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Abstract - Autonomous mobile robots have transformed industries by enabling operations without human intervention. Fuzzy 

logic controllers (FLCs) are widely used in robots for path planning due to their capability to handle uncertainties. However, 

large and complex fuzzy rule sets often result in computational inefficiencies, leading to increased navigational time. This 

study proposes a similarity-based rule reduction method to optimize fuzzy inference systems. The approach leverages a 

similarity threshold algorithm to identify and merge redundant rules using a similarity index. The hypothesis suggests that 

simplifying the rule set will either sustain or improve the robot’s task completion time. The study is validated through 

simulations of an FLC-based path planning nonholonomic wheeled mobile robot navigating in a static, unknown environment. 

The robot detects obstacles, localizes itself, and maps its surroundings in real -time to achieve effective navigation. The primary 

inputs are obstacle distances, and the output determines wheel velocity. MATLAB and CoppeliaSim are used to optimize and 

evaluate the robot’s performance, with traversal time as the primary metric. The results show that cutting down the number 

of fuzzy logic rules shortened the robot’s traversal time and  boosted its processing speed and overall performance. By 

simplifying the rule base by nearly half (48.15%), the robot was able to complete its navigation tasks more quickly and 

efficiently. This demonstrates a practical way to tackle the long-standing issue of fuzzy rule complexity, making decision-

making systems more adaptive and responsive. These results are particularly significant for real-time applications where 

speed and dependability are crucial, like robotics, driverless cars, and predictive maintenance. 

Keywords - Fuzzy logic controller, Autonomous robot, Rule set reduction, Similarity measure. 

1. Introduction  
The rapid introduction of autonomous systems in 

manufacturing, transportation, and healthcare is creating a 

need for intelligent frameworks that are computationally 

efficient and flexible [1]. From autonomous vehicles to 

automation in the factories, as well as smart IoT devices, 

these systems need to decide in real-time under complex and 

only partially known situations. Their effectiveness is based 

on fast interpretation of sensing information and its correct 

transformation to actions [2]. However, such approaches tend 

to result in large rule sets for his fuzzy logic controller, for 

example, which can often decrease performance as the rule 

base grows larger [3]. 

Fuzzy logic has been a very effective tool for 

autonomous decision-making due to its capability in handling 

uncertainty, imprecision, and nonlinearity[3]. By converting 

input conditions into output actions, fuzzy systems provide a 

strong framework for reasoning that binary logic is unable to 

handle. However, when they are expanded, they usually have 

redundant or overlapping rules, which hinder processing, 

increase memory usage, and reduce the system's interpretive 

power [7]. This is why conventional fuzzy logic controllers 

with extremely large rule bases typically are unrealistic in 

real-time robotic control [4]. To address this issue, 

researchers have researched rule reduction techniques that 

aim to minimize the rule base, which facilitates computation 

more efficiently without compromising decision quality. 

Numerous studies have been part of the effort. For 

instance, Chen and Linkens [10] gave a data -driven rule 

reduction, whereas Wu and Mendel [5] tested similarity 

measures for type-2 fuzzy sets. Similarly, Batti et al. [7] 

introduced a neuro-fuzzy hybrid model for robot pathfinding. 

Although these methods effectively reduce rule redundancy, 

they share a common drawback: they rely on fixed thresholds 
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or manual adjustments. As a result, they are limited in 

dynamic environments, where both sensor inputs and 

environmental conditions evolve continuously. 

Similarity-based rule reduction has emerged as a 

promising technique to address this issue by merging highly  

similar fuzzy sets, thereby cutting down the number of rules 

while retaining decision-making ability [5]. Prior studies 

have shown that this approa ch can significantly shrink rule 

bases, but existing implementations are generally static and 

lack adaptability [6][7]. In real-world autonomous direction, 

this inflexibility shortens their applicability as the similarity  

of rules may vary with the usage context. 

The present work addresses the deficiency by optimizing 

fuzzy logic controllers for autonomous robot navigation, 

emphasising minimizing rule redundancy and computational 

wastage. In particular, it suggests reducing the number of 

rules based on similarity, with the added advantage of an 

adaptive similarity threshold. As a result, the robot can 

experience effective and efficient navigation in real time, and 

the system can adapt to changing environments. 

This study makes three main contributions:  

1. Creating a rule reduction technique that incorporates 

adaptive thresholding and similarity metrics. 

2. Tests of autonomous navigation in a robot simulation 

environment are used for experimental validation. 

3. Proof that the technique improves the viability of fuzzy 

logic systems for real-time robotics and dramatically 

reduces the rule base without sacrificing accuracy or 

responsiveness. 

 

2. Fuzzy Logic System’s Rule Reduction 

Technique 
The approach used to apply similarity-based rule 

reduction in fuzzy logic systems is explained in this section. 

It walks through the key steps: defining fuzzy sets, 

calculating similarity, applying an adaptive threshold 

optimization, and finally reducing the rule base.  

 

2.1. Initial Rule Base Construction 

The first step in the methodology involves constructing 

the original rule base for the fuzzy logic system. The 

inference engine is partitioned into four segments [8]. The 

fuzzifier handles the task of gauging input variables (input 

signals), conducting scale mapping, and carrying out 

fuzzification. It entails the conversion of calculated signals 

(crisp values) into fuzzy values, which are also referred to as 

“linguistic variables”. Membership Functions (MFs) are 

utilized for this transformation. The membership function, 

ranging from 0 to 1, represents the extent to which something 

belongs to a particular fuzzy set. If it is absolutely certain that 

the quantity belongs to the fuzzy set, its value is 1; 

conversely, if it is certain that it does not belong to the set, its 

value is 0, which later undergoes rule reduction. The process 

includes defining fuzzy input and output variables, designing 

fuzzy sets, and constructing rules based on expert knowledge 

or data-driven modelling. Identify the input and output 

variables for the fuzzy system. Figure 1 shows the Mamdani 

fuzzy logic architecture adopted [9]. 

 

Three inputs were used with linguistic terms “Small (S), 

Medium (M), and Big (B).” The input variables (Right sensor 

(dr), Front sensor (df)and Left sensor (dl)) measuring the 

distance of the obstacle to the robot, two outputs (left and 

right wheel) with linguistic terms (Low(L), Moderate (M), 

High(H))  covering the range between 0 and 60 cm/s. using 

triangular membership functions for different linguistic terms 

with a maximum of 27 fuzzy rules, i.e., input linguistic terms 

raised to the power of variables (𝑁𝑢𝑚𝑏𝑒𝑟  𝑜𝑓 𝑟𝑢𝑙𝑒𝑠 = 33 =
27)  Rules were formulated for practical and control purposes 

using the knowledge and skills of an expert car driver. Initial 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Fuzzy logic model [9] 

 

Fuzzy Logic Rules for the robot [10][11] 
1. If dl is S and df is S and dr is S, then Vl is L and Vr is L.  
2. If dl is S and df is S and dr is M, then Vl is L and Vr is M. 

3. If dl is S and df is S and dr is B, then Vl is M and Vr is H.  
4. If dl is S and df is M and dr is S, then Vl is L and Vr is M. 

5. If dl is S and df is M and dr is M, then Vl is M and Vr is M. 
6. If dl is S and df is M and dr is B, then Vl is M and Vr is H.  
7. If dl is S and df is B and dr is S, then Vl is L and Vr is H.  

8. If dl is S and df is B and dr is M, then Vl is M and Vr is H.  
9. If dl is S and df is B and dr is B, then Vl is H and Vr is H.  
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10. If dl is M and df is S and dr is S, then Vl is M and Vr is L.  
11. If dl is M and df is S and dr is M, then Vl is L and Vr is M. 

12. If dl is M and df is S and dr is B, then Vl is M and Vr is H.  
13. If dl is M and df is M and dr is S, then Vl is M and Vr is M. 
14. If dl is M and df is M and dr is M, then Vl is M and Vr is M. 
15. If dl is M and df is M and dr is B, then Vl is M and Vr is H.  

16. If dl is M and df is B and dr is S, then Vl is M and Vr is H.  
17. If dl is M and df is B and dr is M, then Vl is H and Vr is H.  
18. If dl is M and df is B and dr is B, then Vl is H and Vr is H.  
19. If dl is B and df is S and dr is S, then Vl is H and Vr is L.  

20. If dl is B and df is S and dr is M, then Vl is M and Vr is M. 
21. If dl is B and df is S and dr is B, then Vl is H and Vr is H.  
22. If dl is B and df is M and dr is S, then Vl is H and Vr is M. 
23. If dl is B and df is M and dr is M, then Vl is H and Vr is M. 

24. If dl is B and df is M and dr is B, then Vl is H and Vr is H.  
25. If dl is B and df is B and dr is S, then Vl is H and Vr is H.  
26. If dl is B and df is B and dr is M, then Vl is H and Vr is H.  

27. If dl is B and df is B and dr is B, then Vl is H and Vr is H.  

 

3. Similarity Assessment and Rule Reduction 
Rules reduction was implemented using similarity  

measures to identify and consolidate redundant or highly  

similar rules [12]. The similarity assessment was carried out 

between fuzzy sets of the same variable across different rules. 

A similarity measure was selected to quantify the similarity 

between the fuzzy sets. This measure was then used to 

evaluate the closeness of two fuzzy sets based on their 

membership functions. For each pair of fuzzy sets, a  

similarity score was calculated. For example, if two fuzzy 

sets within the variable "dl" had a high similarity score, it 

indicated that they represented nearly identical concepts and 

could potentially be merged. 

 

An initial similarity threshold was set at 0.7 to determine 

if two fuzzy sets were similar enough to be merged. This 

threshold was later optimized, but an initial value was 

essential to begin the process. Pairs of fuzzy sets with  

similarity scores exceeding the threshold were identified and 

merged. Merging was achieved by creating a new fuzzy set 

that encompassed the two original sets, thereby reducing 

redundancy within the rule base. The rule base was then 

updated to reflect the merged sets. For instance, if the fuzzy 

sets "Small" and "Medium" for the variable "dl" were 

merged, all rules referencing "Small" or "Medium" for "dl" 

were updated to reference the merged set, decreasing the 

number of unique fuzzy sets. After merging fuzzy sets, the 

rule base was examined for duplicate or redundant rules (i.e., 

rules with identical antecedent conditions). These redundant 

rules were consolidated by averaging or combining the output 

actions, resulting in a more concise rule base 

 

3.1. Adaptive Threshold Optimization 

An adaptive threshold optimization mechanism was 

introduced, which dynamically adjusted the similarity  

threshold based on feedback and performance metrics. This 

adaptive process ensured the fuzzy system continuously 

optimized itself for efficiency without sacrificing accuracy. 

Key performance metrics were identified to evaluate the 

system's effectiveness after rule reduction. These metrics 

were the processing time and rule count. They were used to 

assess the impact of rule reduction on the fuzzy system's 

performance.  

The model updated the threshold by learning from 

previous threshold adjustments and their impact on 

performance. After each rule reduction iteration, 

performance metrics were re-evaluated. If accuracy fell 

below a certain threshold, the similarity threshold was 

lowered to prevent excessive rule merging. Conversely, if 

performance improved without a significant accuracy loss, 

the similarity threshold was raised to allow further reduction. 

This adaptive feedback loop continued until an optimal 

balance between rule count and decision accuracy was 

achieved, as shown in Figure 2, the flow chart for Adaptive 

Similarity-Based Rule Reduction. 

 

 
Fig. 2 Flowchart for Adaptive Similarity-Based Rule Reduction 
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3.2. Algorithm for Similarity-Based Fuzzy Rule Reduction 

An Inputs: 

1. Initial rule set 𝑅 = {𝑟1 , 𝑟2 , … . , 𝑟𝑛 } 

2. Threshold (T): A similarity threshold for merging rules 

3. Distance measures (dl, df, dr) fuzzy variables for the 

distance to the left front and right. 

4. Velocity outputs (Vl, Vr), fuzzy output variables for left 

and right velocity. 

 

The output of the algorithm is the reduced rule set 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑  .  

1. Initialize. 

• Set 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑  = 𝑅 , the initial rule set. 

• Define a similarity function 𝑆(𝑟𝑖  , 𝑟𝑗 ) that measures the 

similarity between the two rules. This function compares 

the input and output conditions of both rules. 

 

2. Compute Similarity  

For each pair of rules (𝑟𝑖   𝑟𝑗 ) in 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑  , Calculate the 

similarity 𝑆(𝑟𝑖  , 𝑟𝑗 ) based on Input similarity, compare the 

fuzzy condition for dl, df and dr in both rules and output 

similarity, and compare the fuzzy output values Vl and Vr in 

both rules. 

 

If  𝑆(𝑟𝑖  , 𝑟𝑗 )  ≥ 𝑇 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑟𝑖  𝑎𝑛𝑑  𝑟𝑗   as similar and 

suitable for merging. 

 

3. Merge Rules  

For each pair (𝑟𝑖   𝑟𝑗 ) with 𝑆(𝑟𝑖  , 𝑟𝑗 )  ≥ 𝑇 , Create a 

merged rule  𝑟𝑖𝑗  with generalized input conditions, use 

combined fuzzy sets for dl, df and dr where the rules overlap. 

Unified output conditions set Vl and Vr as values that 

represent a general outcome for the merged rule. 

 

Replace 𝑟𝑖   𝑎𝑛𝑑   𝑟𝑗 𝑤𝑖𝑡ℎ 𝑟𝑖𝑗  𝑖𝑛 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑  

 

4. Remove Redundant Rules  

After merging, check for redundant rules where input 

and output conditions are identical and remove duplicate 

rules to avoid redundancy. 

 

5. Check for Universal set Similarity  

Remove fuzzy sets that have generalized conditions so 

broad that they become indistinguishable from a universal 

(e.g., all input conditions are “medium” or “big with high  

output velocities) 

 

6. Iterate Until Stable  

Repeat steps 2-5 until no further merging is possible (ie 

𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑  remain stable) or the rule set reaches the desired 

size. 

 

7. Output the Reduced Rule Set  

Return 𝑅𝑟𝑒𝑑𝑢𝑐𝑒𝑑  as the final minimized set of fuzzy 

rules, this algorithm allows the system to retain functionality 

while reducing complexity.  

Similarity function can be mathematically defined as  

 

𝑆(𝑟𝑖 , 𝑟𝑗 ) =
1

3
∑ 𝛿 (𝐼𝑘

(𝑟𝑖
), 𝐼𝑘(𝑟𝑗 ))

𝑘∈{𝑑𝑙,𝑑𝑓,𝑓𝑟}

+    
1

2
∑ 𝛿 (𝑂𝑙

(𝑟𝑖
), 𝑂𝑙(𝑟𝑗 ))

𝑙∈{𝑉𝑙,𝑉𝑟}

 

 

𝑆(𝑟𝑖 , 𝑟𝑗 ) gives a numeric value between 0 and 1 that 

measures the similarity between two fuzzy rules 𝑟𝑖  𝑎𝑛𝑑  𝑟𝑗 . If  

𝑆(𝑟𝑖 , 𝑟𝑗 ) ≥ 𝑇, where T is a threshold, the two rules are 

considered similar enough to be merged. 

 

The input similarity contribution is   
1

3
∑ 𝛿 (𝐼𝑘

(𝑟𝑖
), 𝐼𝑘(𝑟𝑗))𝑘∈{𝑑𝑙,𝑑𝑓,𝑓𝑟}  and the output similarity 

contribution is 
1

2
∑ 𝛿 (𝑂𝑙

(𝑟𝑖
), 𝑂𝑙(𝑟𝑗 ))𝑙∈{𝑉𝑙,𝑉𝑟}  

 

Where 𝛿 = 1, if they are similar or 𝛿 = 0, otherwise. 

 

Python implementation of a similarity-based rule 

reduction algorithm. The code assumes that each rule is 

represented as a dictionary containing the fuzzy sets for the 

inputs and the outputs. 

 

import itertools 

initial_rules = [  ] 

def calculate_similarity(rule1, rule2): 

matches = sum(rule1[key] == rule2[key] for key in 

['dl', 'df', 'dr', 'Vl', 'Vr']) 

    return matches / 5.0  # similarity as fraction of total 

conditions 

def merge_rules(rule1, rule2): 

    merged_rule = {} 

    for key in ['dl', 'df', 'dr', 'Vl', 'Vr']: 

        if rule1[key] == rule2[key]: 

            merged_rule[key] = rule1[key] 

        else: 

            merged_rule[key] = 

f"General({rule1[key]}/{rule2[key]})" 

    return merged_rule 

 

def reduce_rules(rules, threshold=0.7): 

    reduced_rules = rules[:] 

    merged_indices = set()   

    for (i, j) in itertools.combinations(range(len(rules)), 

2): 

        if i in merged_indices or j in merged_indices: 

            continue 

                similarity = 

calculate_similarity(reduced_rules[i], reduced_rules[j]) 

                if similarity >= threshold: 

            merged_rule = merge_rules(reduced_rules[i], 

reduced_rules[j]) 
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            reduced_rules[i] = merged_rule  # Replace first 

rule with merged rule 

            merged_indices.add(j)  # Mark the second rule 

as merged 

    reduced_rules = [rule for idx, rule in 

enumerate(reduced_rules) if idx not in merged_indices] 

    return reduced_rules 

threshold = 0.7  # Define a threshold for similarity (tune 

this as needed) 

reduced_rules = reduce_rules(initial_rules, threshold) 

print("Reduced Rule Set:") 

for i, rule in enumerate(reduced_rules): 

    print(f"Rule {i+1}: {rule}") 

performance.  

 

3.3. Similarity-Based Reduced Rules Results 

The reduction of fuzzy logic rules from 27 to 18, then 

14, represents a significant step towards optimizing the 

efficiency and interpretability of the system. By eliminating 

redundant rules while preserving the system’s core 

functionality, this process streamlines decision-making and 

reduces computational complexity. The 3 rule sets were 

validated through a simulated environment.  

 

Reduced Fuzzy Logic Rules (18 Rules): 
1. If dl is S and df is S and dr is S, then Vl is L and Vr is L.  

2. If dl is S and df is S and dr is M, then Vl is L and Vr is M. 
3. If dl is S and df is M and dr is S, then Vl is L and Vr is M. 
4. If dl is S and df is M and dr is B, then Vl is M and Vr is H.  
5. If dl is S and df is B and dr is S, then Vl is L and Vr is H.  

6. If dl is S and df is B and dr is M, then Vl is H and Vr is H.  
7. If dl is M and df is S and dr is S, then Vl is M and Vr is L.  
8. If dl is M and df is S and dr is M, then Vl is L and Vr is M. 
9. If dl is M and df is S and dr is B, then Vl is M and Vr is H.  

10. If dl is M and df is M and dr is S, then Vl is M and Vr is M. 
11. If dl is M and df is M and dr is M, then Vl is M and Vr is H.  
12. If dl is M and df is B and dr is S, then Vl is M and Vr is H.  
13. If dl is M and df is B and dr is B, then Vl is H and Vr is H.  

14. If dl is B and df is S and dr is S, then Vl is H and Vr is L.  
15. If dl is B and df is S and dr is M, then Vl is M and Vr is M. 
16. If dl is B and df is M and dr is S, then Vl is H and Vr is M. 

17. If dl is B and df is M and dr is B, then Vl is H and Vr is H.  
18. If dl is B and df is B and dr is S, then Vl is H and Vr is H.  

 

Further Reduced Fuzzy Logic Rules (14 Rules): 
1. If dl is S and df is S and dr is S, then Vl is L and Vr is L.  
2. If dl is S and df is S and dr is M, then Vl is L and Vr is M. 
3. If dl is S and df is M and dr is S, then Vl is L and Vr is M. 

4. If dl is S and df is M and dr is B, then Vl is M and Vr is H.  
5. If dl is S and df is B and dr is M, then Vl is H and Vr is H.  
6. If dl is M and df is S and dr is S, then Vl is M and Vr is L.  
7. If dl is M and df is S and dr is M, then Vl is L and Vr is M. 

8. If dl is M and df is M and dr is B, then Vl is M and Vr is M. 
9. If dl is M and df is B and dr is M, then Vl is H and Vr is H.  
10. If dl is B and df is S and dr is S, then Vl is H and Vr is L.  
11. If dl is B and df is S and dr is M, then Vl is M and Vr is M. 

12. If dl is B and df is M and dr is M, then Vl is H and Vr is M. 
13. If dl is B and df is B and dr is S, then Vl is H and Vr is H.  
14. If dl is B and df is B and dr is B, then Vl is H and Vr is H.  

 

The bar chart in Figure 3 visually represents the 

progressive reduction in the number of fuzzy logic rules used 

in the controller design. The initial 27-rule configuration 

represents the full combinatorial coverage of a fuzzy system 

with 3 inputs and 3 linguistic terms each. To optimize 

computational performance and reduce complexity without 

sacrificing control quality, reduced rule bases were explored: 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑟𝑒𝑑𝑢𝑐𝑒𝑑  

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  
 𝑥 100 

 

 
Fig. 3 Reduction in fuzzy logic rules 

 

4. Simulation Environment and Fuzzy Logic 

Controller Design  
  Third, this study employed a simulation-based approach 

to evaluate the performance effects of fuzzy rule base 

reduction in a nonholonomic wheeled mobile robot 

navigating a static, unknown environment. The methodology 

integrates a simplified fuzzy logic control system based on 

triangular membership functions and minimal directional 

sensor input, implemented in a controlled virtual 

environment. 

  

 Tests were performed in a 5 m × 5 m maze-like simulated 

setting built with CoppeliaSim, a physics engine-based 

robotics simulator. The area of simulation was surrounded by 

static walls and held 12 cylindrical obstacles, which were 

deliberately positioned to create thin paths that mimic indoor 

navigation limitations. The robot was initialized to begin at 

the bottom-left, and its objective was to navigate to a pre-

determined target without collision and with minimal travel 

time, which was the main performance metric. 

  

 The mobile robot was constructed on the Pioneer P3-DX 

differential-drive robot platform, which was selected for prior 

use in robotics research and kinematic appropriateness to 

autonomous navigation tasks. The proximity sensors were set 

to return distance readings in three directions: left (dl), front 

(df), and right (dr). 

  

 A Mamdani-type Fuzzy Logic Controller (FLC) 

developed in MATLAB controlled the robot’s decision-

making. The controller took the three sensor inputs and 

generated two outputs: left wheel Velocity (Vl) and right  

wheel Velocity (Vr). Triangular Membership Functions 
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(MFs) were used because they are easy and efficient to 

compute. Input variables were defined with three linguistic 

terms (Near, Medium, Far), and output variables were 

defined with three levels of velocity (Low, Medium, High). 

This configuration enabled the controller to convert obstacle 

proximity to instantaneous velocity updates to correct paths 

in real-time. 

  

 Simulations were executed on a 64-bit Windows 10 Pro 

system equipped with an Intel Core i7 2.4 GHz processor, 16 

GB RAM, and a 512 GB SSD, using an HP EliteOne 1000 

G2 workstation. MATLAB handled fuzzy inference and logic 

execution, while CoppeliaSim managed 3D physics, 

environmental feedback, and robot motion. Each 

experimental configuration was tested under standardized 

simulation conditions, with 10 independent replicates per rule 

base setting to ensure statistical robustness. The navigation 

task simulated an autonomous driving scenario where the 

robot responded to environmental obstacles in real time. 

Figure 4 illustrates the projected navigation behavior of the 

robot, highlighting key path transitions and orientation 

control during motion. 

• If  𝑉𝑙 = 𝑉𝑟  Then the robot moves straight.  

• If  𝑉𝑙 < 𝑉𝑟  Then the robot turns to the left side.  

• If  𝑉𝑙 > 𝑉𝑟  Then the robot turns to the right side.  

• If  𝑉𝑙 = −𝑉𝑟  Then the robot rotates (spins) clockwise.  

• If  −𝑉𝑙 = 𝑉𝑟  Then the robot rotates (spins) anticlockwise. 

 

 
Fig. 4 (𝐕𝐥 = 𝐕𝐫) 𝐑𝐨𝐛𝐨𝐭 𝐦𝐨𝐯𝐞𝐬 𝐢𝐧 𝐚 𝐬𝐭𝐫𝐚𝐢𝐠𝐡𝐭 𝐥𝐢𝐧𝐞. 

 

 
Fig. 5 Simulation field for the robot 

 As seen in Figure 5, the robot moves from a starting point 

to a target while gathering information on how long it takes 

to finish the task. The objective was to evaluate three rule sets 

for robot navigation and compare how well they performed 

in terms of how long it took a robot to finish a navigation 

task. Independent variables were the rule sets being tested: 

Rule Set A: Original 27 rules, Rule Set B: Reduced 18 rules 

and Rule Set C: reduced 14 rules. The dependent variable is 

the performance factor, which measures how long it takes the 

robot to finish the navigation task in seconds.   

 

5. Results and Discussion  
The Experiments were conducted with 10 runs for each 

rule set to ensure statistical robustness using the same 

navigation scenario for all runs to maintain consistency.  

 

In the Testing Procedure, the Setup of the navigation 

scenario had a navigation course with obstacles and a fixed 

start and goal position. Measurements of time (in seconds) 

taken for the robot to navigate from start to finish in each trial, 

as shown in Table 1. 

Table 1. Traversal time from 10 trials for each rule set  

Trial 
Rule set A (27 

rules) 

Rule set B 

(18rules) 

Rule set C (14 

rules) 

1 181.5 180.4 178.7 

2 180.9 179.3 179.1 

3 182.1 180.1 178.9 

4 181.0 179.8 178.8 

5 181.8 179.5 179.2 

6 180.7 179.0 179.0 

7 182.3 180.2 178.5 

8 181.4 180.0 178.6 

9 181.2 179.7 179.4 

10 182.0 179.6 178.3 

 

Figure 6 shows a line chart showing how each rule set 

performed across the 10 trials. It can be clearly seen that Rule 

set A consistently has the highest values, Rule set B is 

generally lower than A but higher than C and Rule set C has 

the lowest values throughout. 

 

 
Fig. 6 Line chart showing rule set performance. 

178

180

182

1 2 3 4 5 6 7 8 9 10

Rule set A (27 rules) Rule set B (18rules)

Rule set C (14 rules)
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Figure 7 shows a box plot comparing the three rule sets. 

This gives a good view of the distribution, median, and 

variability of the measurements for each rule set. Rule set A 

has the highest median and a slightly wider spread, Rule set 

B has a lower median with a narrower range and Rule set C 

has the lowest values, and its spread is also fairly compact. 

 

 
Fig. 7 Box plot comparison of rule sets 

The Shapiro-Wilk test was applied to each group (Rule 

Sets A, B, and C). The null hypothesis of the Shapiro-Wilk  

test is that the data are drawn from a normally distributed 

population. A p-value above 0.05 indicates that we do not 

reject the null hypothesis, implemented via the swtest 

function available in the Machine Learning Toolbox in 

MATLAB.  
 

The results of the Shapiro-Wilk test for the three rule sets 

were as follows: Rule Set A: Shapiro-Wilk Statistic = 0.97, 

p-value = 0.94, Rule Set B: Shapiro-Wilk Statistic = 0.98, p-

value = 0.98 and Rule Set C: Shapiro-Wilk Statistic = 0.99, 

p-value = 0.99. The null hypothesis of the Shapiro-Wilk test 

asserts that the data follows a normal distribution. Since the 

p-values for all three rule sets are greater than the significance 

level of 0.05. Thus, the data for all three rule sets were 

considered to be normally distributed. 
 

Levene’s test was performed using MATLAB to assess 

the homogeneity of variance among the groups (Rule Set A, 

Rule Set B, and Rule Set C).  The results of Levene's test were 

as follows: Statistic: 1.497 and p-value: 0.24. Since the p-

value (0.24) exceeds the significance level of 0.05, we fail to 

reject the null hypothesis.  
 

This indicates that the variances among Rule Set A, Rule 

Set B, and Rule Set C are not significantly different, thereby 

satisfying the assumption of homogeneity of variance. The 

independence of observations was typically ensured by the 

experimental design. In this case, each trial was conducted 

independently with the same navigation scenario and 

consistent conditions. Thus, the independence assumption is 

satisfied. 

5.1. ANOVA Test 

A test of variance analysis was conducted. The purpose 

of this statistical technique is to ascertain whether the means 

of three or more independent groups differ in any way that is 

statistically significant.  

Null Hypothesis (H₀) 

 

       There is no significant difference in the mean traversal 

times among the three rule sets. 

 

(μ₁ = μ₂ = μ₃) 

Alternative Hypothesis (H₁) 

 

At least one rule set's mean traversal time is significantly 

different from the others. 

Calculated Group Means 

• Rule Set A: μ₁ ≈ 181.49 seconds 

• Rule Set B: μ₂ ≈ 179.76 seconds 

• Rule Set C: μ₃ ≈ 178.85 seconds 

 

The Degrees of Freedom (df) were calculated for each 

component of the total variation in ANOVA, Number of 

groups (k) = 3. Total number of observations (N) = 30 (10 per 

group) 

 

Between-Group Degrees of Freedom: 

 

𝑑𝑓𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = 𝑘 − 1 = 3 − 1 = 2 

 

Within-Group Degrees of Freedom: 

𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛 = 𝑁 − 𝑘 = 30 − 3 = 27 

 

To partition the total variation in the data into Between-

Group Variation (SSB), Within-Group Variation (SSW), and 

Total Variation (SST), the following formulas were used: 

 

𝑆𝑆𝐵 = ∑ 𝑛𝑖

𝑘

𝑖 =1

 (𝑋𝑖 − 𝑋)2 = 32.97 

Where: 

k; Number of groups. 

𝑛𝑖  : Number of observations in group i 

𝑋𝑖: mean of group i 

𝑋: Overall mean of all observations. 

 

Within group variation (SSW)  

𝑆𝑆𝑊 = ∑ ∑ 𝑛𝑖

𝑛𝑖

𝑗=1

 (𝑋𝑖𝑗 − 𝑋𝑖)
2

𝑘

𝑖 =1

= 8.38 

Where 

𝑋𝑖𝑗  : observation j in group i 

Total variation (SST) 
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𝑆𝑆𝑇 = 𝑆𝑆𝐵 + 𝑆𝑆𝑊 

Calculated values for SSB, SSW, and SST using 

MATLAB resulted as: 

Between-Group Variation (SSB): 35.97 

Within-Group Variation (SSW): 8.38 

Total Variation (SST): 44.35 

 

These results indicate the majority of the variation in the 

data is due to differences between the group means (SSB), 

with a smaller portion attributable to individual differences 

within the groups (SSW). Mean Squares (MS) was calculated 

by dividing each Sum of Squares (SS) by its corresponding 

degrees of freedom (df): 

Between-group mean square (MSB) 

 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑑𝑓𝑏𝑒𝑡𝑤𝑒𝑒𝑛

=
35.97

2
= 17.985 

 

Within-group mean square (MSW) 

 

𝑀𝑆𝑊 =
𝑆𝑆𝑊

𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛

=
8.38

27
= 0.3104 

 

The F-statistic in ANOVA was calculated to determine 

if the variability between group means was significantly  

larger than the variability within groups. 

 

𝐹𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  =
𝑀𝑆𝐵

𝑀𝑆𝑊
=

17.985

0.310
= 58.01 

To determine if the differences between group means 

were statistically significant. Compare the calculated F-

statistic to a critical F-value obtained from an F-distribution 

table. MATLAB’s “finv” function was used to find the 

critical F-value at a  significance level α=0.05 and degrees of 

freedom between and within. Results gave an F-statistic of 

58.01, and the critical F-value (calculated from F(2, 27, 

0.05)) in MATLAB gave 3.354.After performing the 

ANOVA analysis and comparing the F-statistic with the 

critical F-value. The decision rule is if 𝐹𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 > 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, 

reject the null hypothesis and if 𝐹𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 ≤ 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  do not 

reject. 

Since  𝐹𝑠𝑡 𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 58.01 is much greater than the critical 

F-value = 3.354, we rejected the null hypothesis. This means 

there are statistical differences between the means of the three 

rule sets (A, B and C) 

The shows that the variation between the group means is 

significantly larger than the variation within the groups. 

Therefore, at least one of the rule sets has a mean that differs 

significantly from the others. 

Tukey’s HSD test using the “multcompare” function in 

MATLAB was utilized after rejecting the null hypothesis in 

ANOVA to determine which specific group means are 

significantly different.  The q-value in the Tukey HSD test 

comes from the Studentized Range Distribution Table (also 

known as the Tukey Table). It depends on: 

1. Number of groups (k): In this case, 3 rule sets (A, 

B, and C). 

2. Degrees of freedom for the error term (df within 

groups) is calculated as df = N-k, where: 

• N = total number of observations (10 trials 

× 3 groups = 30) 

• k = number of groups (3) 

• So, df = 30 - 3 = 27 

3. Significance level (α) = Typically 0.05  

To find q, in the Tukey Table for k = 3 groups and 

df = 27 at α = 0.05. 

 

From statistical reference tables, the q-value for k = 3, 

df = 27, and α = 0.05 is approximately 3.506.  

𝐻𝑆𝐷 = 𝑞 𝑥 √
𝑀𝑆𝐸

𝑛
 

Where  

• q is the critical value from the Tukey table (depends on 

the number of groups and degrees of freedom). 

• MSE is the Mean Squared Error from ANOVA. 

• n is the number of observations per group. 

 

𝑀𝑆𝐸 =
𝑆𝑆𝑊

𝑁 − 𝑘
=

8.383

30 − 3
=

8.383

27
= 0.3104 

 

𝐻𝑆𝐷 = 3.506 𝑥 √
0.3104

10
= 0.6176 

Comparing mean differences with HSD  

181.49 – 179.76 = 1.73 (significant since 1.73 > 0.6176 

181.49 – 178.85 = 2.64 (significant since 2.64 > 0.6176 

179.76 – 178.85 = 0.91 (significant since 0.91 > 0.6176 

 

The Tukey HSD test shows that all three rule sets (A, B, 

and C) have statistically significant differences. The largest 

difference is between Rule Set A and Rule Set C (|181.49 - 

178.85| = 2.64, which is much greater than the HSD value of 

0.6176). Rule Set A is the most distinct, as it has the highest 

mean and is significantly different from both B and C. 

 

The mean values of the three rule sets: 

• Rule Set A: 181.49 (highest) 

• Rule Set B: 179.76 

• Rule Set C: 178.85 (lowest) 

 

Rule Set A (27 rules) exhibited the highest mean 

performance (181.49) and was significantly different from 

both Rule Set B and Rule Set C. Rule Set C is the most 
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distinct and best-performing rule set as it takes the shortest 

time to complete a task, making it the optimal choice for 

applications requiring superior performance. The significant 

difference between Rule Set B and Rule Set C suggests that 

reducing the number of rules further increases performance. 

Future work may explore whether the reduction of rules 

below 14 would further improve performance or reach a 

plateau. 

  

6. Conclusion 
This study has demonstrated the effectiveness of a 

similarity-based rule reduction method in optimizing Fuzzy 

Logic Controllers (FLCs) for autonomous navigation. By 

reducing redundant rules through similarity assessment and 

an adaptive threshold optimization mechanism, the system 

significantly improved computational efficiency without 

compromising decision accuracy. Experimental results 

confirmed that a reduced rule set (from 27 to 14) led to faster 

traversal times and enhanced real-time processing, making 

the system more suitable for dynamic environments. 

Statistical analysis based on ANOVA and Tukey’s HSD test 

confirmed the performance differences between the three rule 

sets, and Rule Set C (14 rules) emerged as the most efficient. 

The result reaffirms the significance of finding a balance 

between the rule complexity and efficiency for high-

performance autonomous decision-making. The method has 

potential applications in real-world robotics, driverless 

vehicles, and predictive maintenance, where efficient and 

adaptive fuzzy logic-based systems are essential. 

Future studies will seek further simplifications of rule 

complexity and examine the method's applicability for use in 

more complex, multi-variable contexts. The application of 

machine learning algorithms to automatically optimized rule 

determination could also make fuzzy logic-based decision 

systems more scalable. 
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