
International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 20

Comparative Security Vulnerability Analysis

of NoSQL and SQL Database Using

MongoDB and MariaDB

Jeremiah Oluwagbemi Abimbola
#1

, Osuolale A. Festus
#2

Department of Computer Science, Changchun University of Science and Technology, Changchun

Department of Computer Science, Federal University of Technology, Akure

Abstract

Security is a growing concern for any system from

desktop to web applications. As data increases, there

must be a database system that can safely deal with

the current need. However, with update in database

systems, comes vulnerabilities. Hence, the need to

continuously keep this research in motion. This paper

presents a comprehensive study of potential security

vulnerabilities and challenges for two databases. A

detailed comparison between traditional SQL and

NoSQL databases is provided and identification of a
set of vulnerabilities specific to representative

database applications using MongoDB and

MariaDB.Examples of attacks and mitigation

techniques are also provided, the discussion and

results shown helps database administrators and

application developers increase awareness of arising

threats while deploying SQL and NoSQL databases.

Keywords: security, database, SQL, NoSQL,

vulnerability

I. INTRODUCTION
Data is a typical representation of relevant aspects of

reality (for example, a student record), in a way that

helps processes requiring this information (for

example, finding a student record in a school

management system).The model of data is such that it

is organized into rows, columns and tables, and

indexed to make it effortless to find relevant

information. Data gets updated, incremented and

deleted as new information is added [1].Databases

are popularwithlargesystems and critical systems,

such as aviation systems but are also present in
smaller distributed workstations and midrange

systems, such aseducation systems, personal

computers etc.Hence, the importance of a high level

of security.Data security is an important feature for

any information system. [2]

Structured Query language (SQL) pronounced as

"S-Q-L" or sometimes as "See-Quel"isthe standard

language for dealing with Relational Databases.SQL

programming can be effectively used to insert,

search, update, delete database records and more. On

the other hand, NoSQL means "Not only SQL", it is

an upcoming category of Database Management
Systems. Its main characteristic is its non-adherence

to Relational Database Concepts. NoSQL database

are non-relational databases that scale out better than

relational databases and are designed with web

applications in mind.They do not use SQL to query

the data and do not follow strict schemas like

relational models as seen in Figure 1 below.With

NoSQL, ACID (Atomicity, Consistency, Isolation,

Durability) features are not assured always.SQL

databases have been in use since the 1970s when it

was first developed but recently, there’s been more

advocacy for the NoSQL database because of its high
performance, and ability to handle complex task in

real time. Consider this example, Imagine that you

have coupons that you wanted to push to mobile

customers that purchase a specific item. This

customer facing system of engagement requires

location data, purchase data, wallet data, and so on.

You want to engage the mobile customer in real-

time.What you require is a very agile delivery system

that is easily able to processes unstructured

data. Although, with simplicity of data representation

and ability to handle real-time data comes security

shortcomings.
Previous research carried out on security

vulnerability analysis of databaseare limited to the

release at the time the research was conducted. [3]-

[5]but as more updates are released, more

deficiencies are introduced, therefore there is a strong

need for continuous security vulnerability analysis.

The aimof this research is to examine in depth

security arising concerns from recentSQL and

NoSQL databases that may be deployed by web

applications and other critical systems. Security

concern areas include encryption,
internodecommunications, authentication,

authorization, audit and data consistency. In this

project, we will consider the MongoDB for the

NoSQL database and MariaDB for the SQL

(relational) database. MongoDB stores data in

flexible, (JavaScript Object Notation) JSON-like

documents, meaning fields can vary from document

to document and data structure can be changed over

time. The document model maps to the objects in

your application code, making data easy to work

with. Ad hoc queries, indexing, and real time

aggregation provide powerful ways to access and
analyze your data. It is a distributed database at its

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 21

core, so high availability, horizontal scaling, and

geographic distribution are built in and easy to

use.MariaDB on the other hand, is an open source

relational database management system (DBMS) that

is a compatible drop-in replacement for the widely

used MySQL database technology. It was created as a
software fork of MySQL by developers who played

key roles in building the original database.We will

look at important areas of security lapsesof the both

databases and the possible threats that could arise.

We will also recommend possible defense

mechanisms for security attacks by usingsome code

snippets.

This paper is organized as follows: Section 2provides

an overview ofNoSQL and SQL securityissues.

Sections 3and 4 discuss somecommon security issues

present in MongoDB,and MariaDB

databasesrespectively.Section 5 provides some

examples of attacks and possible solutions.Finally,

Section 6 concludes the paper.

Figure 1.0 Differences between SQL and NoSQL

Source:Apptunix

II. OVERVIEW OF NOSQL AND SQL

SECURITY ISSUES

NoSQL databases become very prone to exploits
once attackers are able to identify software

vulnerability. Incomplete input validation, weak and

exposed authentication, errors in the application level

permissions handling, insecure communication,

unauthorized access to unencrypted data, etc. are

some of the vulnerabilities applicable for NoSQL.

The same applies to the SQL databases, as most

issues occur minutes after deployment [3], ranging

from stolen backups to SQL injection issues.

Generally, insecure connection between web

application and database, insufficient support for

specialauthorized users (e.g., DBA) and insufficient
authentication are known vulnerabilities and

truthfully, there are no definite or standard principles

for achieving best practices for authentication,

authorization and encryption. [4] Some of the issues

in NoSQL and SQL can be summarized as follows.

We discuss them separately forMongoDB and

MariaDB in this section.

• Encryption

• Inter node communications

• Authentication

• Authorization

• Audit

III. SECURITY ISSUES IN MONGODB

ENCRYPTION

One of the most serious problems of MongoDB is

that data files are not natively encrypted over the wire

by default. Although, recent development of

mongoDB has added a layer of encryption using
Atlas but it is only available at rest. If encryption is

required for the data file, theapplication layer needs

to encrypt the data beforesending it to the database

server and this process is often very difficult and

costly. [5]-[6]

Data-in-Motion (client-nodecommunication)

Recently, MongoDB by default now support TSL

(Transport Layer Security) and SSL (Secure Socket

Layer) client-node communication. To use SSL, it is

required to recompile whole MongoDB with the “-sl"
option or deploy MongoDB enterprise version.

However, before the data is sent and after the data

arrives at its endpoint, the data appears unencrypted,

or “in the clear”[5]. This is a great gap in that there

could be some passive attack in the background at the

point data is unencrypted.Further steps to generate

keys are needed for configuring client/server for TSL

and SSL communication.

Authentication

By default the DB installs with NO password

credentials! Reading the MongoDB manual, the
MongoDB developers have to entirely take into

consideration security. It then lies in the hands of the

application developers and running it in a trusted

environment.Authentication is disabled by default.

This MongoDB on its own does provide support for

authentication on a per-database level. Users exist in

the context of a single logical database. Latest

version ofMongoDB 3.0 with Atlas implementation

has seen an inclusion of Authentication support with

LDAP. It does not support the authentication if it

runs in shared mode. Thus, for both standalone mode
and replica-set mode, the authentication should be

activated on MongoDB in order to authenticate each

server before joining the cluster [4]

Authorization

Authorization is disabled by default in MongoDB.

This implies that any created user has read-only

access to the entire database. That essentially means

that once you have a user, you have provided access

by default to everything stored in the database. It

provides authorization on a per-database level by

using a role-based access control approach. Available
roles are limited to the following: read, readWrite,

readAnyDatabase,readWriteAnyDatabase,

userAdmin, clusterAdmin,userAdminAnyDatabase,

dbAdmin, and dbaAdminAnyDatabase.Also, a user

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 22

with access to the Admin database has read/write

access to just everything. There is no granularity, and

by default there is no Admin password therefore by

default we have access to everything. [7] This is a

serious security issue.

Audit

Latest MongoDB documentation states that there is

an adequate auditing facility implementedfor security

logging and monitoring, authentication, authorization

and CRUD operations [5] but most monitoring and

reporting tools currently distributed with MongoDB

are related to database performance forshowing the

current state of a MongoDB instance.There is an

HTTPConsole for each MongoDBinstance to show

information about the system andconnecting clients.

However, if security is notenabled for the MongoDB

instance, no authorizationis needed to access this
interface, resulting in alikelyexposure of audit data.

Also if the server terminates before it commits the

event to the audit log, the DB may lose the event

thereby making any security flaw untraceable. [8]

IV. SECURITY ISSUES IN MARIADB

ENCRYPTION

MySQL does not support database encryption.

However, the encryption can be done at applications

level and has provided many inbuilt methods. This is

a challenge for MariaDB because it is a fork of
MySQL. Although, the enterprise version ofMariaDB

provides data-at-rest encryption. Theencryption

provides no additional protection against threats

caused by authorized database users. Specifically,

SQL injections aren’t prevented[9].

Data-in-Motion (Inter-node communication)

With the advancement of cluster computing,

MariaDB was updated in its later releases to provide

shared data storage environment for clusters.By

default, Galera Cluster replicates data between each

node without encrypting it [10]. To mitigate this

concern, the data can be transferred between nodes
using Transport layer Security (TSL).

Authentication

The authentication of users is delegated to

plugins.Two plugins are always

available: mysql_native_password and mysql_old_pa

ssword - they implement the compatible MySQL

password authentication with 20 byte (Used in

MySQL 4.0 or later) and 9 byte (used in MySQL

3.23) scrambles. In Secure Password Authentication,

MYSQL uses SHA1 hash function for storing

passwords of users.

Authorization

Authorization is provided by default on MariaDB, i.e.
the database user doesn’t have right to all the

privileges until is enabled. To do this, the user must

be logged in which provides a layer of security.

Auditing

There is an audit plugin built into MariaDB, it

provides an easy to use, policy based auditing

solution that helps organizations implement greater

security mesaures and satisfy regulatory compliance

and every action is logged. This includes

authorization access and authentication processes

such as database access etc.

V. ATTACK EXAMPLES

A. Attacks on MongoDB and Possible Defense

Mechanisms

Injection Attack: The MongoDB API expects

BSON (Binary JSON) calls, and includes a secure

BSON query assembly tool. However, according to

MongoDB documentation, un-serialized JSON and

JavaScript expressions are permitted in several

alternative query parameters. To prevent attacks, web

developers must apply proper filtration/validation on

all forms.

Tautologies. These attacks allow bypassing
authentication or access mechanisms by injecting

code in conditional statements, thereby generating

expressions that are always true (tautologies).

Attackers can exploit this to log in to the system

without appropriate credentials.

For example, in a login scenario, using php and

mongoDB, since php has a built-in mechanism for

associative arrays that lets attackers send the

following malicious payload:

db->logins-
>find(array(‚username‛=>$_POST[‚
username‛],
‚password‛=>$_POST[‚password‛]))
;

the attacker could do this

username[$ne]=1&password[$ne]=1
array(‚username‛ => array(‚$[ne]
‚ =>1), ‚password‛ =>array(‚$ne‛
=> 1));,

Because $ne is MongoDB's not equals condition, it

queries all entries in the logins collection for which

the username is not equal to 1 and the password is not

equal to 1. Thus, this query will return all users in the

logins collection. To mitigate this issue, we need to

cast the parameters received from the request to the

proper type, in this case, using the string

db->logins->find(
array(‚username‛=>(string)$_POST
[‚username‛],
‚password‛=>(string)$_POST[‚pass
word‛]));

JavaScript injections. Recently, there’s been more

power given to JavaScript such that it doesn’t only

function for client data manipulation but now for

server. This new type of vulnerabilities found

inMongoDB allows execution of JavaScript in the

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 23

database context. JavaScript enables complicated

transactions and queries on the database engine.

[11]Passing unsanitized/unresolved user input to

these queries might allow for injection of arbitrary

JavaScript code, which could result in illegal data

extraction or alteration. Consider this instance, if a
function is written like this (MapReduce)that takes

the field name that it should act on (amount or price)

as a parameter from the user. In PHP, such code can

look like this (where $param is user input): because

user input isn't being escaped here, a malicious input

(that might include arbitrary JavaScript) will execute.

$map = ‚function() {
 for (var i = 0;
i<this.items.length; i++) {
 emit(this.name,
this.items[i].$param);
 }
}‛;
$reduce = ‚ function(name, sum)
{
 return Array.sum(sum);
}‛;
$opt = ‚ {
 out: ‘totals’
}‛;
$db - >
execute(‚db.stores.mapReduce($ma
p, $reduce, $opt);‛);

The proper solution to such an attack is to disable the

use of JavaScript execution in the database

configuration. If JavaScript must be used, it's best

practice not to use any user input in its formation.

Origin violation. HTTP REST APIs are a popular

module in NoSQL databases;such as it is in Mongo

however, they instigate a new type of exposure that

permits attacks on database from another domain.

[11] In cross-origin attacks, attackers exploit
legitimate users and their Web browsers to perform

an unwanted action.

DOS Attack: (Denial of Service) attacks have high

possibilities in MongoDB. By default MongoDB

does not require authentication and authorization,

therefore an attacker can use valid user credentials

and he/she does not have to be an administrator to

carry out the attack.

B. Attacks on MariaDB and Possible Defense

Mechanisms

SQL Injection Attack:One of the most common

attacks on MariaDB is SQL injection attack. Attacks

starts from simply accepting user input. Opportunities

for SQL injection typically occur on users entering

data like a username, and the code logic failing to

evaluate this input. The Code, instead, allows an

attacker to insert a MariaDB statement, which will

run on the database.A good way to combat this attack

could be to use regular expressions to perform
validation through pattern matching. For instance, the

code below uses regular expression to check for just

the right username and nothing else [12].

if (check_match("/^\w{8,20}$/",
$_GET['username'], $matches)) {
 $result =
mysql_query("SELECT *FROM users
WHERE username = $matches[0]");
} else {
 echo "Invalid username";
}

VI. CONCLUSION

In many critical systems today including web

applications, database plays a very vital role in safely

keeping and retrieving information. In this paper, a

summary of two databases has been given based on

security vulnerabilities and strengths. As new

database systems are developed, it is also crucial to

evaluate them based on the criteria listed in this

paper. Each database has its drawbacks and

advantages as well and the choice of any database
depends on the robustness of the system. A summary

of the analysis is provided below.

TABLE 1

COMPARISON BETWEEN MONGODB AND MARIADB

Criteria Mongo DB Maria DB

Encryption Data files are not natively
encrypted over the wire by

default.

The encryption provides no
additional protection against

threats caused by authorized

database users. Specifically,
SQL injections aren’t

prevented

Inter-node communication Before the data is sent and after

the data arrives at its endpoint,
the data appears unencrypted

Updated MariaDB provides

shared data storage
environment for clusters. By

default, Galera Cluster

replicates data between each
node without encrypting it

International Journal of Computer Trends and Technology (IJCTT) – Volume 67 Issue 10 - October 2019

ISSN: 2231-2803 http://www.ijcttjournal.org Page 24

Authentication Authentication is disabled by

default, the DB installs with
NO password credentials

The authentication of users is

delegated to plugins. Once
these plugins are vulnerable,

the data also becomes

vulnerable

Authorization Authorization is disabled by
default in MongoDB. This

implies that any created user

has read-only access to the

entire database.

Authorization is provided by
default on MariaDB

Audit If security is not enabled for

the MongoDB instance, no

authorization is needed to
access the audit interface,

resulting in a likely exposure

of audit data

There is an easy to use audit

plugin built into MariaDB

which provides, policy based
auditing solution that helps

organizations implement

greater security measures.

The overall study discovers that the configuration

of any database determines how secured it is,

because even a good database can be wrongly
configured, thereby causing loop-holes. Some

defense mechanisms have also been mentioned to

guide database administrators or software

developers who use database to ensure secured

data at all times. Finally, the need to follow

standards and best practices when using any
database either SQL or NOSQL cannot be over-

emphasized and the use of stronger encryption

algorithm to encrypt files (NoSQL) even at rest.

 REFERENCES

[1] M. Rouse, "Search SQL Server," 19 February 2019.

[Online]. Available:

https://searchsqlserver.techtarget.com/definition/databa

se. [Accessed 15 April 2019].

[2] X. Wei, "Analysis of Web-based Network Database

Security Technology," Agricultural Technology and

Equipment, vol. 02, pp. 32-34 , 2019.

[3] C. Osborne, "ZDNet," 23 June 2013. [Online].

Available: https://www.zdnet.com/article/the-top-ten-

most-common-database-security-vulnerabilities/.

[Accessed 1 May 2019].

[4] Hossain Shahriar, Hisham M. Haddad, "Security

Vulnerabilities of NoSQL and SQL Databases for

MOOC Applications," International Journal of Digital

Society (IJDS), vol. 8, no. 1, March 2017.

[5] MongoDB, "MongoDB," [Online]. Available:

https://docs.mongodb.com/manual/core/security-

encryption-at-rest/. [Accessed 1 May 2019].

[6] TownsendSecurity, "Townsend Security," [Online].

Available: https://info.townsendsecurity.com/mongodb-

encryption-key-management-definitive-guide.

[Accessed 1 May 2019].

[7] David Kirkpatrick, "Mongodb - Security Weaknesses in

a typical NoSQL database," 21 March 2013. [Online].

Available: https://www.trustwave.com/en-

us/resources/blogs/spiderlabs-blog/mongodb-security-

weaknesses-in-a-typical-nosql-database/. [Accessed 1

May 2019].

[8] MongoDB, [Online]. Available:

https://docs.mongodb.com/manual/core/auditing/.

[Accessed 1 May 2019].

[9] Maria Db, "Why Encrypt MariaDB Data?," [Online].

Available: https://mariadb.com/kb/en/library/why-

encrypt-mariadb-data/. [Accessed 9 May 2019].

[10] "Securing Communications in Galera Cluster,"

[Online]. Available:

https://mariadb.com/kb/en/library/securing-

communications-in-galera-cluster/. [Accessed 9 May

2019].

[11] Aviv Ron, Alexandra Shulman-Peleg ,Anton Puzanov ,

"Analysis and Mitigation of NoSQL Injections," 18 Jan

2017. [Online]. Available:

https://www.infoq.com/articles/nosql-injections-

analysis. [Accessed 12 May 2019].

[12] Tutorial Point, "MariaDB - SQL Injection Protection,"

[Online]. Available:

https://www.tutorialspoint.com/mariadb/mariadb_sql_i

njection_protection.htm. [Accessed 12 May 2019].

[13] G. Menegaz, "Zdnet," 1 October 2012. [Online].

Available: https://www.zdnet.com/article/what-is-

nosql-and-why-do-you-need-it/.

[14] A. W. M.W. Grim, "Security and Performance Analysis

of Encrypted NoSQL Databases," Security of Systems

and Networks, pp. 10-14, 12 February 2017.

[15] O. H. A.-T. H. M. E.-B. A. S. S. Ahmed M. Eassa,

"NoSQL Racket: A Testing Tool for Detecting NoSQL

Injection Attacks in Web Applications," (IJACSA)

International Journal of Advanced Computer Science

and Applications, vol. 8, no. 11, p. 615, 2017.

[16] Z. Xiangrong, "Analysis of Database SQL Injection and

Its Security Protection," Journal of Taiyuan University

(Natural Science Edition), vol. 35, no. 03, pp. 60-

62+76, 2017.

[17] Y. Xiaoyan and G. Mei, "Research on NoSQL Non-

relational Database Security Based on Hadoop,"

Microcomputer applications , vol. 34 , no. 12, pp. 43-

45, 2018.

[18] Apptunix, https://www.apptunix.com/blog/sql-or-nosql-

database/.

