
International Journal of Computer Trends and Technology Volume 73 Issue 9, 1-9, September 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I9P101 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Optimization of Fuzzy Logic Controllers for

Autonomous Robot Navigation Using Similarity-Based

Rule Simplification

Aggrey Shitsukane1, Calvins Otieno2, James Obuhuma3, Lawrence Mukhongo4, Gideon Wandabwa5

1,2,3Department of Computer Science, Maseno University, Kisumu, Kenya.
4Department of Electrical Engineering, Technical University of Mombasa, Mombasa, Kenya .

5Training Department, Kenya School of Government, Mombasa, Kenya.

 1Corresponding Author : kashux1976@gmail.com

Received: 12 July 2025 Revised: 16 August 2025 Accepted: 02 September 2025 Published: 22 September 2025

Abstract - Autonomous mobile robots have transformed industries by enabling operations without human intervention. Fuzzy

logic controllers (FLCs) are widely used in robots for path planning due to their capability to handle uncertainties. However,

large and complex fuzzy rule sets often result in computational inefficiencies, leading to increased navigational time. This

study proposes a similarity-based rule reduction method to optimize fuzzy inference systems. The approach leverages a

similarity threshold algorithm to identify and merge redundant rules using a similarity index. The hypothesis suggests that

simplifying the rule set will either sustain or improve the robot’s task completion time. The study is validated through

simulations of an FLC-based path planning nonholonomic wheeled mobile robot navigating in a static, unknown environment.

The robot detects obstacles, localizes itself, and maps its surroundings in real -time to achieve effective navigation. The primary

inputs are obstacle distances, and the output determines wheel velocity. MATLAB and CoppeliaSim are used to optimize and

evaluate the robot’s performance, with traversal time as the primary metric. The results show that cutting down the number

of fuzzy logic rules shortened the robot’s traversal time and boosted its processing speed and overall performance. By

simplifying the rule base by nearly half (48.15%), the robot was able to complete its navigation tasks more quickly and

efficiently. This demonstrates a practical way to tackle the long-standing issue of fuzzy rule complexity, making decision-

making systems more adaptive and responsive. These results are particularly significant for real-time applications where

speed and dependability are crucial, like robotics, driverless cars, and predictive maintenance.

Keywords - Fuzzy logic controller, Autonomous robot, Rule set reduction, Similarity measure.

1. Introduction
The rapid introduction of autonomous systems in

manufacturing, transportation, and healthcare is creating a

need for intelligent frameworks that are computationally

efficient and flexible [1]. From autonomous vehicles to

automation in the factories, as well as smart IoT devices,

these systems need to decide in real-time under complex and

only partially known situations. Their effectiveness is based

on fast interpretation of sensing information and its correct

transformation to actions [2]. However, such approaches tend

to result in large rule sets for his fuzzy logic controller, for

example, which can often decrease performance as the rule

base grows larger [3].

Fuzzy logic has been a very effective tool for

autonomous decision-making due to its capability in handling

uncertainty, imprecision, and nonlinearity[3]. By converting

input conditions into output actions, fuzzy systems provide a

strong framework for reasoning that binary logic is unable to

handle. However, when they are expanded, they usually have

redundant or overlapping rules, which hinder processing,

increase memory usage, and reduce the system's interpretive

power [7]. This is why conventional fuzzy logic controllers

with extremely large rule bases typically are unrealistic in

real-time robotic control [4]. To address this issue,

researchers have researched rule reduction techniques that

aim to minimize the rule base, which facilitates computation

more efficiently without compromising decision quality.

Numerous studies have been part of the effort. For

instance, Chen and Linkens [10] gave a data -driven rule

reduction, whereas Wu and Mendel [5] tested similarity

measures for type-2 fuzzy sets. Similarly, Batti et al. [7]

introduced a neuro-fuzzy hybrid model for robot pathfinding.

Although these methods effectively reduce rule redundancy,

they share a common drawback: they rely on fixed thresholds

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Aggrey Shitsukane et al. / IJCTT, 73(9), 1-9, 2025

2

or manual adjustments. As a result, they are limited in

dynamic environments, where both sensor inputs and

environmental conditions evolve continuously.

Similarity-based rule reduction has emerged as a

promising technique to address this issue by merging highly

similar fuzzy sets, thereby cutting down the number of rules

while retaining decision-making ability [5]. Prior studies

have shown that this approa ch can significantly shrink rule

bases, but existing implementations are generally static and

lack adaptability [6][7]. In real-world autonomous direction,

this inflexibility shortens their applicability as the similarity

of rules may vary with the usage context.

The present work addresses the deficiency by optimizing

fuzzy logic controllers for autonomous robot navigation,

emphasising minimizing rule redundancy and computational

wastage. In particular, it suggests reducing the number of

rules based on similarity, with the added advantage of an

adaptive similarity threshold. As a result, the robot can

experience effective and efficient navigation in real time, and

the system can adapt to changing environments.

This study makes three main contributions:

1. Creating a rule reduction technique that incorporates

adaptive thresholding and similarity metrics.

2. Tests of autonomous navigation in a robot simulation

environment are used for experimental validation.

3. Proof that the technique improves the viability of fuzzy

logic systems for real-time robotics and dramatically

reduces the rule base without sacrificing accuracy or

responsiveness.

2. Fuzzy Logic System’s Rule Reduction

Technique
The approach used to apply similarity-based rule

reduction in fuzzy logic systems is explained in this section.

It walks through the key steps: defining fuzzy sets,

calculating similarity, applying an adaptive threshold

optimization, and finally reducing the rule base.

2.1. Initial Rule Base Construction

The first step in the methodology involves constructing

the original rule base for the fuzzy logic system. The

inference engine is partitioned into four segments [8]. The

fuzzifier handles the task of gauging input variables (input

signals), conducting scale mapping, and carrying out

fuzzification. It entails the conversion of calculated signals

(crisp values) into fuzzy values, which are also referred to as

“linguistic variables”. Membership Functions (MFs) are

utilized for this transformation. The membership function,

ranging from 0 to 1, represents the extent to which something

belongs to a particular fuzzy set. If it is absolutely certain that

the quantity belongs to the fuzzy set, its value is 1;

conversely, if it is certain that it does not belong to the set, its

value is 0, which later undergoes rule reduction. The process

includes defining fuzzy input and output variables, designing

fuzzy sets, and constructing rules based on expert knowledge

or data-driven modelling. Identify the input and output

variables for the fuzzy system. Figure 1 shows the Mamdani

fuzzy logic architecture adopted [9].

Three inputs were used with linguistic terms “Small (S),

Medium (M), and Big (B).” The input variables (Right sensor

(dr), Front sensor (df)and Left sensor (dl)) measuring the

distance of the obstacle to the robot, two outputs (left and

right wheel) with linguistic terms (Low(L), Moderate (M),

High(H)) covering the range between 0 and 60 cm/s. using

triangular membership functions for different linguistic terms

with a maximum of 27 fuzzy rules, i.e., input linguistic terms

raised to the power of variables (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠 = 33 =
27) Rules were formulated for practical and control purposes

using the knowledge and skills of an expert car driver. Initial

Fig. 1 Fuzzy logic model [9]

Fuzzy Logic Rules for the robot [10][11]
1. If dl is S and df is S and dr is S, then Vl is L and Vr is L.
2. If dl is S and df is S and dr is M, then Vl is L and Vr is M.

3. If dl is S and df is S and dr is B, then Vl is M and Vr is H.
4. If dl is S and df is M and dr is S, then Vl is L and Vr is M.

5. If dl is S and df is M and dr is M, then Vl is M and Vr is M.
6. If dl is S and df is M and dr is B, then Vl is M and Vr is H.
7. If dl is S and df is B and dr is S, then Vl is L and Vr is H.

8. If dl is S and df is B and dr is M, then Vl is M and Vr is H.
9. If dl is S and df is B and dr is B, then Vl is H and Vr is H.

LEFT SENSOR (dI)

FRONT SENSOR (df)

RIGHT SENSOR (dr)

Fuzzy
Inference

System

Membership
Function

If- then rules

Fuzzification

Defuzzific
ation

LEFT WHEEL (VI)

RIGHT WHEEL (Vr)

Inputs Mamdani type Fuzzy Inference System Outputs

Aggrey Shitsukane et al. / IJCTT, 73(9), 1-9, 2025

3

10. If dl is M and df is S and dr is S, then Vl is M and Vr is L.
11. If dl is M and df is S and dr is M, then Vl is L and Vr is M.

12. If dl is M and df is S and dr is B, then Vl is M and Vr is H.
13. If dl is M and df is M and dr is S, then Vl is M and Vr is M.
14. If dl is M and df is M and dr is M, then Vl is M and Vr is M.
15. If dl is M and df is M and dr is B, then Vl is M and Vr is H.

16. If dl is M and df is B and dr is S, then Vl is M and Vr is H.
17. If dl is M and df is B and dr is M, then Vl is H and Vr is H.
18. If dl is M and df is B and dr is B, then Vl is H and Vr is H.
19. If dl is B and df is S and dr is S, then Vl is H and Vr is L.

20. If dl is B and df is S and dr is M, then Vl is M and Vr is M.
21. If dl is B and df is S and dr is B, then Vl is H and Vr is H.
22. If dl is B and df is M and dr is S, then Vl is H and Vr is M.
23. If dl is B and df is M and dr is M, then Vl is H and Vr is M.

24. If dl is B and df is M and dr is B, then Vl is H and Vr is H.
25. If dl is B and df is B and dr is S, then Vl is H and Vr is H.
26. If dl is B and df is B and dr is M, then Vl is H and Vr is H.

27. If dl is B and df is B and dr is B, then Vl is H and Vr is H.

3. Similarity Assessment and Rule Reduction
Rules reduction was implemented using similarity

measures to identify and consolidate redundant or highly

similar rules [12]. The similarity assessment was carried out

between fuzzy sets of the same variable across different rules.

A similarity measure was selected to quantify the similarity

between the fuzzy sets. This measure was then used to

evaluate the closeness of two fuzzy sets based on their

membership functions. For each pair of fuzzy sets, a

similarity score was calculated. For example, if two fuzzy

sets within the variable "dl" had a high similarity score, it

indicated that they represented nearly identical concepts and

could potentially be merged.

An initial similarity threshold was set at 0.7 to determine

if two fuzzy sets were similar enough to be merged. This

threshold was later optimized, but an initial value was

essential to begin the process. Pairs of fuzzy sets with

similarity scores exceeding the threshold were identified and

merged. Merging was achieved by creating a new fuzzy set

that encompassed the two original sets, thereby reducing

redundancy within the rule base. The rule base was then

updated to reflect the merged sets. For instance, if the fuzzy

sets "Small" and "Medium" for the variable "dl" were

merged, all rules referencing "Small" or "Medium" for "dl"

were updated to reference the merged set, decreasing the

number of unique fuzzy sets. After merging fuzzy sets, the

rule base was examined for duplicate or redundant rules (i.e.,

rules with identical antecedent conditions). These redundant

rules were consolidated by averaging or combining the output

actions, resulting in a more concise rule base

3.1. Adaptive Threshold Optimization

An adaptive threshold optimization mechanism was

introduced, which dynamically adjusted the similarity

threshold based on feedback and performance metrics. This

adaptive process ensured the fuzzy system continuously

optimized itself for efficiency without sacrificing accuracy.

Key performance metrics were identified to evaluate the

system's effectiveness after rule reduction. These metrics

were the processing time and rule count. They were used to

assess the impact of rule reduction on the fuzzy system's

performance.

The model updated the threshold by learning from

previous threshold adjustments and their impact on

performance. After each rule reduction iteration,

performance metrics were re-evaluated. If accuracy fell

below a certain threshold, the similarity threshold was

lowered to prevent excessive rule merging. Conversely, if

performance improved without a significant accuracy loss,

the similarity threshold was raised to allow further reduction.

This adaptive feedback loop continued until an optimal

balance between rule count and decision accuracy was

achieved, as shown in Figure 2, the flow chart for Adaptive

Similarity-Based Rule Reduction.

Fig. 2 Flowchart for Adaptive Similarity-Based Rule Reduction

Aggrey Shitsukane et al. / IJCTT, 73(9), 1-9, 2025

4

3.2. Algorithm for Similarity-Based Fuzzy Rule Reduction

An Inputs:

1. Initial rule set 𝑅 = {𝑟1 , 𝑟2 , … . , 𝑟𝑛 }

2. Threshold (T): A similarity threshold for merging rules

3. Distance measures (dl, df, dr) fuzzy variables for the

distance to the left front and right.

4. Velocity outputs (Vl, Vr), fuzzy output variables for left

and right velocity.

The output of the algorithm is the reduced rule set 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 .

1. Initialize.

• Set 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑅 , the initial rule set.

• Define a similarity function 𝑆(𝑟𝑖 , 𝑟𝑗) that measures the

similarity between the two rules. This function compares

the input and output conditions of both rules.

2. Compute Similarity

For each pair of rules (𝑟𝑖 𝑟𝑗) in 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 , Calculate the

similarity 𝑆(𝑟𝑖 , 𝑟𝑗) based on Input similarity, compare the

fuzzy condition for dl, df and dr in both rules and output

similarity, and compare the fuzzy output values Vl and Vr in

both rules.

If 𝑆(𝑟𝑖 , 𝑟𝑗) ≥ 𝑇 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑟𝑖 𝑎𝑛𝑑 𝑟𝑗 as similar and

suitable for merging.

3. Merge Rules

For each pair (𝑟𝑖 𝑟𝑗) with 𝑆(𝑟𝑖 , 𝑟𝑗) ≥ 𝑇 , Create a

merged rule 𝑟𝑖𝑗 with generalized input conditions, use

combined fuzzy sets for dl, df and dr where the rules overlap.

Unified output conditions set Vl and Vr as values that

represent a general outcome for the merged rule.

Replace 𝑟𝑖 𝑎𝑛𝑑 𝑟𝑗 𝑤𝑖𝑡ℎ 𝑟𝑖𝑗 𝑖𝑛 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑

4. Remove Redundant Rules

After merging, check for redundant rules where input

and output conditions are identical and remove duplicate

rules to avoid redundancy.

5. Check for Universal set Similarity

Remove fuzzy sets that have generalized conditions so

broad that they become indistinguishable from a universal

(e.g., all input conditions are “medium” or “big with high

output velocities)

6. Iterate Until Stable

Repeat steps 2-5 until no further merging is possible (ie

𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 remain stable) or the rule set reaches the desired

size.

7. Output the Reduced Rule Set

Return 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑 as the final minimized set of fuzzy

rules, this algorithm allows the system to retain functionality

while reducing complexity.

Similarity function can be mathematically defined as

𝑆(𝑟𝑖 , 𝑟𝑗) =
1

3
∑ 𝛿 (𝐼𝑘

(𝑟𝑖
), 𝐼𝑘(𝑟𝑗))

𝑘∈{𝑑𝑙,𝑑𝑓,𝑓𝑟}

+
1

2
∑ 𝛿 (𝑂𝑙

(𝑟𝑖
), 𝑂𝑙(𝑟𝑗))

𝑙∈{𝑉𝑙,𝑉𝑟}

𝑆(𝑟𝑖 , 𝑟𝑗) gives a numeric value between 0 and 1 that

measures the similarity between two fuzzy rules 𝑟𝑖 𝑎𝑛𝑑 𝑟𝑗 . If

𝑆(𝑟𝑖 , 𝑟𝑗) ≥ 𝑇, where T is a threshold, the two rules are

considered similar enough to be merged.

The input similarity contribution is
1

3
∑ 𝛿 (𝐼𝑘

(𝑟𝑖
), 𝐼𝑘(𝑟𝑗))𝑘∈{𝑑𝑙,𝑑𝑓,𝑓𝑟} and the output similarity

contribution is
1

2
∑ 𝛿 (𝑂𝑙

(𝑟𝑖
), 𝑂𝑙(𝑟𝑗))𝑙∈{𝑉𝑙,𝑉𝑟}

Where 𝛿 = 1, if they are similar or 𝛿 = 0, otherwise.

Python implementation of a similarity-based rule

reduction algorithm. The code assumes that each rule is

represented as a dictionary containing the fuzzy sets for the

inputs and the outputs.

import itertools

initial_rules = []

def calculate_similarity(rule1, rule2):

matches = sum(rule1[key] == rule2[key] for key in

['dl', 'df', 'dr', 'Vl', 'Vr'])

 return matches / 5.0 # similarity as fraction of total

conditions

def merge_rules(rule1, rule2):

 merged_rule = {}

 for key in ['dl', 'df', 'dr', 'Vl', 'Vr']:

 if rule1[key] == rule2[key]:

 merged_rule[key] = rule1[key]

 else:

 merged_rule[key] =

f"General({rule1[key]}/{rule2[key]})"

 return merged_rule

def reduce_rules(rules, threshold=0.7):

 reduced_rules = rules[:]

 merged_indices = set()

 for (i, j) in itertools.combinations(range(len(rules)),

2):

 if i in merged_indices or j in merged_indices:

 continue

 similarity =

calculate_similarity(reduced_rules[i], reduced_rules[j])

 if similarity >= threshold:

 merged_rule = merge_rules(reduced_rules[i],

reduced_rules[j])

Aggrey Shitsukane et al. / IJCTT, 73(9), 1-9, 2025

5

 reduced_rules[i] = merged_rule # Replace first

rule with merged rule

 merged_indices.add(j) # Mark the second rule

as merged

 reduced_rules = [rule for idx, rule in

enumerate(reduced_rules) if idx not in merged_indices]

 return reduced_rules

threshold = 0.7 # Define a threshold for similarity (tune

this as needed)

reduced_rules = reduce_rules(initial_rules, threshold)

print("Reduced Rule Set:")

for i, rule in enumerate(reduced_rules):

 print(f"Rule {i+1}: {rule}")

performance.

3.3. Similarity-Based Reduced Rules Results

The reduction of fuzzy logic rules from 27 to 18, then

14, represents a significant step towards optimizing the

efficiency and interpretability of the system. By eliminating

redundant rules while preserving the system’s core

functionality, this process streamlines decision-making and

reduces computational complexity. The 3 rule sets were

validated through a simulated environment.

Reduced Fuzzy Logic Rules (18 Rules):
1. If dl is S and df is S and dr is S, then Vl is L and Vr is L.

2. If dl is S and df is S and dr is M, then Vl is L and Vr is M.
3. If dl is S and df is M and dr is S, then Vl is L and Vr is M.
4. If dl is S and df is M and dr is B, then Vl is M and Vr is H.
5. If dl is S and df is B and dr is S, then Vl is L and Vr is H.

6. If dl is S and df is B and dr is M, then Vl is H and Vr is H.
7. If dl is M and df is S and dr is S, then Vl is M and Vr is L.
8. If dl is M and df is S and dr is M, then Vl is L and Vr is M.
9. If dl is M and df is S and dr is B, then Vl is M and Vr is H.

10. If dl is M and df is M and dr is S, then Vl is M and Vr is M.
11. If dl is M and df is M and dr is M, then Vl is M and Vr is H.
12. If dl is M and df is B and dr is S, then Vl is M and Vr is H.
13. If dl is M and df is B and dr is B, then Vl is H and Vr is H.

14. If dl is B and df is S and dr is S, then Vl is H and Vr is L.
15. If dl is B and df is S and dr is M, then Vl is M and Vr is M.
16. If dl is B and df is M and dr is S, then Vl is H and Vr is M.

17. If dl is B and df is M and dr is B, then Vl is H and Vr is H.
18. If dl is B and df is B and dr is S, then Vl is H and Vr is H.

Further Reduced Fuzzy Logic Rules (14 Rules):
1. If dl is S and df is S and dr is S, then Vl is L and Vr is L.
2. If dl is S and df is S and dr is M, then Vl is L and Vr is M.
3. If dl is S and df is M and dr is S, then Vl is L and Vr is M.

4. If dl is S and df is M and dr is B, then Vl is M and Vr is H.
5. If dl is S and df is B and dr is M, then Vl is H and Vr is H.
6. If dl is M and df is S and dr is S, then Vl is M and Vr is L.
7. If dl is M and df is S and dr is M, then Vl is L and Vr is M.

8. If dl is M and df is M and dr is B, then Vl is M and Vr is M.
9. If dl is M and df is B and dr is M, then Vl is H and Vr is H.
10. If dl is B and df is S and dr is S, then Vl is H and Vr is L.
11. If dl is B and df is S and dr is M, then Vl is M and Vr is M.

12. If dl is B and df is M and dr is M, then Vl is H and Vr is M.
13. If dl is B and df is B and dr is S, then Vl is H and Vr is H.
14. If dl is B and df is B and dr is B, then Vl is H and Vr is H.

The bar chart in Figure 3 visually represents the

progressive reduction in the number of fuzzy logic rules used

in the controller design. The initial 27-rule configuration

represents the full combinatorial coverage of a fuzzy system

with 3 inputs and 3 linguistic terms each. To optimize

computational performance and reduce complexity without

sacrificing control quality, reduced rule bases were explored:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑟𝑒𝑑𝑢𝑐𝑒𝑑

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 𝑥 100

Fig. 3 Reduction in fuzzy logic rules

4. Simulation Environment and Fuzzy Logic

Controller Design
 Third, this study employed a simulation-based approach

to evaluate the performance effects of fuzzy rule base

reduction in a nonholonomic wheeled mobile robot

navigating a static, unknown environment. The methodology

integrates a simplified fuzzy logic control system based on

triangular membership functions and minimal directional

sensor input, implemented in a controlled virtual

environment.

 Tests were performed in a 5 m × 5 m maze-like simulated

setting built with CoppeliaSim, a physics engine-based

robotics simulator. The area of simulation was surrounded by

static walls and held 12 cylindrical obstacles, which were

deliberately positioned to create thin paths that mimic indoor

navigation limitations. The robot was initialized to begin at

the bottom-left, and its objective was to navigate to a pre-

determined target without collision and with minimal travel

time, which was the main performance metric.

 The mobile robot was constructed on the Pioneer P3-DX

differential-drive robot platform, which was selected for prior

use in robotics research and kinematic appropriateness to

autonomous navigation tasks. The proximity sensors were set

to return distance readings in three directions: left (dl), front

(df), and right (dr).

 A Mamdani-type Fuzzy Logic Controller (FLC)

developed in MATLAB controlled the robot’s decision-

making. The controller took the three sensor inputs and

generated two outputs: left wheel Velocity (Vl) and right

wheel Velocity (Vr). Triangular Membership Functions

Base (0%)

-33.3%
-48.1%

0

5

10

15

20

25

30

27 Rules 18 Rules 14 Rules

N
u

m
b

e
r

o
f

R
u

le
s

Aggrey Shitsukane et al. / IJCTT, 73(9), 1-9, 2025

6

(MFs) were used because they are easy and efficient to

compute. Input variables were defined with three linguistic

terms (Near, Medium, Far), and output variables were

defined with three levels of velocity (Low, Medium, High).

This configuration enabled the controller to convert obstacle

proximity to instantaneous velocity updates to correct paths

in real-time.

 Simulations were executed on a 64-bit Windows 10 Pro

system equipped with an Intel Core i7 2.4 GHz processor, 16

GB RAM, and a 512 GB SSD, using an HP EliteOne 1000

G2 workstation. MATLAB handled fuzzy inference and logic

execution, while CoppeliaSim managed 3D physics,

environmental feedback, and robot motion. Each

experimental configuration was tested under standardized

simulation conditions, with 10 independent replicates per rule

base setting to ensure statistical robustness. The navigation

task simulated an autonomous driving scenario where the

robot responded to environmental obstacles in real time.

Figure 4 illustrates the projected navigation behavior of the

robot, highlighting key path transitions and orientation

control during motion.

• If 𝑉𝑙 = 𝑉𝑟 Then the robot moves straight.

• If 𝑉𝑙 < 𝑉𝑟 Then the robot turns to the left side.

• If 𝑉𝑙 > 𝑉𝑟 Then the robot turns to the right side.

• If 𝑉𝑙 = −𝑉𝑟 Then the robot rotates (spins) clockwise.

• If −𝑉𝑙 = 𝑉𝑟 Then the robot rotates (spins) anticlockwise.

Fig. 4 (𝐕𝐥 = 𝐕𝐫) 𝐑𝐨𝐛𝐨𝐭 𝐦𝐨𝐯𝐞𝐬 𝐢𝐧 𝐚 𝐬𝐭𝐫𝐚𝐢𝐠𝐡𝐭 𝐥𝐢𝐧𝐞.

Fig. 5 Simulation field for the robot

 As seen in Figure 5, the robot moves from a starting point

to a target while gathering information on how long it takes

to finish the task. The objective was to evaluate three rule sets

for robot navigation and compare how well they performed

in terms of how long it took a robot to finish a navigation

task. Independent variables were the rule sets being tested:

Rule Set A: Original 27 rules, Rule Set B: Reduced 18 rules

and Rule Set C: reduced 14 rules. The dependent variable is

the performance factor, which measures how long it takes the

robot to finish the navigation task in seconds.

5. Results and Discussion
The Experiments were conducted with 10 runs for each

rule set to ensure statistical robustness using the same

navigation scenario for all runs to maintain consistency.

In the Testing Procedure, the Setup of the navigation

scenario had a navigation course with obstacles and a fixed

start and goal position. Measurements of time (in seconds)

taken for the robot to navigate from start to finish in each trial,

as shown in Table 1.

Table 1. Traversal time from 10 trials for each rule set

Trial
Rule set A (27

rules)

Rule set B

(18rules)

Rule set C (14

rules)

1 181.5 180.4 178.7

2 180.9 179.3 179.1

3 182.1 180.1 178.9

4 181.0 179.8 178.8

5 181.8 179.5 179.2

6 180.7 179.0 179.0

7 182.3 180.2 178.5

8 181.4 180.0 178.6

9 181.2 179.7 179.4

10 182.0 179.6 178.3

Figure 6 shows a line chart showing how each rule set

performed across the 10 trials. It can be clearly seen that Rule

set A consistently has the highest values, Rule set B is

generally lower than A but higher than C and Rule set C has

the lowest values throughout.

Fig. 6 Line chart showing rule set performance.

178

180

182

1 2 3 4 5 6 7 8 9 10

Rule set A (27 rules) Rule set B (18rules)

Rule set C (14 rules)

Aggrey Shitsukane et al. / IJCTT, 73(9), 1-9, 2025

7

Figure 7 shows a box plot comparing the three rule sets.

This gives a good view of the distribution, median, and

variability of the measurements for each rule set. Rule set A

has the highest median and a slightly wider spread, Rule set

B has a lower median with a narrower range and Rule set C

has the lowest values, and its spread is also fairly compact.

Fig. 7 Box plot comparison of rule sets

The Shapiro-Wilk test was applied to each group (Rule

Sets A, B, and C). The null hypothesis of the Shapiro-Wilk

test is that the data are drawn from a normally distributed

population. A p-value above 0.05 indicates that we do not

reject the null hypothesis, implemented via the swtest

function available in the Machine Learning Toolbox in

MATLAB.

The results of the Shapiro-Wilk test for the three rule sets

were as follows: Rule Set A: Shapiro-Wilk Statistic = 0.97,

p-value = 0.94, Rule Set B: Shapiro-Wilk Statistic = 0.98, p-

value = 0.98 and Rule Set C: Shapiro-Wilk Statistic = 0.99,

p-value = 0.99. The null hypothesis of the Shapiro-Wilk test

asserts that the data follows a normal distribution. Since the

p-values for all three rule sets are greater than the significance

level of 0.05. Thus, the data for all three rule sets were

considered to be normally distributed.

Levene’s test was performed using MATLAB to assess

the homogeneity of variance among the groups (Rule Set A,

Rule Set B, and Rule Set C). The results of Levene's test were

as follows: Statistic: 1.497 and p-value: 0.24. Since the p-

value (0.24) exceeds the significance level of 0.05, we fail to

reject the null hypothesis.

This indicates that the variances among Rule Set A, Rule

Set B, and Rule Set C are not significantly different, thereby

satisfying the assumption of homogeneity of variance. The

independence of observations was typically ensured by the

experimental design. In this case, each trial was conducted

independently with the same navigation scenario and

consistent conditions. Thus, the independence assumption is

satisfied.

5.1. ANOVA Test

A test of variance analysis was conducted. The purpose

of this statistical technique is to ascertain whether the means

of three or more independent groups differ in any way that is

statistically significant.

Null Hypothesis (H₀)

 There is no significant difference in the mean traversal

times among the three rule sets.

(μ₁ = μ₂ = μ₃)

Alternative Hypothesis (H₁)

At least one rule set's mean traversal time is significantly

different from the others.

Calculated Group Means

• Rule Set A: μ₁ ≈ 181.49 seconds

• Rule Set B: μ₂ ≈ 179.76 seconds

• Rule Set C: μ₃ ≈ 178.85 seconds

The Degrees of Freedom (df) were calculated for each

component of the total variation in ANOVA, Number of

groups (k) = 3. Total number of observations (N) = 30 (10 per

group)

Between-Group Degrees of Freedom:

𝑑𝑓𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 𝑘 − 1 = 3 − 1 = 2

Within-Group Degrees of Freedom:

𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛 = 𝑁 − 𝑘 = 30 − 3 = 27

To partition the total variation in the data into Between-

Group Variation (SSB), Within-Group Variation (SSW), and

Total Variation (SST), the following formulas were used:

𝑆𝑆𝐵 = ∑ 𝑛𝑖

𝑘

𝑖 =1

 (𝑋𝑖 − 𝑋)2 = 32.97

Where:

k; Number of groups.

𝑛𝑖 : Number of observations in group i

𝑋𝑖: mean of group i

𝑋: Overall mean of all observations.

Within group variation (SSW)

𝑆𝑆𝑊 = ∑ ∑ 𝑛𝑖

𝑛𝑖

𝑗=1

 (𝑋𝑖𝑗 − 𝑋𝑖)
2

𝑘

𝑖 =1

= 8.38

Where

𝑋𝑖𝑗 : observation j in group i

Total variation (SST)

Aggrey Shitsukane et al. / IJCTT, 73(9), 1-9, 2025

8

𝑆𝑆𝑇 = 𝑆𝑆𝐵 + 𝑆𝑆𝑊

Calculated values for SSB, SSW, and SST using

MATLAB resulted as:

Between-Group Variation (SSB): 35.97

Within-Group Variation (SSW): 8.38

Total Variation (SST): 44.35

These results indicate the majority of the variation in the

data is due to differences between the group means (SSB),

with a smaller portion attributable to individual differences

within the groups (SSW). Mean Squares (MS) was calculated

by dividing each Sum of Squares (SS) by its corresponding

degrees of freedom (df):

Between-group mean square (MSB)

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑑𝑓𝑏𝑒𝑡𝑤𝑒𝑒𝑛

=
35.97

2
= 17.985

Within-group mean square (MSW)

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛

=
8.38

27
= 0.3104

The F-statistic in ANOVA was calculated to determine

if the variability between group means was significantly

larger than the variability within groups.

𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =
𝑀𝑆𝐵

𝑀𝑆𝑊
=

17.985

0.310
= 58.01

To determine if the differences between group means

were statistically significant. Compare the calculated F-

statistic to a critical F-value obtained from an F-distribution

table. MATLAB’s “finv” function was used to find the

critical F-value at a significance level α=0.05 and degrees of

freedom between and within. Results gave an F-statistic of

58.01, and the critical F-value (calculated from F(2, 27,

0.05)) in MATLAB gave 3.354.After performing the

ANOVA analysis and comparing the F-statistic with the

critical F-value. The decision rule is if 𝐹𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 > 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,

reject the null hypothesis and if 𝐹𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 ≤ 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 do not

reject.

Since 𝐹𝑠𝑡 𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 58.01 is much greater than the critical

F-value = 3.354, we rejected the null hypothesis. This means

there are statistical differences between the means of the three

rule sets (A, B and C)

The shows that the variation between the group means is

significantly larger than the variation within the groups.

Therefore, at least one of the rule sets has a mean that differs

significantly from the others.

Tukey’s HSD test using the “multcompare” function in

MATLAB was utilized after rejecting the null hypothesis in

ANOVA to determine which specific group means are

significantly different. The q-value in the Tukey HSD test

comes from the Studentized Range Distribution Table (also

known as the Tukey Table). It depends on:

1. Number of groups (k): In this case, 3 rule sets (A,

B, and C).

2. Degrees of freedom for the error term (df within

groups) is calculated as df = N-k, where:

• N = total number of observations (10 trials

× 3 groups = 30)

• k = number of groups (3)

• So, df = 30 - 3 = 27

3. Significance level (α) = Typically 0.05

To find q, in the Tukey Table for k = 3 groups and

df = 27 at α = 0.05.

From statistical reference tables, the q-value for k = 3,

df = 27, and α = 0.05 is approximately 3.506.

𝐻𝑆𝐷 = 𝑞 𝑥 √
𝑀𝑆𝐸

𝑛

Where

• q is the critical value from the Tukey table (depends on

the number of groups and degrees of freedom).

• MSE is the Mean Squared Error from ANOVA.

• n is the number of observations per group.

𝑀𝑆𝐸 =
𝑆𝑆𝑊

𝑁 − 𝑘
=

8.383

30 − 3
=

8.383

27
= 0.3104

𝐻𝑆𝐷 = 3.506 𝑥 √
0.3104

10
= 0.6176

Comparing mean differences with HSD

181.49 – 179.76 = 1.73 (significant since 1.73 > 0.6176

181.49 – 178.85 = 2.64 (significant since 2.64 > 0.6176

179.76 – 178.85 = 0.91 (significant since 0.91 > 0.6176

The Tukey HSD test shows that all three rule sets (A, B,

and C) have statistically significant differences. The largest

difference is between Rule Set A and Rule Set C (|181.49 -

178.85| = 2.64, which is much greater than the HSD value of

0.6176). Rule Set A is the most distinct, as it has the highest

mean and is significantly different from both B and C.

The mean values of the three rule sets:

• Rule Set A: 181.49 (highest)

• Rule Set B: 179.76

• Rule Set C: 178.85 (lowest)

Rule Set A (27 rules) exhibited the highest mean

performance (181.49) and was significantly different from

both Rule Set B and Rule Set C. Rule Set C is the most

Aggrey Shitsukane et al. / IJCTT, 73(9), 1-9, 2025

9

distinct and best-performing rule set as it takes the shortest

time to complete a task, making it the optimal choice for

applications requiring superior performance. The significant

difference between Rule Set B and Rule Set C suggests that

reducing the number of rules further increases performance.

Future work may explore whether the reduction of rules

below 14 would further improve performance or reach a

plateau.

6. Conclusion
This study has demonstrated the effectiveness of a

similarity-based rule reduction method in optimizing Fuzzy

Logic Controllers (FLCs) for autonomous navigation. By

reducing redundant rules through similarity assessment and

an adaptive threshold optimization mechanism, the system

significantly improved computational efficiency without

compromising decision accuracy. Experimental results

confirmed that a reduced rule set (from 27 to 14) led to faster

traversal times and enhanced real-time processing, making

the system more suitable for dynamic environments.

Statistical analysis based on ANOVA and Tukey’s HSD test

confirmed the performance differences between the three rule

sets, and Rule Set C (14 rules) emerged as the most efficient.

The result reaffirms the significance of finding a balance

between the rule complexity and efficiency for high-

performance autonomous decision-making. The method has

potential applications in real-world robotics, driverless

vehicles, and predictive maintenance, where efficient and

adaptive fuzzy logic-based systems are essential.

Future studies will seek further simplifications of rule

complexity and examine the method's applicability for use in

more complex, multi-variable contexts. The application of

machine learning algorithms to automatically optimized rule

determination could also make fuzzy logic-based decision

systems more scalable.

References
[1] Anushka Biswas, and Hwang-Cheng Wang, “Autonomous Vehicles Enabled by the Integration of IoT, Edge Intelligence, 5G, and

Blockchain,” Sensors, vol. 23, no. 4, pp. 1-60, 2023. [CrossRef] [Google Scholar] [Publisher Link]
[2] Mohsen Soori et al., “Intelligent Robotic Systems in Industry 4.0: A Review,” Journal of Advanced Manufacturing Science and

Technology, vol. 4, no. 3, pp. 1-29, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[3] Hooi Hung Tang, and Nur Syazreen Ahmad, “Fuzzy Logic Approach for Controlling Uncertain and Nonlinear Systems: A Comprehensive

Review of Applications and Advances,” Systems Science & Control Engineering, vol. 12, no. 1, pp. 1-34, 2024. [CrossRef] [Google

Scholar] [Publisher Link]
[4] Le Truong Giang et al., “Adaptive Spatial Complex Fuzzy Inference Systems With Complex Fuzzy Measures,” IEEE Access, vol. 11, pp.

39333-39350, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[5] Dongrui Wu, and Jerry M. Mendel, “Similarity Measures for Closed General Type-2 Fuzzy Sets: Overview, Comparisons, and a Geometric

Approach,” IEEE Transactions on Fuzzy Systems, vol. 27, no. 3, pp. 515-526, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[6] Dimas Wibisono Prakoso, Asad Abdi, and Chintan Amrit, “Short Text Similarity Measurement Methods: A Review,” Soft Computing,
vol. 25, no. 6, pp. 4699-4723, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Habiba Batti, Chiraz Ben Jabeur, and Hassene Seddik, “Autonomous Smart Robot for Path Predicting and Finding in Maze Based on

Fuzzy and Neuro-Fuzzy Approaches,” Asian Journal of Control, vol. 23, no. 1, pp. 3-12, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[8] M. Khairudin et al., “The Mobile Robot Control in Obstacle Avoidance Using Fuzzy Logic Controller,” Indonesian Journal of Science
and Technology, vol. 5, no. 3, pp. 334-351, 2020. [Google Scholar] [Publisher Link]

[9] Aggrey Shitsukane et al., “Fuzzy Logic Sensor Fusion For Obstacle Avoidance Mobile Robot,” IST-Africa Week Conference (IST-Africa),
Gaborone, Botswana, pp. 1-8, 2018. [Google Scholar] [Publisher Link]

[10] Chian-Song Chiu, Teng-Shung Chiang, and Yu-Ting Ye, “Fuzzy Obstacle Avoidance Control of a Two-Wheeled Mobile Robot,”

International Automatic Control Conference, Yilan, Taiwan, pp. 1-6, 2015. [CrossRef] [Google Scholar] [Publisher Link]
[11] Habiba Batti, Chiraz Ben Jabeur, and Hassene Seddik, “Mobile Robot Obstacle Avoidance in labyrinth Environment Using Fuzzy Logic

Approach,” International Conference on Control, Automation and Diagnosis, Grenoble, France, pp. 1-5, 2019. [CrossRef] [Google

Scholar] [Publisher Link]

[12] Min-You Chen, and D.A. Linkens, “Rule-Base Self-Generation and Simplification for Data-Driven Fuzzy Models,” Fuzzy Sets and

Systems, vol. 142, no. 2, pp. 243-265, 2004. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.3390/s23041963
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autonomous+Vehicles+Enabled+by+the+Integration+of+IoT%2C+Edge+Intelligence%2C+5G%2C+and+Blockchain&btnG=
https://www.mdpi.com/1424-8220/23/4/1963
https://dx.doi.org/10.51393/j.jamst.2024007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intelligent+Robotic+Systems+in+Industry+4.0%3A+A+Review&btnG=
https://hal.science/hal-04439263/
https://doi.org/10.1080/21642583.2024.2394429
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fuzzy+logic+approach+for+controlling+uncertain+and+nonlinear+systems%3A+a+comprehensive+review+of+applications+and+advances&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fuzzy+logic+approach+for+controlling+uncertain+and+nonlinear+systems%3A+a+comprehensive+review+of+applications+and+advances&btnG=
https://www.tandfonline.com/doi/full/10.1080/21642583.2024.2394429
https://doi.org/10.1109/ACCESS.2023.3268059
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptive+Spatial+Complex+Fuzzy+Inference+Systems+With+Complex+Fuzzy+Measures&btnG=
https://ieeexplore.ieee.org/abstract/document/10103877
https://doi.org/10.1109/TFUZZ.2018.2862869
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Similarity+Measures+for+Closed+General+Type-2+Fuzzy+Sets%3A+Overview%2C+Comparisons%2C+and+a+Geometric+Approach&btnG=
https://ieeexplore.ieee.org/abstract/document/8424472
https://doi.org/10.1007/s00500-020-05479-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Short+Text+Similarity+Measurement+Methods%3A+A+Review&btnG=
https://link.springer.com/article/10.1007/s00500-020-05479-2
https://doi.org/10.1002/asjc.2345
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Autonomous+Smart+Robot+for+Path+Predicting+and+Finding+in+Maze+Based+on+Fuzzy+and+Neuro-Fuzzy+Approaches&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.2345
https://onlinelibrary.wiley.com/doi/abs/10.1002/asjc.2345
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Mobile+Robot+Control+in+Obstacle+Avoidance+Using+Fuzzy+Logic+Controller&btnG=
https://ejournal.kjpupi.id/index.php/ijost/article/view/135
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fuzzy+Logic+Sensor+Fusion+For+Obstacle+Avoidance+Mobile+Robot&btnG=
https://ieeexplore.ieee.org/abstract/document/8417348
https://doi.org/10.1109/CACS.2015.7378356
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Fuzzy+Obstacle+Avoidance+Control+Of+A+Two-Wheeled+Mobile+Robot&btnG=
https://ieeexplore.ieee.org/abstract/document/7378356
https://doi.org/10.1109/ICCAD46983.2019.9037873
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobile+Robot+Obstacle+Avoidance+in+labyrinth+Environment+Using+Fuzzy+Logic+Approach&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobile+Robot+Obstacle+Avoidance+in+labyrinth+Environment+Using+Fuzzy+Logic+Approach&btnG=
https://ieeexplore.ieee.org/abstract/document/9037873
https://doi.org/10.1016/S0165-0114(03)00160-X
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rule-Base+Self-Generation+And+Simplification+For+Data-Driven+Fuzzy+Models&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S016501140300160X

