
International Journal of Computer Trends and Technology Volume 67 Issue 3,119-123, March 2019

ISSN: 2231-2803 / https://doi.org/10.14445/2231280453/IJCTT-V67I3P123 © 2019 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Apache Struts 1.x based Enterprise System

Transformation to JEE 7+, JSF and Prime

Faces based Components

Vijay Kumar Pandey

Director of Technology Solutions, Intueor Consulting, Inc. Irvine, CA (United States of America)

Abstract - The paperis intended to provide an

elaborate understanding of how to transform open

source Apache Struts 1.x (has reached End of Life –

EOL) based enterprise system to JEE7+ and

PrimeFaces based components such as Java Server

Faces, Bean Validation and Context Dependency

Injection (CDI). Apache Struts 1.x during early 2000

was the defacto standard to build web application

using Java Server Pages (JSP), Struts tags, Tiles,

Struts Action classes, Struts based custom tags, Struts

based validations, any struts xdoclet tags for

configuration along with other Struts dependent

components.

Keywords - Apache Struts, Java Platform Enterprise

Edition 7 (JEE7), Java Server Faces (JSF), Facelet,

XHTML, Java Server Pages (JSP), Bean Validation,

CDI, Tiles, XDoclet, Action, PrimeFaces (PF),

OmniFaces, Expression Language (EL)

I. INTRODUCTION

 One of the most important aspect of the

transformation is understanding of the major

difference between the Struts and JSF based web

components life cycle. Apache Struts is a Request-

Response based Framework while JSF is a

Component-based Framework.

II. WEB PRESENTATION LAYER

COMPONENTS

 The presentation layer components in Struts based

enterprise system will mainly consist of JSP, Tiles

configuration, Struts based tag library, Struts based

custom tag library along with any custom javascript

and cascading style sheet (css). These Struts

components should be transformed to following JEE

7/JSF based components.

• JSP – XHTML page based on Facelet

• Tiles Configuration - No corresponding tiles

configuration in JSF. Various tiles related

attributes can be part of the xhtml itself. By using

“template” attribute of “ui:composition” along

with “ui:param” attributes, tiles attributecan be

transformed except for the navigation, which will

be discussed in the Navigation section.

• Javascript -JavaScript‟s (jQuery + usage of PF

widgets)

• Struts Tags - Usage of Facelet tag libraries along

with the usage of PF component library and

OmniFaces JSF utility library.

• Custom Struts based Tags - These should be

replaced with new custom JSF components or

JSF based tag library.

III. REQUEST CONTROLLER COMPONENTS

 The request controller layer in Struts ismainly

comprised of Struts action, action form, form

validations, xdoclet tags (mainly used for struts and

validation config). These components are converted

to various JSF and JEE7 based components. The

following outlines the nature of the conversion.

• Action Classes – JSF based and CDI annotated

Controller classes.

• Action Form Classes - JSF based and CDI

annotated Controller bean classes.

• XDoclet Tags – Replace with relevant annotations

on controller classes. Validation xdoclet tags to be

replaced with appropriate Bean Validation

constraint annotations.

A. Action to Controller Class Transformation

This section outlines various transformation

needed for action classes and their associated config,

which could have been defined by xdoclet tags or

were manually defined in struts config.

• Action Path – JSF based Controller classes should

be CDI enabled and can be annotated with CDI

based annotations such as Named, RequestScoped,

ViewScoped, SessionScoped.

• Any custom config property – Create a custom

annotation to manage these custom properties

• ActionForward - in JSF, there is no concept of

forward object (ActionForward in struts); simply

return the actual forward value (think of tiles def

name in struts), which is termed as an outcome.

• LookupDispatchAction:getKeyMethodMap – This

is not needed as facelet command buttons can

Vijay Kumar Pandey / IJCTT, 67(3), 119-123, 2019

120

directly invoke the controller method through EL

expression.

• ActionForm references in Action - In Struts

Action classes, ActionForm are created by the

Struts framework and passed as a parameter to the

execute or other custom method (executed through

LookupDispatchAction). In JSF,ControllerBeans

are either created through a CDI PostConstruct

annotated method, or they are injected in the

controller, where they are either RequestScoped or

SessionScoped. These controller beans are

instance variables of Controller objects.

• Action Class Methods–Action classes have

execute and other custom methods related to

LookupDispatchAction, and they will have

method arguments as

ActionMappingActionForm,HttpServletRequest,Ht

tpServletResponse.Thesemethod signatures must

be transformed by removing all the method

arguments. Any scenario, which needs access to

request and response, can be managed through

JSF‟s FacesContext object (at a high level, it is a

wrapper for request and response objects). Any

other nonstandard methods that used Struts related

arguments must be transformed in a similar

manner.

• ActionForward (return type) - The return is now a

String type value for outcome (like „tiles def

name‟) or it can be void, if no navigation, and

then return is to the same view.

B. Action Form to Controller Bean Class

Transformation

This section outlines various transformation

needed for action form classes, validate method and

associated validation config.

• Action Form – Struts ActionForm can be

converted to ControllerBean classes. These

classes are available as instance variables in

Controller classes, but in some scenarios these

classes are CDI beans, then they are injected in

controller classes. CDI bean scopes are:

(1) RequestScoped

(2) SessionScoped (cases where struts action config

scope is session)

• Action Form Validation Config (with or without

XDoclet) - These can be transformed to use

JavaBeans constraint annotations at the field level.

• Validate method - This method signature must be

changed. Both the ActionMapping and

HttpServletRequest needto be removed and

replaced with FacesContext.

C. Struts Message Resources &

Internationalization Transformation

JSF provides a mechanism to provide the

resource bundle feature as part of the faces

configuration and individually at a page level, but

then bean validation will not be able to hook into the

JSF provided resource bundle. To overcome this

limitation, resource bundles can be set up through

spring framework, then resource bundle can be easily

retrieved through EL expression in facelets.

Excerpts from spring context xml for message resources set up

<bean id="messageLocator"

class="org.springframework.validation.beanvalidation.MessageSou

rceResourceBundleLocator">
<constructor-arg index="0" ref="messageSource" />

</bean>

<bean id="messageSource" class =

"org.springframework.context.support.ReloadableResourceBundle

MessageSource " >
<property name="useCodeAsDefaultMessage" value="true" />

<property name="alwaysUseMessageFormat" value="true" />
<property name="basenames" value="#{ propHolder.basenm}" />

</bean>

<bean id="propHolder" class =

"some_custom_class_with_array" >

<property name="basenm">
 <list>

 <value>classpath:msgRes1</value>
 <value>classpath:msgRes2</value>…

 </list>

 </property>

<bean>

D. Struts Locale& Internationalization

Transformation

JSF handling of locale is based on the view

(think facelet and xhtml).Since message resources are

set up through Spring (in the above step), the locale

from the JSF must be propagated to Spring through

LocaleContextHolderfor Spring to pick the correct

locale sensitive resource bundles.

E. Struts Navigation (Tiles, ActionForward)

Transformation

JSF provides a mechanism of navigation

rules and navigation cases to navigate to different

views, while struts use a combination of tiles config,

action forward or another struts config to determine

the navigation. JSF navigation config file can be

created which will be set up through web.xml using a

context param javax.faces.CONFIG_FILES. Since

each view can have its own set of outcomes (forwards

in struts), this could easily lead to a large file size; to

overcome this issue, all the tile defs can be created as

navigation cases under a global navigation rule (from

view id as *), so any view can refer to these outcomes

globally. Specific navigation rules for certain views

can be created on exception basis.

Sample Navigate Rule for Global access maps to tiles-def

<navigation-rule>
<from-view-id>*</from-view-id>

<navigation-case>

<from-outcome>.tiles_def_name</from-outcome>
<to-view-id>/faces/xyz/tiles_def_map.xhtml</to-view-id>

</navigation-case>….

</from-view-id>

Vijay Kumar Pandey / IJCTT, 67(3), 119-123, 2019

121

In the above case, if the controller class method

returns the outcome named “.tiles_def_name”, JSF

will navigate to tiles_def_map.xhtml for rendering

F. Struts RequestProcessorTransformation

If Struts RequestProcessor class was

extended to provide custom navigation behaviour,

then JSF based ConfigurableNavigationHandler can

be extended to provide additional processing logic.

This additional logic needs to go in.

public void handleNavigation(FacesContext context, String

fromAction, String outcome);

 Navigation to other Action – JSF‟s view

rendering technology is Facelets (xhtmls), JSF

will not directly navigate to other controller, it

needs to navigate to the view (xhtml). To

handle this scenario, a dynamic mechanism

can be created.Create a dynamic xhtml, let‟s

say/faces/ /dynamic.xhtml.This view needs to

have a capability to take controller and its

method name as an input to execute the

controller method and then let the JSF navigate

to the view based on the method execution

outcome. Security check can be added to only

allow execution of secure and authorized

methods.

G. Component ID Generation in Facelet (Xhtml)

Struts html tags do not generate id attributes

for their html controls until styleId or errorStyleId

attributes were specified at the tag. It generates the

“name” attribute for their html component based on

the “name” and “property” attributes. JSF works on

the “id” attribute and not “name”.It does generate the

“name” attribute on the rendered html component and

most of the time its same as id.However, there are

cases where they differ,such aswith radio button

groups (same “name” attribute will define that group

but will be still having different “id” – “id” cannot be

same in an html document). JSF also has certain

restrictions on what letters and characters can

constitute an id. The section below will discuss

certain scenarios for both Struts and JSF.

a) Simple Text Component

Struts: <html:text property="xyz" />

Struts will use the property attribute and create the “name”

attribute for the html component as “xyz”

JSF (PrimeFaces based text component):
<p:inputText value="#{controllerBean.xyz}" id="xyz"/>

In JSF, if an id attribute is not provided, one

will be auto generated. If there is no need to access

this component by a specific known id, id attribute

can be omitted. {controllerBean.xyz} is an EL

expression for this component to retrieve and set

values from the controller bean. This component will

also generate the “name” attribute based on the “id”,

it will have the same id and name attribute generated

for the html component which is “xyz”

(NamingContainer is another JSF feature that will

change the generated id based on the parent). It is

important to note that when an html form is submitted,

request parameters are formed based on the “name”

attribute (whether its Struts or JSF). As part of the

transformation process, “id” attribute can be

generated if access is needed by a specific id, but the

primary reason for generating them can be because of

specific request parameter access by its name (which

is based on id in JSF).

 ClientId - What is referred to as “id” value in

the browser for the html component, is referred

to as “clientId” in the JSF system. Since the “id”

attribute value at the component level is not

what is always generated, if the parent is the

NamingContainer, these id‟s can change. Most

of the time theprimary parent NamingContainer

is the html form, if its prependId attribute is set

to false; it will not affect the generated “id” and

“name” attributes of the contained components.

 ID Naming Restriction - JSF specification sets

certain restrictions on the naming of the id and

they are:

(1) It should not be an empty value

(2) The first character must be a letter or

underscore „_‟

(3) Second character onwards could only be a

letter, digit, underscore „_‟ or dash „-‟

b) Indexed Text Component

Usage of Struts html text tag inside a

c:ForEach with indexed attribute set to true.

Struts:

<c:forEach items="${someList}" var="varBean"

varStatus="vatStatus">
<html:text name="varBean" property="xyz" indexed="true" />

</c:forEach>

The above struts html loop will generate html text

controls with name as varBean[0].xyz. The part of the

name „[0]‟ will be a running sequence number based

on the iteration index starting from zero.

The above JSP code can be transformed in two ways

depending upon the requirement.

Scenario 1:
<ui:repeat value="#{someList}" var="varBean"

varStatus="vatStatus"><p:inputText value="#{varBean.xyz}"

id="varBean__xyz" /></ui:repeat>

In this case, there is no “id” attribute at ui:repeat

level.To make the xyz related id‟s unique for the view,

they are suffixed with the var attribute value of

Vijay Kumar Pandey / IJCTT, 67(3), 119-123, 2019

122

ui:repeat and then separated by the “__”, a specific

value that can be used during transformation to

segregate the naming container from the property

id.ui:repeat being a NamingContainer, its auto

generated id will prefixed in its child element, so the

id and name generated for this will be of the form

j_id_56:0:varBean__xyz. Here „j_id_56‟ could be

anything (normally j_id_sequence) and is the auto

generated id of the ui:repeat. „:‟ is the separator

character for naming container.Default is „:‟, which

could be overridden through a servlet context param

„javax.faces.SEPARATOR_CHAR‟. „0‟ is the running

iteration index of the ui:repeat value.If there was a

need to update same name instance variable into the

controller bean of the next view from the request

parameters of current view, then id attribute needs to

be specified at the ui:repeat, refer scenario 2 below

for sample code.

Scenario 2:
<ui:repeat value="#{someList}" var="varBean"
varStatus="vatStatus" id=”someList”><p:inputText

value="#{varBean.xyz}" id="varBean__xyz" /></ui:repeat>

In this case the id and name attribute for the xyz

related html text controls will be generated as

someList:0:xyz.

H. Faces Configuration

Faces configuration (faces-config.xml) is the

main JSF config file that lets the JSF system

configure various features for the given system. This

is set up in web.xml under the servlet context param

javax.faces.CONFIG_FILES. Configuration can be

divided in multiple files, the value of this context

param can be comma separated file names. If the file

name is faces-config.xml, then it does not need to be

stated in the web.xml. Some of the important

elements that can be configured in this are System

Event Listener, Navigation Handler, EL Resolver,

Resource Handler, LifeCycle Phase Listeners,

Behaviors, Converters, Managed Bean, Partial View

Context Factory, Exception Handler Factory,

Overridden Components, and Overridden Renderers.

I. WebXML Configuration

In addition to various listeners and filters

that are configured in web.xml, several new configs

should be added mainly the faces servlet, various

servlet context params, error handlers etc.

Faces Servlet is added to handle requests related with

xhtml and unhandled resources

<servlet>

<servlet-name>facesServlet</servlet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>facesServlet</servlet-name>

<url-pattern>*.xhtml</url-pattern>
<url-pattern>/javax.faces.resource/*</url-pattern>

</servlet-mapping>

Some of the important web xml context params that

could be added when moving away from Struts to

JSF are

 primefaces.THEME – Theme used by PF

 javax.faces.DATETIMECONVERTER_DEFA

ULT_TIMEZONE_IS_SYSTEM_TIMEZON

E - Use system timezone for data time related

to faces converters

 javax.faces.SERIALIZE_SERVER_STATE -

Indicates whether the view state should be

serialized before saving in the session or not

 javax.faces.FACELETS_BUFFER_SIZE - The

default buffer size for the servlet response

 javax.faces.FACELETS_REFRESH_PERIOD

- Period used to refresh the actual facelet tree

from the physical xhtml file

 javax.faces.PROJECT_STAGE – Production

or Development

 javax.faces.STATE_SAVING_METHOD -

Indicates the saving of the JSF state on the

server

 javax.faces.PARTIAL_STATE_SAVING -

Indicates if the partial state saving is turned on

or not

 javax.faces.CONFIG_FILES - Comma

separated faces configuration files.

 javax.faces.FACELETS_LIBRARIES -

Indicates the various comma separated facelet

libraries

IV. CONTEXT DEPENDENCY INJECTION

(CDI)

In CDI 1.1 (JEE 7), it is not mandatory to provide

beans.xml (in the war project, it is in WEB-INF);

CDI is enabled by default. However, by providing

beans.xml, there are some configurations that can be

explicitly achieved that are not possible in an

automated fashion.

A. Interceptors

With CDI 1.1, interceptors are enabled with

priority, but having them declared in beans.xml

provides a quick view of the interceptors and they can

also be disabled by simple removing or commenting

that entry. Some of interceptors that can be created

could be for cross cutting concerns such as security.

Controller and their methods could be annotated with

security related annotations, which are backed by

CDI interceptors to ensure only authorized users can

execute that controller method. Interceptors can also

come handy when there is a need to execute any

generic method before the actual controller method

execution.

Vijay Kumar Pandey / IJCTT, 67(3), 119-123, 2019

123

B. Alternatives

Alternatives feature canbe used for those struts

action classes transformation that have the same

action path in different projects but built on the same

base enterprise framework with different action

configurations. To provide this type of different

configuration but same CDI name, Alternative CDI

feature can be used. All the Alternatives will still

have the same CDI name, but which one takes

precedence depends upon the entry in the beans.xml.

<alternatives>

<class>

 <<CDI class name specific for the project>>

</class>

</alternatives>

V. PRIMEFACES WIDGETS

 Widget is a terminology that is used in PrimeFaces,

comparable to JavaScript objects to their counterpart

PF JSF components

A. Widget Naming

PF provides an attribute „widgetVar‟ on almost

all their components to assign a name to the widget.

If this attribute is not defined, then it follows the

given algorithm to assign the widget name, which

could then be used to access the widget javascript

object.

 widgetVar Naming Algorithm: “widget_” +

JSF clientId – If the clientId has any „-‟

(dash), it will be replaced with „_‟

(underscore). If the clientId has any Naming

Container Separator (default is „:‟), it will be

replaced with „_‟ (underscore)

PF provides a short hand global javascript variable

name „PF‟ to access the widget javascript object, by a

simple reference such as
var pfWidget = PF(„widgetVar‟);

PF also sets a global javascript variable name

„PrimeFaces‟, that can be used to execute various

type of PF related javascript functions and getting

hold of a widget, through the code defined below.

Var pfWidget = PrimeFaces.widgets.<<actual widgetVar>>;

var pfWidget = PrimeFaces.widgets[„<<actual widgetVar>>‟];

VI. AUTOMATED TRANSFORMATION

 An enterprise system that might have been built on

Apache Struts 1.x,which has around 100,000 source

lines of code (SLOC) for their web components,

might benefit by automatically transforming their

system through a tool-based approach. The tool can

be home grown or commercial. A possible

automated transformation approach could be depicted

as follows.

VII. CONCLUSION

 This paper presents anapproach on how to

transform an enterprise system built on Apache Struts

1.x based on open source framework,which has

reached its end of life (EOL),into a more mature,

mobile friendly, HTML 5 features while

incorporating the new features of JEE 7 (+) platform.

This paper has touched upon the main structure and

components of Struts based system and how to

transform it to a JSF based components built on

modern technologies such as CDI, BV, PrimeFaces

and OmniFaces.

REFERENCES

[1] Apache Struts 1 End of Life Announcement -

https://struts.apache.org/struts1eol-announcement.html

[2] CDI 1.1 API - https://docs.jboss.org/cdi/api/1.1/

[3] Java Server Faces Specifications -
https://javaee.github.io/javaserverfaces-spec/

[4] Jakarta Enterprise Edition (JEE) - https://jakarta.ee/

[5] JEE 7 Specification - https://jcp.org/en/jsr/detail?id=342
[6] JEE 8 Specification - https://jcp.org/en/jsr/detail?id=366

[7] PrimeFaces - https://www.primefaces.org/#primefaces

[8] OmniFaces - http://omnifaces.org/

https://docs.jboss.org/cdi/api/1.1/
https://javaee.github.io/javaserverfaces-spec/
https://jakarta.ee/
https://jcp.org/en/jsr/detail?id=342
https://jcp.org/en/jsr/detail?id=366
https://www.primefaces.org/#primefaces
http://omnifaces.org/

