
International Journal of Computer Trends and Technology (IJCTT) – Volume X Issue Y- Month 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1

Simplifying Control Flow Graphs for

Reducing Complexity in Control Flow Testing
Myint Myitzu Aung

#1
, Kay Thi Win

*2

University of Computer Studies, Mandalay

Myanmar
1myintmyitzuaung@ucsm.edu.mm

2 kaythiwin@ucsm.edu.mm

Abstract — Control Flow Graph (CFG) is the graphical

representation that contains all possible paths in the

program execution. It is very essential part of the control

flow testing but there are some challenges in generating the

effective CFGs. These are how to reduce the complexity and

isomorphism of the CFGs and how to check the feasibility of

these CFGs. In this paper, these challenges are addressed by

introducing the simplifying of CFGs. In the control flow

testing, the execution order is determined which is the

instruction or statement order of the program through a

control structure and the tester needs to select a specific part

of a large program to set the testing path. The CFGs of large

programs are sliced to simplify and to reduce the complexity

by using a program slicing technique, Tree Slicing which is

also called Path-Sensitively Sliced CFG (PSS-CFG). It is a

slicing and merging technique for different sub-trees under

certain conditions. By using this technique, the complexity

of these CFGs is reduced due to the simplifying of these

graphs. Moreover, this paper shows that the code coverage

of the program of simplified CFGs is also improved

according to the experimental results of the benchmark

dataset that is different from other recent researches because

this system is tested in Java by converting the C dataset.

Keywords — Control Flow Graph (CFG), Control Flow

Testing, Path-Sensitively Sliced CFG.

I. INTRODUCTION

Control flow testing is a testing technique and it is a type
of white box testing. It can determine mainly for the execution
order of instructions or statements included in the program
through a control structure which is used to develop a test case
for the program and the tester needs to select a specific part of
a large program to set the testing path. Therefore control flow
path plays as an essential role in control flow testing. To
obtain the control flow path, the Control Flow Graph (CFG)
of a program must be considered [1].

A control-flow graph (CFG) is a directed graph
representation of a program and usually a sparse graph. CFGs
include all possible control paths in a program. This makes
CFG a great tool to obtain control-flow behavior of its
process. Vertices in a CFG give the level of detail, such as
instruction-level or basic block level that cannot be further
divided. Edges in CFG represent control jumps and are
classified into two types - forward and backward. Branch
instructions, function calls, conditional and unconditional
jumps account for forward edges. Virtual calls and indirect
function calls are also considered as forward edges but their

destinations are difficult to determine. Loops and returns
generally account for backward edges. The integrity among
duplicate processes that run on replica nodes needed to be
verified with the information available in a CFG [2].

Similarity check among the logic of the programs can be
performed by comparing their CFGs for isomorphism. CFG
isomorphism is hard and time consuming which is a complex
problem, sometimes known to be NP-complete. To reduce the
complexity, CFGs can be reduced to subtrees or subgraphs
before performing any coherence or integrity checks. A CFG
can be converted to a subtree using various methods [1].
Among these methods, Tree Slicing is an effective technique
which is used to slice and merge many different Symbolic
Execution (SE) sub-trees under certain condition. To describe
the degree of the source code that has been tested, different
control flow code coverage measures are used. Two different
approaches for code coverage are: semantic and syntactic
approach. The semantic approach describes how syntactic
coverage has to be changed to only all feasible information
flows and the syntactic approach describes code coverage in a
flow graph. Coverage analysis is to reduce faults and increase
the quality of the product at the end [4]. In measuring the code
coverage, the original input program may has many infeasible
branches so that there is needed to reduce complexity and
improve performance in the past. Thus, this paper is intended
to overcome these problems.

In this paper, the novel idea including the key steps to
reduce complexity and improve the code coverage is
proposed. The main key steps are converting C program into
Java, generating CFGs, simplifying CFGs by using program
slicing, and measuring its coverage. Firstly, the input C
program is converted into Java and generate control flow
graph. Then it is generated into Symbolic Execution Tree to
divide all possible true and false cases. In fact, the advantages
of dividing both true and false cases are

 Validating that all the branches in the code are reached.

 Ensuring that no branches lead to any abnormality of
the program’s operation.

 Eliminating the problems that occur with statement
coverage testing [13].

Thus, the symbolic execution tree (SETree) is generated.
And then, this tree is transformed into Path-Sensitively Sliced
CFG (PSS-CFG) by removing edges and sub-trees with the
algorithm of splitting or merging as shown section 3.
According to this PSS-CFG, simplified, reduced and sliced
program is obtained. This fact leads to reduce complexity and
improve coverage. Moreover, the system is novel experiment
because it is tested with converted Java dataset although the

vts-1
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 67 Issue 8 - Aug 2019

vts-1
Text Box
Page 7

vts-1
Text Box

International Journal of Computer Trends and Technology (IJCTT) – Volume X Issue Y- Month 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2

original benchmark dataset is in C. Finally, the experimental
result of reduced complexity and improved coverage is
presented in section 5 which is due to the effects of PSS-CFG
for simplifying CFGs. The detail design architecture of the
proposed system is shown in section 4 and its related works is
described in section 2.

II. RELATED WORK

This paper is mainly focused on the concept of simplifying
control flow graphs (CFGs) with the aims of reducing
complexity and improving code coverage. Therefore the
following related research papers are studied to compare and
to obtain other knowledge.

S. Aditham and other authors presented linear-time
algorithm in the purpose of equivalence of classes without
examination of each path in a CFG. Their proposed algorithm
is to construct event-flow graph (EFG) which is a compact
derivative of the CFG. Every path in this graph is represented
as an equivalence class of paths in the corresponding CFG.
EFGs are defined as the set of events that are defined by the
analyzed property. In the original CFG, equivalence classes
are guaranteed to reserve all event traces. This reduction is
close to 99% for CFGs with a large number of paths [1].

R. Gold presented graph reduction system which is useful
for directed graphs and control flow graphs. The author
applied these graphs reduction to software testing, the
program control flow and the three graph types including
control flow graphs, decision graphs and segment graphs.
Nodes in control flow graphs represent as statements. Thus
node coverage is means that the statement coverage.
Analogously, edges represent branches so that edge coverage
is defined as branch coverage. Therefore three different
abstractions from programs are the types of defined graph.
Their paper established for these graph types as a uniform and
formal basis in the use of manual and tool supported control
flow oriented test case generation and graphical representation
of programs[3].

Y. Dubey, D. Singh, and A. Singh presented a method to
reduce the number of test suites with the help of mining
concepts thereby facilitating the mining from test cases.
Researchers implemented their system with K-Means
Algorithm to divide the input domain or test suite of sample
module into the partitions of an expected number (K). Their
system is test suite reduction system that is guided by the
code coverage criteria defined in order to select a test suite
that will give 100% code coverage [9].

I. Papadhopulli and E. Mece presented the combination of
several possible criteria since they are intended to many
different parts of unit under test. The authors used an
automated test suits generator called EvoSuite with different
configurations for six open source projects. It can investigate
how the combination of coverage criteria influences the test
suite length and the coverage achieved. According to their
experiments, the overall coverage and mutation score are
increased by the use of multiple criteria with the cost of
increase in test suite length [10].

Satyam proposed an automated technique that appears as a
promising technique to eliminate test time and effort. The
author used a code transformation technique. The input is
simple java program and it is transformed by using four
algorithms. The author used Quine Mc-cluskey method and
Petric methods to achieve the transformed program. After
transforming the program, a tool called Cobertura provides the
branch coverage of that transformed program. The
measurement of branch coverage using this transformed
program is higher than the coverage of original program [11].
The technique is to increase in branch coverage that is
compared with traditional techniques.

III. BACKGROUND

A. Control Flow Graph (CFG)

A control flow graph (CFG) is a representation which uses

graph notation, of all paths traverse through a whole program

during execution. CFGs are built for static analysis reason.

Static analysis is the examination which does not include the

execution of the program being analyzed but rather gaining

information from other sources like reviews, documentation,

automated tools or formal methods for analysis. From the

evaluation, information like coverage or reachability can be

obtained [6]. To generate Java Program Control Flow Graph,

Dr.Garbage Tool is used in this system because it is a well-

known tool for java CFG in eclipse.

Among the CFG generators, Dr. Garbage Tool is a popular
technique in Java Community of Software Development
Group. This project collects open source tools for java
program of control flow analysis, including Java Bytecode
Visualizer, Sourcecode Visualizer and control flow factory for
visualization and generation of the various control flow
graphs.

B. Simplifying Control Flow Graph

There are many different methods to simplify CFGs in

which program slicing is used in this paper. Program Slicing

is an essential testing technique because it can provide

program understanding by dividing the program into smaller

program codes depending on the various dependencies

(method, data, control, call etc) between the statements. By

applying the program slicing, all slices contain statements that

appropriate to specific variables and ignores other statements.

Program slicing approach is classified depending on the

slicing direction and run-time environment. Depending on the

slicing direction, there are two directions in slicing: forward or

backward, and depending on the run time environment, slicing

may be dynamic or static [8].

C. Tree Slicing of Program Slicing Technique

It is the technique of program slicing and also called Path-

Sensitively Sliced CFG (PSS-CFG), a powerful tree slicing

technique that used to slice and merge many different

Symbolic Execution (SE) sub-trees under certain condition.

To simplify the CFGs, it needs to become PSS-CFG.

Therefore this proposed system uses two-steps algorithm. The

vts-1
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 67 Issue 8 - Aug 2019

vts-1
Text Box
Page 8

International Journal of Computer Trends and Technology (IJCTT) – Volume X Issue Y- Month 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3

first step is to generate SETree annotated with dependencies

and the second step is to remove sub-tree and edges according

to the given criteria to obtain the PSS-CFG. To perform the

first step of generating the SETree annotated with

dependencies, the following algorithms are used [7].

Fig. 1 Generating PSS-CFG

Fig. 2 Merging

Fig. 3 Splitting

Fig. 4 Symbolic Execution

The second step is to get final PSS-CFG (Fig. 10) by using

following transformation rules [7].

 Rule 1: The statement can be removed if the LHS of an
assignment statement does not include in the
dependency set.

 Rule 2: If a branch point has only one feasible path
which arises from it, it can be replaced or removed.

 Rule 3(called ―Tree Slicing‖): If both the ―then‖ and
―else‖ cases contain no statement that is included in the
slice, an entire branch is inappropriate to the target
point and can be removed [14].

D. Slicer for Simplifying CFGs

 For both forward and backward slicing, Indus-Kaveri is
the most appropriate tool in this system. The purpose of this
tool is to simplify program analysis, program understanding,
and testing. Indus is an effective framework for slicing and
analyzing concurrent java program, and Kaveri has a rich
features and it is an Eclipse-based GUI front-end for Indus
java slicer. It uses the Indus slicer to develop the program
slice in Java and then shows the output results in the Eclipse
editor. As an Indus works on Jample, the criteria in the Slicing
Criteria Factory for slicing is specified as Jimple chunks. This
working flow is not deviated to Control Flow Graph (CFG)
because it is the main issue in slicing concurrent java
programs. It is to determine the control flow and data flow
between program points of different threads [5].

IV. SYSTEM ARCHITECTURE

Fig. 5 System Architecture

Convert into Java
Program

Generate CFGs

Generate
Symbolic

ExecutionTree

Input C
Program

Simplified CFGs with
Reduced Complexity

and Improved
Coverage

Generate PSS-
CFGs

vts-1
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 67 Issue 8 - Aug 2019

vts-1
Text Box
Page 9

International Journal of Computer Trends and Technology (IJCTT) – Volume X Issue Y- Month 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 4

The architecture of the proposed system has four parts as

shown in Figure 5. They are converting C program into Java,

generating CFGs, generating symbolic execution tree

(SETree) and generating PSS-CFGs (Simplified CFG).

Firstly, the input C program is converted into Java
program. This Java program is generated into appropriate
CFG and then the system use the two-steps algorithms to
obtain PSS-CFG in which the first step is to generate SETree
annotated with dependencies and the second step is to
transform this tree by removing sub-tree and edges, to
simplify CFG as shown in Figure 1, 2, 3 and 4.Finally, the
output transformed program of simplified CFG (PSS-CFG)
can be measured in complexity and code coverage. After
simplifying the CFGs, the result is ensured that the complexity
is reduced significantly and the code coverage is more
improved than the original program.

A. Motivating Example

In this example, the steps of the performance of

the technique on a small program to reduce

complexity and improve coverage are described.

The original input program and its Control Flow

Graph (CFG) are shown in Figure 6 and 7.

Fig. 6 The Original Input Program

Fig. 7 The Control Flow Graph (CFG) of Original Program

The CFG of input program is needed to simplify in the
purpose of reduction complexity and improving coverage.
Therefore the proposed system divides all possible true and
false cases as shown in Figure 8.

Fig. 8 Dividing all possible true and false cases(SETree)

The SE tree executes both the statement c is true and false
firstly and then, flag=1 and x=2 are as usual. Upon success of
the next branch, it splits into two: with d and !d. The context d
executes y=4 and reaches the last branch. Again it splits into
two: with flag and !flag, finally executing z=y+x before
reaching the terminal point. At this point the path formula is:
c^flag=1^x=2^d^y=4^flag^z=y+x1 which is satisfied, because
this path is feasible to get the target variable z. But the path
formula c^flag=1^x=2^d^y=4^!flag is not satisfied, thus the
path is infeasible to be removed. The algorithm works in this
fashion to be a PSS-CFG but path-sensitively makes the
SETree in the number of branches. Therefore its size is
checked by Merging (Fig. 2).

Fig. 9 New Parth Sensitively Sliced CFG and its transformed

program

Fig. 10 Control Flow Graph of new PSS-CFG

vts-1
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 67 Issue 8 - Aug 2019

vts-1
Text Box
Page 10

International Journal of Computer Trends and Technology (IJCTT) – Volume X Issue Y- Month 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 5

By comparing cyclomatic complexity of the CFG of
original input program (Fig. 7) (before simplifying) and the
CFG of the final PSS-CFG (Fig. 10) (after simplifying), the
complexity can be reduced significantly by using the
following cyclomatic complexity metric.

 ()  

Where, V(G) is the cyclomatic complexity value of control
flow graph G, e is the number of edges and n is the number of
nodes in that CFG.

For original input program before simplifying,

 ()

For transformed program after simplifying,

 () 

Thus, the complexity is reduced.

By comparing code coverage of the CFG of original input
program (Fig. 7) (before simplifying) and the CFG of the final
PSS-CFG (Fig. 10) (after simplifying), the coverage can also
be improved significantly. The original coverage covb can be
measured for this program (Fig. 7) by using commonly used
original coverage metric.

For original input program before simplifying,

       



 

Therefore, the code coverage 50% is obtained.

For transformed program after simplifying, the final PSS-
CFG (Fig. 10) can be measured for code coverage .

The code coverage 66.67% is obtained and therefore the
coverage is also improved.

V. EXPERIMENTAL RESULT

This paper is implemented for simplifying CFGs to reduce

complexity and to improve coverage of java program of

ntdrivers-simplified category of SV-COMP 2013 benchmark

dataset. Firstly, these are C programs and they are converted

into java by using a tool, C++ to Java converter. And then the

corresponding CFGs are generated. To generate SETree and

PSS-CFG, Dr.Garbage tool is used in Eclipse platform.

According to the GENPSSCFG Algorithm, Indus Kaveri

slicing tool provides the transformed program with the

appropriate criteria [12]. The comparing results of complexity

of original and simplified CFGs of a program are as shown in

Table 1. These values are obtained by visualizing and

analyzing the source code with the help of Sci Tool,

Understand. The final coverage testing of original input

program and transformed program is improved with EclEmma

coverage tool after simplifying the CFGs as shown in Table 2.

The experimental results of CFGs from the motivating

example as described in section 4 are also shown in Fig. 11.

These are the output of Dr.Garbage in Eclipse. The Figure

11(a) represents the CFG of original input program (Fig. 6)

and Figure 11(b) is the PSS-CFG of transformed program

after simplifying.

Fig. 11 CFG and PSS-CFG of example program before and

after simplifying

TABLE I. COMPARING CYCLOMATIC COMPLEXITY OF ORIGINAL

INPUT PROGRAM AND SLICED TRANSFORMED PROGRAM

Cyclomatic Complexity Value

Original Input

Program (Before

Simplifying)

Sliced Transformed

Program (After

Simplifying)

kbfiltr
31 4

diskperf 25 17

ssh
server

101 11

ssh

client

90 2

floppy 35 15

cdaudio 53 22

TABLE II. COMPARING CODE COVERAGE OF ORIGINAL INPUT

PROGRAM AND SLICED TRANSFORMED PROGRAM

Code Coverage Value

Original Input

Program (Before

Simplifying)

Sliced Transformed

Program (After

Simplifying)

kbfiltr
38.1% 52.4%

vts-1
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 67 Issue 8 - Aug 2019

vts-1
Text Box
Page 11

International Journal of Computer Trends and Technology (IJCTT) – Volume X Issue Y- Month 2015

ISSN: 2231-2803 http://www.ijcttjournal.org Page 6

Code Coverage Value

Original Input

Program (Before

Simplifying)

Sliced Transformed

Program (After

Simplifying)

diskperf 16.8% 58.9%

ssh

server

23.7% 59%

ssh

client

33.1% 85%

floppy 14.8% 51.2%

cdaudio 12.6% 69.2%

VI. CONCLUSION

In control flow testing, it is important to determine the
control structure and flow path. Therefore the control flow
graph is essential part of this technique. But, CFGs may be
complex and it leads to increase the complexity and reduce
coverage performance because the program internal structure
may be complex with infeasible branches. The difficulty of
infeasible branch conditions and the weakness of estimation
that derives without possibility of identifying all infeasible
branches limit the effectiveness of various approaches.
Therefore, this paper focuses on program slicing to simplify
the CFGs for more effective in improving performance of
measuring coverage and reduce the complexity. Even if the
merging will take place in program slicing, the CFG
isomorphism will take place and it can still reduce the
complexity. By comparing the original program and PSS-CFG
before and after simplifying, this system ensures that the
coverage performance is more improved and the complexity is
reduced significantly.

REFERENCES

[1] S. Aditham, N. Ranganathan, ―A Novel Control-flow based Intrusion
Detection Technique for Big Data Systems.‖ arXiv preprint
arXiv:1611.07649, 2016 - arxiv.org

[2] Amighi, Afshin, et al., ‖Provably correct control flow graphs from
Javabytecode programs with exceptions.‖ International Journal on
SoftwareTools for Technology Transfer (2015): 1-32.

[3] R. Gold, ―Control Flow Graphs and Code Coverage‖, Int. J. Appl. Math.
Comput. Sci., 2010, Vol. 20, No. 4, pp.739–749. DOI: 10.2478/v10006-
010-0056-9

[4] V. Elodie, ―White box coverage and control flow graphs‖, June 21,
2011.

[5] V. Ranganath and J. Hatcliff, ―Slicing concurrent java programs using
indus and kaveri‖, Inernational Journal on Software Tools for
Technology Transfer.

[6] H. Watson, J. McCabe, ―Structured testing: a testing methodology using
the cyclomatic complexity metric‖, NIST Special Publication 500-235,
September,1996.

[7] J. Jaffar, V. Murali, ―A Path-Sensitively Sliced Control Flow Graph‖,
FSE ’14, November 16-22, 2014, San Hong Kong, China. Copyright
2014 ACM.

[8] J. Arora, ―Static Program Slicing- An Efficient Approach for
Prioritization of Test Cases for Regression Testing’, International
Journal of Computer Applications (0975 – 8887) Volume 135 – No.13,
February 2016, pp.18-23.

[9] Y. Dubey, D. Singh, and A. Singh, “Amalgamation of Automated Test
Case Generation Techniques with Data Mining Techniques: A Survey‖,
International Journal of Computer Applications (0975 – 8887) Volume
134 – No.5, January 2016.

[10] I. Papadhopulli and E. Mece, ―Coverage Criteria for Search Based
Automatic Unit Testing of Java Programs‖, International Journal of
Computer Science and Software Engineering (IJCSSE), Volume 4, Issue
10, October 2015.

[11] K. Satyam, ―Enhancement of branch coverage using java program code
transformer‖, National Institute of Technology Rourkela, Orissa, India.
May, 2015.

[12] G. Jayaraman, V. Ranganath, and J. Hatcliff, ―Kaveri: delivering the
indus java program slicer to eclipse‖.

[13] M. Myitzu Aung, K. Thi Win, ―Improving Branch Coverage for White-
box Testing‖, 27th International Conference on Computer Theory and
Applications (ICCTA 2017).

[14] Adekola, O.D, Idowu, S.A, Okolie, S.O, Joshua, J.V, Akinsanya, A.O,
Eze, M.O, EbiesuwaSeun "Software Maintainability and Reusability
using Cohesion Metrics". International Journal of Computer Trends and
Technology (IJCTT) V54(2):63-73, December 2017. ISSN:2231-2803.
www.ijcttjournal.org. Published by Seventh Sense Research Group.

vts-1
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 67 Issue 8 - Aug 2019

vts-1
Text Box
Page 12

