multiple specializations.

Remember that we want a mechanism that preserves the

object's identity without having recourse to another

inference mechanism, such as multi-instantiation, which

would add processing cost. As in MIC, the execution of the

classification mechanism partitions classes into:

 Impossible classes: those for which the values of the

instance's attributes are in contradiction with the

constraints of these attributes in the class. For a 60-

year-old person, the children's class is impossible.

 Possible classes: those for which the instance is not yet

in contradiction with the class.

 Safe classes: those for which the instance satisfies all

the constraints of the attributes in the class.

On the other hand, a safe class can be "safe non-

terminal" or "safe terminal." A class is "safe non-terminal"

when its state is "safe," and it has only sub-classes with the

state "safe" or "possible." A class is "terminal safe" when its

status is "safe," and it is a sheet on the class graph, or when

the status of all its subclasses is "impossible."

In DCMSO, the partitioning of classes into impossible

classes, possible classes, and safe classes is built on the

assumption that all constraints are strong, i.e., non-violable.

However, when there are several candidate classes (in the

sense of MIC), instead of adding to the complexity of

managing multiple inheritance methods of managing multi-

instantiation (two problems of almost equivalent

complexity), our scheme uses multiple specializations as a

classification tool. This is done by attaching the instance to

be classified to an inter-point of a view class, common sub-

classes of the candidate point of view classes. When such an

inter-viewpoint class has not been foreseen, it is dynamically

added by the system. Thanks to the specialization links

between the inter-viewpoint class and the found viewpoint

classes, the classified object is an instance of all its viewpoint

classes.

We will distinguish two object classification cases: the

case of simple objects, i.e., not composite, and composite

objects.

C'12

a1: C1

a2: C2

i2

a2=ci1

i1

a1=ai1

a2=ci1

col-air

air: aircraft

col: collection

my-aircraft

av=av1

col=col1

C1 C2

C12

i1 i2

aircraf collection

air-col

My-aircraft

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

38

Classification: a simple case

Fig. 16 representation of classification constraints and evolution of the

graph when classifying objects

Let the instance to be classified. In the simple case, we

consider that no object in the database depends on I (in the

restricted sense), i.e., there is no terminal object I' such that

one of its attributes has the value I or a list containing I. To

illustrate this, we will consider the graph in Fig. 16.

In this example, the classification constraints are as

follows, expressed as rules:

 an instance I of Object belongs to Collection If I.age >=

50

 an instance I of Aircraft is a Commercial_Aircraft If

I.nb_passenger >= 20

?- # 'Aircraft' <- create(My_aircraft, [age(_) :=

60,nb_passengers(_) := 80]),

My_aircraft <- display.

 TERMINAL : : #[# 'Aircraft',1]

 nb_passengers(# 'Avion') <- 80,

 age(# 'Object') <- 60,

 class(# 'Object') <- # 'Commercial_Aircraft &

Collection

{My_aircraft = #[#'Aircraft',1]}

Unlike the new method, the instantiation create method

automatically results in the classification of the created

object. In the example above, the object My_aircraft, created

by the class Aircraft (instantiation class), satisfies the above

constraints:

 My_aircraft.age (= 60) >= 50 (My_ aircraft is instance of

Object)

 My_ aircraft.nb_passengers (= 80) so >= 20).

The classes commercial_aircraft and collection are marked

as safe. My_aircraft is then attached to the inter-view class #'

Commercial_Aircraft&Collection' (representation class) and

thus becomes both a commercial aircraft and a collector's

item.

Recursive classification

Fig. 17: Classification of composite objects

In the case where there is a terminal instance I' that

depends on me, two classifications can be distinguished. The

first is minimal because it only does what is necessary to

position the instance to be classified in the class hierarchy (in

particular, the classification of components is directed by the

initial classification). The second seeks to classify equally

and recursively the objects that depend on the classified

instance, i.e., those that share the object that has just been

classified. Indeed, if I' shares I, the classification of I may

lead to modifications in me.' It is therefore necessary to

reclassify the instance I' taking into account the new nature

of I.

The following example is an illustration of this. For

example, suppose that at least 50 years old are collection

objects (belonging to the class Collection_of_objects). Then,

the creation of an instance P of the class Person, with a 52-

year-old plane (thus an instance of Collection_of_object) will

automatically attach P to the Collector class (see Fig. 17).

?- #’Aircraft’ <- create(My_aircraft,[age(_) :=

60,nb_passengers(_) := 80]),

#’Person’<-

create(P,[age(_):=21,fortune(_):=200000,owns(_):=[My_airc

raft]]),

P <- display,

#'Object'

#'Aircraft' #'Collection'

#'Commercial_Aircraft

#'Aircraft&Collection'

attributes [age]

age >= 50

attributes [nb_passengers]

nb_passengers >=20

#'Sales_Aircraft&Collection'

1

2

Mon-avion

My-aircraft

'

#'Person'
attributes [age,object_owned]

#'Collector'

#' Minor'
#'Major'

age<18 age>=18

object_owned: Collection_object

#'Minor&Collector'
#'Major& Collector'

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

39

My_aircraft <- display.

TERMINAL :: #[#'Person',1]

 age(#'Person') <- 21

 fortune(#'Person') <- 200000

 owns(#'Person') <- [#[#'Aircraft',2]]

 class(#'Object') <- #'Major_Rich&Collector'

TERMINAL :: #[#'Aircraft',2]

 nb_passengers(#'Aircraft') <- 80

 age(#'Object') <- 60

 class(#'Object') <- #'Commercial_Aircraft &

Collection_Objet'

My_aircraft = #[#'Aircraft',2]

P = #[#'Person',1]

(a) Management of cycles in the classification algorithm

The designed algorithm considers possible cycles in the

classification process (cases where there are mutually

dependent objects). Indeed, let Oi and Oj be two mutually

dependent objects (see Fig. 18).

Fig. 18 Mutually dependent objects

Then the classification of Oi leads to Oj classification,

and the classification of Oj has the effect of reclassifying Oi

and so on. The result is an infinite loop. To correct this

defect, we adopt the following solution. If Oj is classified

after classifying Oi, only reclassify Oi if any classifications

that took place after the classification of Oi have changed the

state of Oj. This choice is justified because if after the

classification of Oi and the classification of Oj (including

those taking place in between) Oj has not been modified,

then there is no justification for a new classification of Oi

from Oi onwards. On the other hand, if the state of Oj has

been changed, this may imply changes to the state of Oi and

therefore requires a new classification of Oi.

Delayed classification

In the example above, the My_aircraft instance is shared

by the object P. The My_aircraft object is known before the

classification of P, which allows this information to be taken

into account when classifying P. If we create P before

My_aircraft when classifying P, My_aircraft being a free

variable, the classification constraint "P has a collection

object" will be delayed since My_aircraft is still unknown. In

this case, P's classification is delayed for this constraint and

will resume as soon as My_aircraft is known. In the end, we

obtain the same result as before.

?- #’Person’ <- new(P,[

 age(_):=21

 fortune(_):=200000

 owns(_):=[My_aircraft]])

 #’Aircraft’ <- new(My_aircraft,[

 age(_) := 60,

 nb_passengers(_) := 80]),

 (P, My_aircraft) <- display.

TERMINAL :: #[#'Person',1]

 age(#'Person') <- 21

 fortune(#'Person') <- 200000

 owns(#'Person') <- [#[#'Aircraft',2]]

 class(#'Object') <- #'Major&Rich&Collector'

TERMINAL :: #[#'Aircraft',2]

 nb_passengers(#'Aircraft') <- 80

 age(#'Object') <- 60

 class(#'Object') <- #'Commercial_Aircraft &

Collection_of_objects'

P = #[#'Person',1]

My_aircraft = #[#'Aircraft',2]

The delay mechanism allows here to freeze all the

classification constraints corresponding to the My_Aircraft

object.

VII. CONCLUSION

This paper has described a new model for managing

multiple inheritances and its application to classification. As

a general algorithmic method is probably impossible to build,

an alternative is to propose more open strategies. From this

point of view, our approach brings many advantages over

classical or traditional methods (e.g., graph linearization). It

brings a lot of flexibility to the treatment of inheritance since

it does not impose a user's systematic choice. Our inheritance

management method prevents an arbitrary choice dictated by

Oi =
 classe = Avion
 owner = Oj
 ...

Oj =
 class = Person

 owns = Oi
 ...

class = Object

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

40

the system. It is even possible to combine different strategies

depending on the problem to be treated.

The proposed classification mechanism is based on

multiple specializations. Indeed, we have seen that in the

DCMSO model, the partitioning of classes into impossible

classes, possible classes, and safe classes is built on the

assumption that all constraints are strong, i.e., non-violable.

However, when there are several candidate classes (in the

sense of MIC), instead of adding to the complexity of

managing multiple inheritance methods of managing multi-

instantiation (two problems of almost equivalent

complexity), our scheme uses multiple specializations as a

classification tool. This is done by attaching the instance to

be classified to an inter-point of a view class, common sub-

classes of the candidate point of view classes. When such an

inter-viewpoint class has not been foreseen, it is dynamically

added by the system. Thanks to the specialization links

between the inter-viewpoint class and the found viewpoint

classes, the classified object is an instance of all its viewpoint

classes. Remember that we want a mechanism that preserves

the object identity without having recourse to another

inference mechanism, such as multi-instantiation, which

would add processing cost.

The designed classification algorithm considers possible

cycles in the classification process (cases with mutually

dependent objects).

The delay mechanism allows all classification constraints

to be frozen and triggered only when missing data are

available, i.e., when the variables are instantiated.

ACKNOWLEDGMENT
The author wishes to thank Habib Abdulrab, Jean-Pierre

Pécuchet, Abdenbi Drissi-Talbi, Mohamed Rezrazi, Fabrice

Sebbe, and all his friends and colleagues for their help and

support. He also wishes to thank Olga, Michel, Marielle, and

Guyriel, who has always been very precious to realize this

work.

REFERENCES
[1] Ait-Kaci, H. & Podelski, A. "Towards a Meaning of LIFE." Proc. of

the Third Int'l Conf. on Programming Language Implementation and
Logic Programming, Lectures Notes in Comp. Sciences, Passaü,

Aug. 1991.

[2] Ait-Kaci, H. & Podelski, A. "Towards a Meaning of LIFE." Journal
of Logic Programming, 16:195-234, 1993.

[3] H. A t-Kaci, B. Dumant, R. Meyer, A. Podelski, P. Van Roy.

“The Wild LIFE Handbook,” Paris Research Laboratory,
prepublication edition, March 1994.

[4] V. Alexiev. "Mutable Object State for Object-Oriented Logic

Programming: A Survey." Technical Report TR 93-15, Dept. of
Comp. Science, Univ. of Alberta, 16 Aug 1993.

[5] J.M.Andreoli, R.Pareschi, "Linear objects: A logic framework for

open system programming," In A. Voronkov, editor, Inter.
Conference on Logic Programming and Automated Reasoning

LPAR'92, pp 448 450, St. Petersburg, Russia, July 1992.

[6] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya
E.Keene, Gregor Kiczales, and David A. Moon. “Common Lisp

Object System Specification,” ACM SIGPLAN Notices, 1988

[7] G. Booch “Object-Oriented Design with applications” The

Benjamin/Cummings Publishing Company, Inc., Redwood City,

California, 1992.
[8] Bouché M., "La démarche objet. Concepts et outils.", AFNOR, 1994.

[9] Bowen, K.A. et Weinberg, T. A Meta Level Extension of Prolog,

IEEE Inttl Symp. on Logic Prog. 'B5 (1985), pp.48 53.
[10] Brachman R. J. and Schmolze J. G. "An overview of the KL-ONE

Knowledge representation system," Cognitive Science, 9(2):171-216,

1985.
[11] CARDELLI L., “A semantics of Multiple Inheritance, LNCS”,

Vol.137, Springer-Verlag, pp.51-67, 1984.

[12] CARDELLI L., “Typechecking Dependent Types and Subtypes, in
Foundations of Logic and Functional Programming Workshop”,

LNCS, vol. 306, Springer-Verlag, pp.44-57, 1985.

[13] CARDOSO R., MARIÑO O., QUINTERO A., Corrección y
completud de la classification multi-puntos de vista de TROPES,

Rapport Interne, Département d’Informatique, Université des Andes,

Bogotá, 1992.

[14] CAPPONI C., CHAILLOT M., Construction incrémentale d’une base

de classes correcte du point de vue des types, Actes Journée

Acquisition-Validation-Apprentissage, Saint-Raphael, 1993.
[15] CHOURAQUI E., DUGERDIL Ph., Conflict solving in a Frame-like

Multiple Inheritance System, ECAI, Munich, pp.226-232, 1988.

[16] CLANCEY W.J., Heuristic Classification, Artificial Intelligence
Journal, Vol. 27, n°. 4, 1985.

[17] CRUYPENNINCK F., Interface de visualisation et explication du

raisonnement par classification d’objets complexes, Mémoire
d’Ingénieur en Informatique, Conservatoire National d’Arts et

Métiers, CNAM, 1992.
[18] W. Chen and D. S. Warren. Objects as intensions. In Logic

Programming: Proc. 5th Int'l Conf. and Symp., Seattle, WA, USA, 15

19 Aug 1988, pages 404 19. The MIT Press, Cambridge, MA, 1988.
[19] J. Conery. Logical Objects. Proc. of the Fifth Int'l Conf. on Logic

Prog. , p.p. '20-443, 1988.

[20] Davison, A. "A Survey of Logic Programming-based Object-

Oriented Languages." In Research Directions in Concurrent Object-

Oriented Programming. The MIT Press, Cambridge, MA, 1993.

[21] L. Dekker, « Frome : représentation multiple et classification d'objets
avec points de vue », Thèse de doctorat en Sciences appliquées, Sous

la direction de Gérard Comyn. Soutenue en 1994, à Lille 1.

[22] Linda G. DeMichiel and Richard P. Gabriel, “The Common Lisp
Object System: An Overview,” ECOOP, 1987.

[23] Doma, A. "Object-Prolog: Dynamic Object-Oriented Representation

of Knowledge." In T. Henson, editor, SCS Multiconference on
Artificial Intelligence and Simulation: The Diversity of Applications,

pages 83-88, San Diego, CA, Feb. 1988.

[24] O. M. Drews. Raisonnement classificatoire dans une représentation à
objets multi-points devue. Interface homme-machine [cs.HC].

Université Joseph-Fourier - Grenoble I, 1993. Français. tel-00005133

[25] DUCOURNAU R., HABIB M., La Multiplicité de l’héritage dans
Les Langages à Objets. TSI, vol. 8, n°.1, janvier, pp. 41-62, 1989.

[26] DUCOURNAU R., Héritages et représentations, Mémoire, Diplôme

d’Habilitation à diriger des recherches, spécialité : Informatique,
Université Montpellier II, 1993.

[27] DUGERDIL P., Contribution à l’étude de la représentation des

connaissances fondée sur les objets. Le langage OBJLOG. Thèse de
l’Université d’Aix-Marseille II, 1988.

[28] DUGERDIL P., Inheritance Mechanisms in the OBJLOG language:

Multiple Selective and Multiple Vertical with Points of View in
Inheritance Hierarchies in Knowledge Representation, M.Lenzerini,

D.Nardi and M.Simi (éd.), John Wiley & Sons Ltd., pp. 245-256,

1991.
[29] ESCAMILLA J., JEAN P., Relationships in an Object Knowledge

Representation Model, Proceedings IEEE. 2nd Conference on Tools

for Artificial Intelligence, Washington D.C. USA, pp.632-638, 1990.
[30] EUZENAT J., Classification dans les représentations par objets :

produits de systèmes classificatoires, Rapport interne, Equipe

SHERPA, INRIA, 1993.

[31] A. A. Fernandes, N. W. Paton, M. H. Williams, A. Bowles.

“Approaches to Deductive Object-Oriented Databases”, Information

and Software Technology, 34(12):787–803, 1992.

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

41

[32] Gallaire, H. "Merging Objects and Logic Programming: Relational

Semantics, Performance and Standardization". In Proc. AAAI'86,
pp.754-758, Philadelphia, Pensylrania, 1986.

[33] Gandilhon T. “Proposition d’une extension objet minimale pour

Prolog.”, Actes du séminaire de Programmation logique, Trégastel
(mai 1987), pp. 483-506.

[34] [34] Gandriau, M. "CIEL: classes et instances en logique". Thèse de

Doctorat, ENSEEIHT 1988, 151p.
[35] [35] Gloess, P.Y. "Contribution à l'optimisation de mécanisme de

raisonnement dans des structures spécialisées de représentation de

connaissances". Thèse d'état, Univ. de TechnWorldLogie de
Compiègne, Janv. 1990.

[36] [36] Gloess, P.Y. M. Oros, C.M. LI, “U-Log3 = DataLog +

Constraints”, (Prototype) Actes des JFPL95, Dijon (France), pp. 369-
372.

[37] Goldberg, A. and Robson, D. "Smalltalk-80: The language and its

implementation". Addison-Wesley, 1983.

[38] J. Grant and T. K. Sellis. Extended database logic. Complex objects

and deduction. Information Sciences, 52(1):85 110, Oct. 1990.

[39] Ishikawa, Y. et Tokoro, M. Orient84/K: An Object-Oriented
Concurrent Programming Language for Knowledge Representation,

Object-Oriented Concurrent Programming (1987), W 159 198.

[40] R. Iwanaga and O. Nakazawa. Development of the object-oriented
logic programming language CESP. Oki Technical Review,

58(142):39 44, Nov. 1991.

[41] R. Jungclaus. Logic-Based Modeling of Dynamic Object Systems.
PhD thesis, Technical University Braunschweig, Germany, 1993.

[42] [42] K. M. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow.
VULCAN: Logical concurrent objects. In B. Shriver and P. Wegner,

editors, Research Directions in Object-Oriented Programming, pages

75 112, Cambridge, MA, 1987. MIT Press. (Also Chap. 30 in [86a])
[43] Sonja E. Keene, “Object-Oriented Programming in Common Lisp: a

Programmer’s Guide to CLOS”, Addison-Wesley, 1989.

[44] Kowalski, R. "Algorithm = Logic + Control", Comm. ACM 22, 7

(1979), 424-436.

[45] Kowalski, R. "Logic for problem solving". North-Holland,

Amsterdam, 1979.
[46] L. Leonardi and P. Mello, "Combining logic- and object-oriented

programming language paradigms", in Proceedings of the Twenty-

First Annual Hawaii International Conference on System Sciences.
Volume II: Software track, Kailua-Kona, HI, USA, 1988 pp.376-385.

doi: 10.1109/HICSS.1988.11828

[47] Prolog++ toolkit, an expressive and powerful object-oriented
programming system, which combines the best of AI and OOPs. 47.

http://www.lpa.co.uk/ppp.htm

[48] Malenfant, J. ObjVProlog-V: un modèle uniforme de métaclasses,
classes et Instances adapté à la programmation logique, Université

de Montréal, Dép. I.R.O., Pap. de Pech. 671 (Janvier 1989), 58 p.

[49] J. Malenfant, G. Lapalme, and J. Vaucher. OBJVPROLOG:
Metaclasses in logic. In S. Cook, editor, European Conference on

Object-Oriented Programming (ECOOP'89), pages 257 269,

Nottingham, UK, July 1989.
[50] Malenfant, J. "Conception et Implantation d'un langage de

programmation intégrant trois paradigmes: la programmation

logique, la programmation par objets et la programmation répartie".
Thèse de PhD, Univ. de Montréal, Mars 1990.

[51] P. Mancarella, A. Raffaetà, et F. Turini LOO: Un langage orienté

objet Programmation Logique . Actes de 1995 conjointe GULP-
PRODE Conférence sur la programmation déclarative (MI Sessa et

M. Alpuente Frasnedo, eds), pp271-282, 1995.

[52] MARIÑO O., Classification d’objets dans un modèle multi-points de
vue, Rapport de DEA d’informatique, INPG, Grenoble, 1989.

[53] MARIÑO O., RECHENMANN F., UVIETTA P. Multiple

perspectives and classification mechanism in object-oriented
representation, 9th ECAI, pp.425-430, Stockholm 1990.

[54] MARIÑO O., Classification d’objets composites dans un système de

représentation de connaissances multi-points de vue, RFIA’91, Lyon-

Villeurbanne, pp. 233-242, 1991.

[55] MASINI G., NAPOLI A. COLNET D. LEONARD D., TOMBRE K.,

Les langages à objets. Intereditions, Paris, 1989.

[56] F. G. McCabe. Logic & Objects. International Series in Computer

Science. Prentice-Hall, 1992.
[57] MAC GREGOR R.M., BURSTEIN M.H. Using a Description

Classifier to Enhance Knowledge Representation, IEEE Expert

Intelligent Systems and Applications, juin, 1991.
[58] MAC GREGOR R.M., BRILL D., Recognition Algorithms for the

LOOM Classifier, AAAI, San José, CA, Juillet, pp.774-779, 1992.

[59] Meyer B. “Eiffel: Programming for reusability and extendibility.”,
ACM SIGPLAN Notices, 22(2):85-94, 1987.

[60] B. Meyer, “Reusability: The Case for object-oriented Design”,

IEEESoftware 4, 2 (Mars 1987), pp.50 64.
[61] B. Meyer. “Object-Oriented Software Construction”. Prentice-Hall,

New York, 1988.

[62] Meyer B. “Conception et programmation par objets, pour le génie
logiciel de qualité”, InterEditions, Paris 1990.

[63] Alexei A. Morozov, “Actor Prolog: An object-oriented language

with the classical declarative semantics”, In Sagonas K, Tarau P, eds.

Proc IDL Workshop, Paris, France: 1999: 39-53. Source:

http://www.cplire.ru/Lab144/paris.pdf.

[64] Alexei A. Morozov, “Actor Prolog: an object-oriented language with
the classical declarative semantics”, ResearchGate, Jul 2001

(https://www.researchgate.net/scientific-

contributions/28317372_Alexey_A_Morozov)
[65] Alexei A. Morozov, Olga Sushkova, “Development of Agent Logic

Programming Means for Heterogeneous Multichannel Intelligent

Visual Surveillance”, Proceedings of the 16th Ibero-American
Conference on AI, Trujillo, Peru, November 13-16, Jan 2018.

[66] Moss C., "Prolog++: The Power of Object-Oriented and Logic
Programming", Addison-Wesley, 1994.

[67] P. Moura. “Logtalk Object-oriented Programming in Prolog”.

Centre for Informatics and Systems, University of Coimbra,
Coimbra, Portugal, July 1999.

(http://www.ci.uc.pt/logtalk/logtalk.html).

[68] A. Napoli, « Représentations à objets et raisonnement par

classification en intelligence artificielle », Thèse de doctorat en

Informatique. Soutenue en 1992, au CRIN - Centre de Recherche en

Informatique de Nancy, France.
[69] [69] NAPOLI A., DUCOURNAU R., Subsumption in Object-Based

Representations, Proceedings ERCIM Workshop on theoretical and

practical aspects of knowledge representation, (rapport ERCIM 92-
W001) pp1-9, Pisa (IT), 1992.

[70] [70] NEBEL B., Reasoning and Revision in Hybrid Representation

Systems, Lecture Notes in Artificial Intelligence, LNCS, vol. 422,
Springer-Verlag, Berlin, 1990.

[71] NEWELL A., The Knowledge Level, Artificial Intelligence, Vol. 2

n°. 2, pp. 1-20, 1981.
[72] Ngomo M. , Pécuchet J-P. & Drissi-Talbi A. "Une approche

déclarative et non-déterministe de la programmation logique par

objets mutables". Actes des 4èmes Journées Francophones de
Programmation Logique et Journées d’étude Programmation par

contraintes et applications industrielles, Prototype JFPLC'95, pp.391-

396, Dijon, 1995, France.
[73] Ngomo M. , Pécuchet J-P. & Drissi-Talbi A. "La gestion de l'héritage

multiple en ObjTL". RPO’95 dans les Actes des 15èmes Journées

Internationales IA’95, pp.261-270, Montpellier 1995, France.
[74] Ngomo M., Pécuchet J-P., Drissi-Talbi A. "Intégration des

paradigmes de programmation logique et de programmation par

objets : une approche déclarative et non-déterministe". Actes du 2ème
Congrès bienal de l’Association Française des Sciences et

Technologies de l’Information et des Systèmes, AFCET -

Technologie Objet - 95, pp.85-94, Toulouse 1995, France.
[75] Ngomo M. "Intégration de la programmation logique et de la

programmation par objets : étude, conception et implantation". Thèse

de Doctorat d’Informatique, Université - INSA de Rouen, Décembre
1996.

[76] Macaire Ngomo and Habib Abdulrab, "A DECLARATIVE

APPROACH OF DYNAMIC LOGIC OBJECTS", International

Journal of Engineering Sciences & Research Technology (IJESRT),

ISSN: 2277-9655, 7(4): April, pp.764-785, 2018, DOI:

10.5281/zenodo.1228893

Macaire Ngomo et al. / IJCTT, 68(11), 24-42, 2020

42

[77] Macaire Ngomo and Habib Abdulrab, "A Declarative Approach of

Dynamic Logic Objects", International Research Journal of

Advanced Engineering and Science (IRJAES), ISSN: 2455-9024,

(Vol.3, No.
2), pp.101-115, 2018.

[78] Macaire Ngomo and Habib Abdulrab, "A full declarative approach of

dynamic logic objects", International Journal of Current Research in
Life Sciences (IJCRL), ISSN: 2319-9490, Vol. 07, No. 05, pp.2036-

2051, May 2018.

[79] Macaire Ngomo and Habib Abdulrab, "MODELLING AND
IMPLEMENTATION OF DYNAMIC LOGIC OBJECTS IN THE

COMPLETE DECLARATIVE APPROACH', Global Journal of

Engineering Science and Research Management (GJES), ISSN 2349-
4506, pp.77-785, 25(4): April 2018, DOI: 10.5281/zenodo.1238633

[80] D. Pountain. “Adding Objects to Prolog”, Byte, 15(8), 1990.

[81] QUINTERO A., Parallélisation de la classification d’objets dans un
modèle de connaissances multi-points de vue, Thèse d’informatique,

Université Joseph Fourier, Grenoble, juin 1993.

[82] ROSSAZZA Jean-Paul,Utilisation de hiérarchies de classes floues

pour la représentation de connaissances imprécises et sujettes à

exceptions : le système SORCIER, Thèse d’Informatique, Université

Paul Sabatier de Toulouse, 1990.
[83] SCHMOLZE J.G., LIPKIS T.A, Classification in the KL-ONE

Knowledge Representation System, in Proceedings of the 8th. IJCAI,

Karlsruhe, Germany, 1983.
[84] VOGEL C., Génie Cognitif, Collection Sciences cognitives,

MASSON, PAris, pp.97 1988.

[85] Shapiro, E. "Concurrent Prolog: A progress report". IEEE Computer

19, pp. 44-58, Aug. 1986. (Also Chap. 5 in

[86] E. Shapiro, (Editor), "Concurrent Prolog", Vol. 1 and 2, MIT Press,

1987.
[87] E. Shapiro, "The family of Concurrent logic programming

languages", Technical Report CS89-08, Depart. of Applied

Mathematics and Computer Science, The Wietzmann Institute,
Rehovot, 1989.

[88] SICStus Prolog, state-of-the-art, ISO standard compliant, Prolog

development system. https://sicstus.sics.se/
[89] Steele G. L. "Common Lisp: the language" second edition, Digital

Press, 1990.

[90] Sterling, L. et Shapiro, E. "L'Art de Prolog". MASSON 1990.
[91] SWI-Prolog pour le web sémantic / SWI-Prolog for (sémantic) web,

2017.

[92] T. Uustalu. Combining object-oriented and logic paradigms: A modal

logic programming approach. In O. L. Madsen, editor, European

Conference on Object-Oriented Programming (ECOOP'92), pages 98

113, June 1992.
[93] WEGNER, P., The Object-Oriented Classification Paradigm, dans

Research Directions in Object-Oriented Programming, Bruce Shiver,

Peter Wegner (éd.), The MIT Press, Cambridge, MA, 1987.
[94] Zaniolo, C. "Object-Oriented Programming in Prolog". In Proc. of the

IEEE International Symposium on Logic Programming, pp. 265-270,

Atlantic City, New Jersey, 1984.

