
International Journal of Computer Trends and Technology Volume 67 Issue 3,109-112, March 2019

ISSN: 2231-2803 / https://doi.org/10.14445/2231280453/IJCTT-V67I3P121 © 2019 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Transform Dynamic Validation Metadata to

Runtime Java Bean Validation Constraint

Annotations

Vijay Kumar Pandey

Director of Technology Solutions, Intueor Consulting, In. Irvine, CA (United States of America)

Abstract - The paper is intended to provide an in-

depth understanding of how to transform dynamic

validation metadata to a runtime java class(es) with

relevant fields annotated with proper bean validation

annotations, which are dynamically generated based

on the validation metadata. This dynamic class

generation is performed through an open-source

library, Byte Buddy (which depends on ASM - ASM is

an all-purpose Java bytecode manipulation and

analysis framework). This understanding will help

developers build dynamic validation features in their

system while validating the properties of a dynamic

screen built with the help of dynamic properties

metadata. The intended audience for this article

includes application architects, software designers,

and software programmers who participate in the

design, architecting, and development of robust and

complex enterprise-wide applications based on Java

and Jakarta EE (or spring) and want to utilize the

Java Bean Validation (1.1 or 2) in dynamic scenarios.

Keywords - Java Bean Validation (BV), Byte Buddy,

ASM, Jakarta EE.

I. INTRODUCTION

Bean Validation Constraints are defined by

combining a constraint annotation and a list of

constraint validation implementations. The constraint

annotation is applied to types, fields, methods,

constructors, parameters, or other constraint

annotations in the case of composition. A constraint

on a JavaBean is expressed through one or more

annotations. An annotation is considered a constraint

definition if its retention policy contains RUNTIME

and if the annotation itself is annotated with javax.

Validation.Constraint. Every constraint annotation

must define a message element of type String.

II. CONSTRAINT DEFINED PROPERTIES

A constraint definition may have attributes

specified when the constraint is applied to a JavaBean.

The properties are mapped as annotation elements.

The annotation element names message, groups,

validation applies to, and payload are considered

reserved names; annotation elements starting with

valid are not allowed; a constraint may use any other

element name for its attributes. The constraint

annotation definitions may define additional elements

to parameterize the constraint. For example, a

constraint that validates the length of a string can use

an annotation element named length to specify the

maximum length when the constraint is declared.

A. Constraint Validation

 A constraint validation implementation

performs the validation of a given constraint

annotation for a given type. The implementation

classes are specified by the validated element of the

@Constraint annotation that decorates the constraint

definition. The constraint validation implementation

implements the ConstraintValidator interface.

B. Constraint Configuration

 Bean Validation provides two ways to manage

constraints metadata. The first is through the

annotations, as already discussed, and the other is

through XML constraint mapping configuration that

can override the annotation metadata for certain

classes. By default, all constraint declarations

expressed via annotation are ignored for classes

described in XML. Bean Validation can force to

consider both annotations and XML constraint

declarations by using ignore-annotations="false" on

the bean.

Some of the important Bean Validation API classes

are:

• javax.validator.ValidatorFactory – Factory

returning initialized Validator instances.

• javax.validator.Validator – Validates bean

instances.

C. Dynamic Runtime Class

 Based on the validation metadata, Byte Buddy

will be used to create run time classes mainly at the

application start-up, which will have constraint

annotations either on the field or property. Then these

classes will be used to validate the value through the

Validator interface dynamically. Validator provides

the following method to validate a value.

Vijay Kumar Pandey / IJCTT, 67(3), 109-112, 2019

110

<T>

Set<ConstraintViolation<T>>validateValue(Class<T>beanType,

String propertyName, Object value, Class<?>... groups)

• First argument “Class<T>beanType” – This is

the run time class created during application

start-up through Byte Buddy and has the

relevant property name, which would have the

constraint annotations to be validated.

• The second argument, "String property Name,"

– Is the name of the property that will be

validated and must be present in the class

defined above by the first argument.

• Third argument “Object value” – This is the

value that will be validated against the

constraints defined on the property.

• Fourth argument “Class<?>… groups” –

Constraints can belong to one or more groups

or contexts. Applying a subset of the

constraints for a given use case is useful. By

default, the Default group is used.

D. Dynamic Validation Metadata

Dynamic Validation Metadata can be present in a

database or another store, fetched during application

start-up to generate run time Bean Validation classes.

To showcase the behavior, two different standard

constraints are chosen:

javax.validation.constraints.NotNull and

javax.validation.constraints.Max.

First Property ValidationMetaData

Property Name:property1 (could be any valid java property name)
Property Type: java.lang.String(can be any type as per the

requirement)

Constraint Name: javax.validation.constraints.NotNull
Message: I will use the default message

Payload: default

Groups: default

Second Property ValidationMetaData

Property Name: property2 (could be any valid java property

name)

Property Type: java.lang.Long(has to be one of the types
supported by this Max Constraint)

Constraint Name: javax.validation.constraints.Max

Message: I will use the default message

Payload: default

Groups: default

Value: 100 (any max value for this constraint)

In the above metadata, two properties validation

metadata has been showcased. These properties could

have been used on a dynamic screen in the real-world

application, which needs to be validated against Bean

Validation. For these scenarios, the default capability

of defining constraint annotations on static java

classes or in the xml will not suffice. This is where

the feature of defining constraints during runtime

class generation will be of real value for these

dynamic scenarios.

E. Annotate Runtime Classes

 To easily identify (dynamically)generated bean

validation runtime classes, they can be annotated(not

a mandatory step) with a marker annotation (no

attributes). Let this annotation be

“com.vp.bv.BVRuntimeAnnt”. This annotation class

can be created manually.

package com.vp.bv;

import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Documented;

import java.lang.annotation.Retention;

import java.lang.annotation.Target;

@Target({ TYPE })

@Retention(RUNTIME)
@Documented

public @interface BVRuntimeModelType {

}

F. Byte Buddy

 Byte Buddy is a code generation and

manipulation library for creating and modifying Java

classes during the runtime of a Java application and

without the help of a compiler. Byte Buddy is used to

generating these run time classes.

III. BYTE BUDDY RUNTIME CLASS

GENERATION

A. Annotation Description

The first step of generating the classes is to create

the AnnotationDescription. As discussed earlier, this

will be used to annotate the actual runtime class.

AnnotationDescriptionannDesc =
AnnotationDescription.Builder.ofType(BVRuntimeModelType.cla

ss).build();

B. DynamicTypeBuilder

The main entry point for creating the dynamic

runtime classes through Byte Buddy is the ByteBuddy

and DynamicType.Builder class. The below code is a

snapshot of creating an empty runtime class of a

given name and annotated with a given type.

Builder<?>builder = new
ByteBuddy().subclass(Object.class).name(fullyQualifiedClassNam
e).annotateType(annDesc)

*fullyQualifiedClassName – The full name of the dynamic class to
build. For this case, the name will be “com.vp.bv.DynaBv1”

* ann desk – It's the AnnotationDescription that was created earlier.

C. Dynamic Class Field Creation

 After creating the empty dynamic class in the

above step, the below code will add fields based on

the validation metadata details provided earlier.

Vijay Kumar Pandey / IJCTT, 67(3), 109-112, 2019

111

FieldDefinition.Optional.Valuable<?>fieldDefBuilder =

builder.defineField(fieldName,fieldType, Visibility.PRIVATE);

*fieldName – This will come from the validation metadata such as

"property1" and "property2."

* fieldType – This will come from the validation metadata such as

"String" and "Long."

D. Constraint Annotation Creation

 After creating the fields in the dynamic class,

create actual constraint annotations, which will then

be annotated on the fields.

Class<? extends Annotation>annotationType = (Class<? extends
Annotation>) Class.forName(constraintClassName,

true,classLoader);

*constraintClassName – This will come from the validation

metadata such as “javax.validation.constraints.NotNull” and

“javax.validation.constraints.Max”

Use the above type to create the Byte Buddy annotation builder

AnnotationDescription.BuilderanntBuilder =

AnnotationDescription.Builder.ofType(annotationType);

E. Constraint Annotation Property Creation

 After creating the empty constraint annotation

builder, the required annotation property will be set

with the values from the validation metadata. The

code below shows the mechanism to set any reserved

property names of the constraint annotation or any

custom property from the validation metadata.

anntBuilder.define("message", “{dynamic_message}”);

*{dynamic_message} – If there was some dynamic message

associated with the constraint annotation, it could be set as above

anntBuilder.define("value", 100);

*value – The above “value” property needs to be set for the
constraint annotation “javax.validation.constraints.Max”, the actual

value (100) will come from the validation metadata.

F. Annotate Field

 Once the AnnoationDescription.The builder has

been created, and it is necessary to generate the actual

ByteBuddyAnnotationDescription before these

constraint annotations can be annotated on the fields

created earlier.

AnnotationDescriptionanntDesc= anntBuilder.build();

*If a field has multiple annotations, each will be built and added to

a List, which can then be used to annotate the field.

Annotate Field:

builder =
fieldDefBuilder.annotateField(anntDescList.toArray(new

AnnotationDescription[0]))

*fieldDefBuilder – The field builder that was created in Step C

G. Runtime Class Generation

Once the fields have been created and annotated with

the constraint annotations, the dynamic builder is

ready to create the run time class.

Step 1: Unloaded<?>unloadedType = builder.make();

Step 2: Class<?>dynamicType = unloadedType.load(classLoader,
ClassLoadingStrategy.Default.WRAPPER).getLoaded();

*dynamic type – This is the actual java class loaded in the Java
Virtual Machine (JVM). This class is available with the JVM to be

used further for Bean Validation from this point onwards.

Note: In a real-world application, if, let's say, there are 1000

dynamic property/fields with bean validation metadata, it might be

better to divide the number of fields in each class, maybe around
25, and that will lead to 40 classes, each having 25 fields annotated

with bean validation constraints. These loaded classes can be stored

in some map in the servlet context or other application scoped bean

for easier access during bean validation.

H. Runtime Class Inspection & Debug

 During development or even during production,

the development team may need to debug any issues

in the generated runtime class so that the class created

can be written to a file system. This could then be

decompiled to understand the actual source code

better.

unloadedType.saveIn(baseDirectoryPath);

*base directory path – The base path where actual class files will be

written could be decompiled with tools like JD Decompiler to have

a peek of the source code.

Below source code (class DynaBv1)as seen through decompiler
for all the above steps:

package com.vp.bv;

import javax.validation.constraints.NotNull;
import javax.validation.constraints.Max;

@BVRuntimeModelType
public class DynaBv1 {

@NotNull(message="{javax.validation.constraints.NotNull.messag
e}", payload={}, groups={})

 private String property1;

@Max(message="{javax.validation.constraints.Max.message}",

value = 100, payload={}, groups={})
 private Long property2;

}

IV. BEAN VALIDATION – DYNAMIC

RUNTIME CLASSES

 Dynamic runtime generated classes can be saved

in some context to be easily available wherever bean

validation for such dynamic scenarios is needed.

List<Class<?>>dynaRuntimeClassList = //from Step III above –
//generated list of runtime classes

Map<String, String>dynaBVFieldClassMap = new HashMap<>();

for (Class<?>clazz :dynaRuntimeClassList) {

 Field[] fields = clazz.getDeclaredFields();
 for (Field field : fields) {

 dynaBVFieldClassMap.put(field.getName(),

clazz.getName());
 }

}

Vijay Kumar Pandey / IJCTT, 67(3), 109-112, 2019

112

*Store the dynaBVFieldClassMap, maybe in ServletContext (if

web application), or some application scoped CDI bean or some

singleton for easy reference.

A. Bean Validation Invocation

 Once the dynamic runtime classes are

generated and saved in some context for easy access,

the following code sample shows how to validate the

property values. The values will be validated against

the constraint annotation annotated on the field in the

dynamic classes. If the constraint fails, it will return a

set of unique constraint violations.

javax.validation.Validator validator = //find the validator;
Class<?>[] valGroupsArray = //find the validator groups;

//get the dynamic runtime class for the property which is validated

Class<?>dynaBvClass =
dynaBVFieldClassMap.get(propertyName);

//invoke the actual validation returning any violations
Set<ConstraintViolation<?>>violationsActual =

validator.validateValue(dynaBvClass,

propertyName,propertyValue, valGroupsArray);

V. CONCLUSION

 This paper presents a unique approach to

performing Bean Validation for dynamic properties,

whose validation metadata is stored in some form of

storage such as database, XML, and others. One of

the most common uses will be for the enterprise

applications having dynamic screens built during

runtime and have no way to use the standard Bean

Validation for their dynamic properties. This paper

presents the inner workings of generating the

dynamic runtime classes through Byte Buddy and

using those classes to perform the actual validation

for the dynamic properties. Bean Validation 1.1 is

part of JEE 7, and Bean Validation 2.0 is part of JEE

8.

REFERENCES

[1] Bean Validation 1.1 JSR 349 -

https://beanvalidation.org/1.1/
[2] Bean Validation 2.0 JSR 380- https://beanvalidation.org/2.0/

[3] Byte Buddy - https://bytebuddy.net

[4] ASM - https://asm.ow2.io/
[5] Jakarta Enterprise Edition (JEE) - https://jakarta.ee/

[6] JEE 7 Specification - https://jcp.org/en/jsr/detail?id=342

[7] JEE 8 Specification - https://jcp.org/en/jsr/detail?id=366

https://bytebuddy.net/
https://asm.ow2.io/
https://jakarta.ee/
https://jcp.org/en/jsr/detail?id=342
https://jcp.org/en/jsr/detail?id=366

