
International Journal of Computer Trends and Technology Volume 73 Issue 4, 140-148, April 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I4P120 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Building Robust Data Pipelines: Best Practices for Error

Handling, Monitoring, and Recovery

Dharanidhar Vuppu1, Mounica Achanta2

1Sr Data Engineer, SurveyMonkey, Texas, United States of America.
2Independent Research at IEE, Texas, United States of America.

1Corresponding Author : dharanidhar@ieee.org

Received: 21 March 2025 Revised: 18 April 2025 Accepted: 23 April 2025 Published: 30 April 2025

Abstract - In today's data-driven world, businesses depend heavily on solid data pipelines to support everything from analytics

and reporting to day-to-day decision-making. As data ecosystems scale in volume, velocity, and complexity, the role of the data

engineer has evolved-from simply building pipelines to architecting resilient, observable, and recovery-aware systems. However,

as data platforms grow more complex, the chances of something going wrong also increase. Whether it's a schema change, a

broken upstream dependency, an infrastructure hiccup, or a resource crunch, pipeline failures are becoming more common -

and when they happen, they can throw a wrench in operations and shake people's confidence in the data.In this paper, we

highlight an important but often neglected area of data engineering: making sure pipelines can fail gracefully and recover

without manual intervention. We'll dig into practical, real-world techniques for identifying and handling errors, setting up alerts

and monitoring that actually matters, and building in automatic recovery using patterns that have stood the test of time. The goal

is to give data engineers practical tools and approaches for creating pipelines that aren't just scalable but also resilient and self-

healing-so the data systems behind them stay reliable, even when things go wrong.

Keywords - Data Pipelines, Error Handling, Monitoring, Recovery, Resilience.

1. Introduction
Data pipelines have become the backbone of modern

digital organizations. From driving executive dashboards to

fueling machine learning models and real-time

personalization engines, the ability to move, transform, and

serve data reliably is central to nearly every business function

today. As data keeps growing in both size and complexity, so

do the expectations-people want it to be fresh, accurate, and

always available. That’s why pipeline resilience isn’t just

some backend issue anymore-it’s become a key part of

business strategy. Even with all the new tools and smarter

architecture, pipeline issues are still something most teams run

into regularly. A minor schema change upstream, an

intermittent API outage, or a silent data quality issue can

ripple downstream, leading to broken dashboards, delayed

reports, or worse-misinformed decisions.

These issues often arise without warning, and without

proper error handling or observability in place, they can be

challenging to detect-and even more difficult to pinpoint the

root cause. The traditional view of data engineering often

centers around building pipelines that "just work." But the

modern data engineer is tasked with more than that. They must

anticipate failures, design for unknowns, and implement

systems that can recover gracefully without manual

intervention. This shift requires not only technical skills but

also a mindset rooted in resilience engineering-thinking

proactively about what can go wrong and building safeguards

accordingly. (Meehan, Aslantas, Zdonik, Tatbul, & Du, 2017)

This paper focuses on three critical pillars of resilient data

pipeline design: error handling, monitoring, and recovery. We

explore best practices that can help data engineers identify

weak points in their architecture, implement meaningful

observability, and create recovery mechanisms that minimize

downtime and data loss. Drawing from real-world examples

and hands-on experience with tools like Apache Airflow, debt,

Snowflake, and cloud-native services, we aim to provide a

practical guide for building fault-tolerant pipelines that earn

the trust of both technical and business stakeholders. (Gray &

Shenoy, 2000)

2. Architecture of a Modern Data Pipeline
At its core, a data pipeline is a system designed to move

data from one or more sources to one or more destinations in

a reliable, timely, and structured way. However, as

organizations mature in their data journey, pipelines evolve

from simple ETL jobs to orchestrated systems with multiple

moving parts. To build resilient pipelines, it's important to

understand the core pieces that make them work-and how

those pieces fit together. (Singh & Jain, 2024) Below, we

break down the typical architecture of a modern data pipeline

into its main layers and components.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(4), 140-148, 2025

141

2.1. Ingestion Layer

This is the entry point of data into your platform. It could

involve:

• Batch ingestion using tools like Fivetran, Stitch, or

custom Python jobs for periodic extracts.

• Streaming ingestion using technologies like Apache

Kafka, AWS Kinesis, or Google Pub/Sub when low-

latency, real-time data is critical.

Webhook listeners and APIs for event-driven ingestion,

especially common in SaaS or marketing data flows.

A resilient architecture isn't just about uptime-it's about

ensuring the integrity and reliability of your data products

when the unexpected happens.

2.2. Storage Layer

Once ingested, data must be written to a storage layer that

aligns with the pipeline’s processing and access patterns. The

specific storage solution often depends on the pipeline’s

architecture and downstream requirements:

• Raw zone (or data lake zone): Stores data in its original

form-often in S3, Google Cloud Storage, or Azure Data

Lake.

• Staging or bronze zone: Often a lightly cleaned version of

raw data.

Structured storage: Snowflake, BigQuery, or Redshift are

commonly used for analytics-ready data.Storing raw data

before transformations enables recovery and reprocessing if

downstream logic fails-this is a key resilience strategy.

2.3. Transformation Layer

This is where raw data is cleaned, normalized, and joined

to become analytics-ready. The tools here must support

modular, testable, and scalable workflows:

• DBT (Data Build Tool) is widely used for SQL-based

transformations with built-in version control and testing.

• Spark or Snowpark may be used for more complex or

large-scale transformations.

• Best practices include unit testing of transformations, data

validations, and incremental models for performance and

reliability.

Resilient pipelines isolate transformations into small,

reusable steps, making debugging and recovery easier when

failures occur. (Lee, 2020)

2.4. Orchestration Layer

 Pipelines rarely consist of a single job-they are often

complex DAGs (Directed Acyclic Graphs) of interdependent

tasks. The orchestration layer coordinates these tasks:

• Apache Airflow is a common choice for scheduling,

dependency management, and logging.

• Prefect, Dagster, or cloud-native orchestration tools (e.g.,

AWS Step Functions) are gaining popularity for dynamic,

event-driven workflows.

Webhook listeners and APIs for event-driven ingestion,

especially common in SaaS or marketing data flows. A strong

orchestration layer provides retry logic, alerting, SLA

tracking, and visibility into each pipeline stage. (Haines, 2022)

2.5. Monitoring and Alerting

Monitoring is often an afterthought, but it’s a cornerstone

of resilient architecture:

• Metrics: Pipeline duration, failure rate, data volumes,

freshness, and throughput.

• Tools: Prometheus, Grafana, Datadog, Airflow UI, or

more specialized tools like Monte Carlo or Soda.io.

Alerts: Configured for anomalies like missing data,

schema drift, or unusual delays.When incidents happen,

proactive alerting can drastically reduce the Mean Time to

Recovery (MTTR).

2.6. Delivery and Serving Layer

This is where processed data becomes available for

consumption:

• BI tools like Tableau, Power BI, or Looker connect to

analytics databases.

• APIs or reverse ETL tools (e.g., Census, Hightouch) send

data back into operational tools like CRMs or marketing

platforms.

• Feature stores in ML platforms serve data for model

training or inference.

This layer must be designed to handle consumer

expectations for data latency and freshness while protecting

against partial or corrupted data propagation.

In a robust data platform, these layers work together in

harmony.

A resilient architecture isn't just about uptime-it's about

ensuring the integrity and reliability of your data products

when the unexpected happens, but resilience doesn’t happen

by accident. It requires:

• Clear contracts between pipeline stages (e.g., schema

validation and data expectations).

• Decoupled systems that can fail independently without

collapsing the whole pipeline.

• Fallback mechanisms and recovery paths are built into

every layer.

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(4), 140-148, 2025

142

3. Sources of Failures in Data Pipelines
Even the most thoughtfully designed data pipelines are

susceptible to failures. These failures don’t always come with

flashing red lights-in many cases, they’re silent, subtle, and

discovered only after they've already affected downstream

systems. Identifying and categorizing these failure points is

the first step toward building truly resilient data platforms.

Let’s walk through the most common and impactful sources

of pipeline failures based on hands-on experience across both

batch and streaming architectures.

3.1. Upstream Data Changes

 One of the most common causes of failure is a change in

the data source itself. This could be:

• Schema drift: A new column is added, a data type changes

or a previously optional field becomes required. Such

changes can break downstream transformation logic

without schema enforcement or lead to incorrect joins.

• Unexpected nulls or missing fields: If downstream logic

assumes non-null values (e.g., user_id), missing data can

cause lookups to fail or generate incomplete reports.

• Data format changes: A CSV file structure changes,

JSON fields are nested differently, or a third-party API

modifies its payload-all of which can quietly break

ingestion or parsing scripts.

A resilient pipeline should validate schemas at the point

of ingestion and surface any mismatches before propagating.

3.2. Infrastructure and Resource Failures
Sometimes, it’s not the data-but the platform-that breaks:

• Compute node failures: Cloud VMs or Kubernetes pods

may crash mid-job, leaving incomplete runs or locked

resources.

• Storage outages: S3 bucket access issues or quota limits

in cloud storage can halt pipelines during reads or writes.

• Orchestration bottlenecks: Tools like Airflow may run

into scheduler deadlocks, task queue delays, or metadata

database connection limits.

• Latency spikes: A job normally takes 15 minutes may

suddenly run for hours due to network slowdowns or

resource contention.

Engineering teams should invest in health checks,

autoscaling configurations, and timeout-aware logic to

mitigate this.

3.3. Code and Logic Errors
Even with perfect infrastructure and valid data, things can

still go wrong at the logic layer:
• Transformation bugs: A poorly written SQL join can

produce duplicates or data loss. For example, a LEFT

JOIN intended to preserve records may be accidentally

written as an INNER JOIN.

• Unanticipated edge cases: Logic that works for 99% of

the data may fail for the 1% (e.g., string parsing that

breaks on emojis or right-to-left languages).

• Hard-coded filters or date ranges: Pipelines that assume

fixed values instead of dynamically calculating

parameters can easily fail silently as time passes.

• Version-controlled, testable transformation logic-

especially in dbt or similar tools-can reduce these risks

 3.4. Scheduling and Dependency Issues
Pipelines often consist of interdependent jobs, making

timing a sensitive issue:

• Race conditions: A transformation task may start before

the ingestion job finishes writing the required data.

• Out-of-order execution: In event-driven systems, late-

arriving data can lead to duplicated processing or

inconsistencies.

• Missed triggers: If an upstream job fails silently,

downstream jobs may not be triggered, leading to stale

dashboards or outdated reports.

• Using DAG-aware orchestration (like Airflow) with

proper dependency tracking and sensor mechanisms helps

maintain order and completeness.

3.5. External System Failures
Many pipelines rely on third-party APIs, data vendors, or

partner systems that are outside your control:

• API timeouts or throttling: When fetching data from a

marketing platform or SaaS tool, hitting rate limits or

encountering downtime can stall the pipeline.

• Authentication issues: Expired tokens or revoked

credentials can cause ingestion jobs to fail until

reauthorization is performed.

• Uncommunicated changes: Vendors may change

endpoints, rename fields, or sunset features without

notice, leading to downstream confusion.

Wrapping API calls with retry logic, monitoring HTTP

responses, and isolating vendor integrations are essential

safeguards here.

3.6. Silent Data Quality Issues
Some of the most dangerous failures aren’t operational-

they’re logical:

• Duplicated data: Caused by retry logic without

idempotency or misconfigured deduplication logic.

• Dropped rows: Filtering logic that mistakenly excludes

valid records can lead to undercounting or biased metrics.

• Inconsistent definitions: Different teams using different

logic for calculating "active user" or "conversion" can

create trust issues in the data.

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(4), 140-148, 2025

143

Establishing clear data contracts, metrics definitions, and

quality monitoring (e.g., row count checks and distribution

profiling) can help detect these invisible failures early.

Bringing it All Together:What makes pipeline failures

tricky is that they rarely come from a single point of

breakdown. Often, it’s a cascade-a missing column upstream

causes a transformation to silently drop rows, which leads to

an underpopulated dashboard that no one notices until a

critical decision is made based on bad data.Resilient pipeline

design starts with recognizing these failure modes and

designing safeguards at every stage-from ingestion to

reporting. The next sections of this paper will focus on

implementing robust error handling, monitoring, and recovery

mechanisms to address these challenges head-on.

4. Best Practices in Error Handling
Error handling in data pipelines is like plumbing in a

skyscraper-it’s invisible when everything works, but when it

fails, the impact can be immediate and widespread. Poorly

handled errors can result in broken dashboards, inaccurate

KPIs, and, in the worst cases, irreversible data loss. Resilient

pipelines don’t just try to avoid errors-they expect them, plan

for them, and recover from them gracefully. (Notario, et al.,

2015) Below are several best practices, drawn from real-world

scenarios, that data engineers should adopt to build fault-

tolerant and robust pipelines.

4.1. Fail Fast, Fail Loud
A silent failure is worse than a crashing job. If a pipeline

encounters a critical issue-like a missing required field, invalid

schema, or corrupted file-it should fail immediately and

visibly.

• Why it matters: Letting bad data silently pass downstream

can result in hours of debugging and loss of stakeholder

trust.

• Tactics:

1. Validate schemas at the point of ingestion using tools

like Great Expectations, dbt tests, or custom

assertions.

2. Use assertions in SQL transformations (e.g.,

SELECT COUNT(*) WHERE important field IS

NULL) to surface issues early.

3. Configure orchestrators like Airflow to raise alerts on

task failure or timeout.

4.2. Implement Retry Logic Thoughtfully
Temporary failures - like network hiccups or transient

API outages-should not cause your entire pipeline to fail.

• Why it matters: Retrying avoids manual reruns for

problems that often resolve themselves.

• Tactics:

1. Use exponential backoff for retries (e.g., 1s, 2s, 4s...)

to reduce load and allow systems time to recover.

2. Limit retry attempts to avoid infinite loops or

compounding issues.

3. Log each retry attempt, including timestamps and

error messages, for traceability. In Airflow, you can

use parameters like retries, retry_delay, and

max_retry_delay to control behavior per task.

4.3. Make Tasks Idempotent

 If a task runs twice, the outcome should be the same as

running it once. Idempotencys a critical principle in building

pipelines that can safely retry or backfill.

• Why it matters: It prevents duplicate inserts, inconsistent

states, or corrupted aggregates when reprocessing.

• Tactics:
1. Use merge (upsert) logic instead of blind inserts.

2. Include deduplication logic in ingestion (e.g., based

on primary keys or event IDs).

3. Add run markers or watermarks to track processed

records.

4.4. Graceful Degradation Over Complete Failure
Sometimes, a partial output is better than no output-

especially for non-critical tables or interim steps.

• Why it matters: Graceful degradation keeps downstream

processes running and gives engineers time to patch

issues.

• Tactics:

1. Use try/catch logic in Python operators or

transformation logic to skip known problematic

records.

2. Allow pipelines to emit partial results with warnings

(e.g., missing one data source but continuing with

others).Mark outputs clearly (e.g., a _partial suffix or

metadata flag) so consumers understand the

limitations.

4.5. Capture Detailed Error Logs
When something breaks, you want more than just "Task

failed." You want to know what failed, where, and why.

• Why it matters: Rich logs reduce debugging time and

accelerate root cause analysis.

• Tactics:

1. Capture stack traces, error codes, and failing data

samples in logs.

2. Send logs to a centralized system (e.g., ELK Stack,

Datadog, CloudWatch) for querying and

visualization.

3. Annotate errors with pipeline metadata-source,

timestamp, environment, etc.

4.6. Validate Inputs Early and Often
Catch issues before they ripple through the pipeline.

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(4), 140-148, 2025

144

• Why it matters: It's much easier to fix bad data at the

source than to untangle it later.

• Tactics:

1. Perform basic sanity checks: row counts, null

thresholds, and type checks.

2. Create validation CTEs in dbt models or pre-hooks

that assert expectations.

3. Implement contract testing for upstream sources

where schema or field availability is critical.

4.7. Use Custom Error Handling for Known Failure Modes
Not all failures are unexpected. Some are recurring

patterns-rate limits, empty files, or API pagination issues.

• Why it matters: Known errors deserve known solutions-

not surprises.

• Tactics:

1. Build custom exceptions or status codes for recurring

failure types.

2. For example, distinguish between a "file not found"

(non-blocking) and "invalid credentials" (critical).

3. Use branching logic in orchestration to skip or

reroute processing paths based on error type.

 Good error handling is more than just reacting to failures-

it's about designing systems that expect failure, communicate

clearly, and recover safely. For data engineers, the job isn’t

just about getting data from point A to point B-it’s about

ensuring the system is reliable and trustworthy. That means

building pipelines that surface issues early, make failures easy

to see, and recover smoothly when things go wrong. Up next,

we’ll look at monitoring and observability-two key areas that

often don’t get enough attention but are crucial for catching

problems in real time and acting fast.

5. Monitoring and Observability
You can't fix what you can't see. In data engineering,

monitoring and observability are the eyes and ears of your data

pipelines. They provide real-time visibility into data

workflows' health, performance, and behavior-helping teams

detect issues before they become problems and respond when

something breaks. (Singu, 2021) While error handling helps

mitigate issues once they occur, monitoring is about early

detection, diagnostics, and continuous assurance that your

pipelines are working as intended. Observability goes a step

further-it's about making the internal state of your system

understandable from the outside through metrics, logs, and

traces. Let's break down what good monitoring and

observability look like in a modern data engineering context.

5.1. What to Monitor in a Data Pipeline
 Effective monitoring starts with choosing the right signals.

Below are key metrics and indicators every data engineer

should track (Becker, King, & McMullen, 2015)

• Job Success/Failure Rate:Track the percentage of

successful vs. failed DAG runs and individual tasks.
• Pipeline Latency and Duration:Measure how long each

job takes from start to finish. Spikes may indicate

performance bottlenecks or scaling issues.
• Data Freshness:Monitor the lag between when data is

generated and when it becomes available in the

warehouse or dashboard.

• Row Counts and Volume Anomalies: Sudden drops or

surges in data volume can signal missing or duplicated

data.
• Null Ratios and Schema Drift:Watch for changes in

column-level null percentages or data types, especially in

critical fields like user_id, event_timestamp, or

transaction_amount.
• External Dependency Health:Monitor API call success

rates, third-party data delays, or authentication failures

with external sources.

 5.2. Tools and Frameworks for Observability
Today, a wide range of tools exist to monitor both system

health and data quality. Commonly used platforms include:

• Airflow UI / Flower: Great for task-level status, retries,

and execution logs. Use DAG-level SLAs and alert for

delays and failures.

• Prometheus + Grafana:Popular for system-level metrics

collection and visualization. Can monitor CPU usage, job

latency, retries, etc.

• Datadog / New Relic / CloudWatch:Full-stack monitoring

platforms with custom dashboards, anomaly detection,

and alerting.

• Monte Carlo / Bigeye / Soda.io:Specialized tools for data

quality monitoring: freshness, volume, schema checks,

and downstream impact detection.

• Custom logging pipelines:Push logs to Elasticsearch

(ELK), Google Cloud Logging, or S3 for structured

searching and diagnostics.

5.3. Proactive Alerting
Monitoring is only useful if it triggers action. Well-

designed alerting policies help you strike a balance-avoiding

both alert fatigue and missed critical events.

• Set thresholds with context: Alert if row counts deviate

±30% from historical norms, not just on absolute values.

• Use escalation channels: Route alerts to Slack,

PagerDuty, or email, depending on severity.

• Suppress noisy alerts: Use alert grouping, suppression

windows, and environment tagging to prevent

unnecessary noise.

• Include diagnostic info: Don't just say "Job failed"-

include error logs, affected data partitions, and retry

history.

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(4), 140-148, 2025

145

5.4. Logging and Tracing
Logs are the breadcrumbs engineers follow when things

go wrong. A resilient pipeline generates logs that are granular,

searchable, and correlated across systems.

• Standardize log formats for easy parsing: timestamps, job

names, execution IDs, and error codes.

• Log critical variables: source filenames, filter conditions,

row counts processed, upstream timestamps.

• Use structured logging when possible (e.g., JSON logs)

for easier querying and alert triggering.

• Enable distributed tracing if your pipeline spans

microservices or multi-step orchestration. Tools like

OpenTelemetry or Zipkin can help.

5.5. Data Quality Dashboards
It's not just system-level health that matters-data quality

is equally critical. Dashboards should visualize:

• Missing or stale data by table or dimension

• Nulls in key fields

• Skewed distributions (e.g., 90% of users from a single

country? Might be a bot)

• Broken joins or lookup mismatches

• Frequency of transformation failures or test errors (e.g.,

dbt test failures per model)

These dashboards aren't just for engineers-they're vital for

analysts, product managers, and anyone consuming data to

trust the metrics they see.

5.6. The Cultural Side of Observability
Building a resilient data pipeline isn't only about tools-it's

about fostering a culture of accountability and visibility:

• Treat observability as a first-class citizen in pipeline

design.

• Share dashboards with stakeholders so data issues aren't

buried in engineering-only tools.

• Schedule pipeline health reviews regularly-just like code

or security reviews.

• Encourage feedback loops between data consumers and

producers to catch edge cases early.

Monitoring and observability aren’t just nice-to-haves-

they’re essential to keeping your data platform healthy. When

done right, they help teams catch problems early, fix them

faster, and learn from them to make the system more reliable

over time.

In the following section, we'll explore how to design

automated recovery and backfill strategies so that when

failures happen, your pipelines bounce back quickly and

safely-with minimal manual intervention.

6. Recovery Strategies
No matter how well you design your pipeline or monitor

your systems, failures are inevitable. What really sets strong

pipelines apart from fragile ones is how well they bounce back

when something breaks. Recovery isn’t about pretending

failures won’t happen-it’s about containing the damage and

keeping things running smoothly while you fix the issue.

In this section, we'll explore how to design pipelines that

bounce back through automated backfills, smart

checkpointing, safe reprocessing, and defensive design

patterns. (Chang, 2015)

6.1. Build for Reprocessing
One of the core principles of resilient pipeline

architecture is that any failed process should be re-runnable

without side effects.

• Make your jobs idempotent: Whether a task runs once or

five times, the outcome should be the same. This is

especially critical for ingestion and transformation steps.

• Avoid blind appends: Instead, use MERGE or UPSERT

operations that safely update or insert data based on

unique keys or natural business identifiers (like event_id,

order_id, etc.).

• Track execution state: Store metadata about processed

files, partitions, or timestamps to know exactly what has

been ingested or transformed-and what hasn't.

• Example: If your pipeline processes daily weblogs, keep

a log of processed dates. If day N fails, you can replay just

that partition without touching day N-1 or N+1.

6.2. Implement Checkpointing
Checkpointing refers to recording progress at

intermediate steps so you can resume processing from a

known good state instead of starting from scratch.

Why it matters: Especially for large or long-running jobs,

redoing everything due to one small failure is wasteful and

risky.

How to implement it:
• In batch pipelines, checkpoints use data partitioning (e.g.,

one partition per date or hour).

• Streaming systems (Kafka, Kinesis, Flink), offsets or

watermarks are used to track which records have been

successfully processed.

• Store checkpoint data in a resilient, queryable store (e.g.,

S3, a metadata database, or a manifest table in

Snowflake).

6.3. Use Recovery DAGs or Backfill Workflows
Not every error needs a human on call. Automate your

recovery wherever possible.

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(4), 140-148, 2025

146

• Airflow Backfill DAGs: Create DAGs designed to rerun

specific date partitions, files, or tasks. Include parameters

like start_date, end_date, and skip_loaded flags.

• Reprocessing triggers: Build logic into orchestrators to

automatically retry or backfill when certain types of

failures are detected.

• Isolate failure scope: Design your DAGs and

transformations so that recovery tasks can target a

specific day, table, or file-not the entire dataset.

Pro Tip: Decouple ingestion, transformation, and serving

layers so that recovering one doesn't force reprocessing the

whole stack.

6.4. Time-Based vs. Event-Based Reprocessing
Different failure types call for different recovery scopes:

Time-based backfills:
• For missing or incomplete daily data

• Used when a scheduled job didn't run or ran with

incomplete input

Event-based replays:
• For correcting a specific issue like a misfired webhook or

incorrect payload

• Often requires deduplication and filtering logic to prevent

data bloat

A mature pipeline architecture supports both styles of

reprocessing with minimal manual effort.

6.5. Detect and Recover from Partial Failures
Not all failures are total crashes-sometimes, only part of

your data is affected:

• A file might be partially written to a warehouse.

• One region or customer segment might be missing

from a report.

• A join might silently drop unmatched rows.

To Recover Gracefully:
• Validate downstream artifacts: Check row counts,

primary key coverage, or date continuity before marking

jobs "successful."

• Use shadow runs: Run parallel sanity checks or data

diffing scripts to validate data outputs.

• Automate tagging of bad outputs: Mark affected datasets

as partial, suspect, or quarantined and alert consumers

accordingly.

6.6. Reconciliation and Auditing
Post-recovery, knowing what changed and what's

different from the original run is important.
• Use audit logs: Record what was recovered, when, and

why. Include row counts, hash totals, or snapshot diffs.

• Data versioning: In critical systems, version your data to

compare pre-and post-recovery states.

• Replay-safe design: For example, downstream

dashboards should reflect updated numbers without

needing rework-which requires careful handling of

temporal and aggregate logic.

6.7. Human-in-the-Loop for Edge Cases
While most recovery flows should be automated, some

issues-especially ones involving external vendors or

subjective interpretation-need human review.Build interfaces

or dashboards where data engineers or analysts can inspect

anomalies, approve reprocessing, or tag issues. Flag

downstream consumers (via metadata layers or alerts) when

recovered data is significantly different or late. Resilience isn't

just about preventing failure-it's about designing for graceful

degradation and rapid recovery. The best data pipelines don't

avoid every issue; they recover from them so seamlessly that

consumers barely notice.In the final section, we'll look at

future trends and innovations pushing resilience even further-

from self-healing pipelines to AI-assisted anomaly detection

and contract-driven data engineering.

7. Future Trends in Resilient Pipeline Design
As the field of data engineering matures, the focus is

shifting from simply “making pipelines work” to designing

pipelines that are smart, self-aware, and built to handle change

and failure from the ground up. The goal isn't just more

pipelines-better ones that adapt, recover, and evolve with your

systems.Let’s take a look at some of the trends shaping this

next generation of pipeline design.

7.1. From Monitoring to Intelligent Anomaly Detection
Traditional monitoring often depends on fixed thresholds

and manual rules. But those approaches don’t hold up well in

fast-moving data environments-they’re too rigid and can miss

real issues or trigger too many false alarms. We’re now seeing

a shift toward more intelligent tools that use machine learning

and statistical models to learn what “normal” looks like and

catch unexpected changes-whether it’s a drop in freshness, a

sudden schema shift, or unusual behavior in a specific

segment. Tools like Monte Carlo, Bigeye, and Anomalo are

leading this movement.

Why it Matters: These tools can catch subtle issues-like a

quiet spike in null values or a shift in distribution-that would

easily slip past manual checks. They also help reduce alert

fatigue by focusing on what’s important, making it easier for

teams to respond quickly and confidently.

7.2. Data Contracts and Schema Governance
Schema changes upstream are one of the most common

reasons pipelines break. Historically, most systems just

assumed upstream data would stay the same-but that

assumption is no longer safe.

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(4), 140-148, 2025

147

What’s Changing: Teams are now adopting data

contracts-clear agreements between data producers and

consumers that spell out exactly what the data should look

like, how it should behave, and what guarantees (like SLAs)

are in place.Tools and practices gaining traction:

• Formats like Avro, Protocol Buffers, and JSON Schema

are being used to define and validate structure.

• Tools such as Dagster, dbt Contracts, and DataHub are

helping teams enforce schema rules and track lineage.

• CI/CD pipelines increasingly include schema validation

steps, like diffing schemas before deploying new code.

This shift is helping data pipelines reach the same

discipline and reliability expected in software engineering-

treating datasets like stable APIs, not just raw files.

7.3. Self-Healing Pipelines with AI-Driven Recovery
The future isn't just about detecting failures-but

recovering from them autonomously.

What's happening: ML-driven systems are beginning to

recommend or even trigger corrective actions-like

reprocessing data, rolling back deployments, or alerting the

right team with suggested fixes.

Early Examples:
• Auto-remediation of DAG failures based on historical fix

patterns.

• Smart backfill detection when data is delayed but

eventually arrives.

• Root-cause suggestions powered by log analysis and

event correlation.

While still early, these capabilities hint at pipelines that

"learn" from past outages and become more resilient over

time.

7.4. Event-Driven and Serverless Architectures
Traditional batch pipelines often involve polling, fixed

schedules, and heavy infrastructure.

These patterns are giving way to event-driven and

serverless approaches that are inherently more scalable and

reactive.

Why it's gaining ground:
• Real-time responsiveness: Trigger pipelines based on

events (e.g., a new file in S3, completed API sync, or

Kafka topic message).

• Reduced infrastructure overhead: Run transformations

only when needed, minimizing idle resources.

• Better fault isolation: Events can be retried or rerouted

without impacting the rest of the system.

Frameworks like Apache Beam, Flink, AWS Lambda +

Step Functions, and Cloud-native event buses are central to

this evolution.

7.5. CI/CD and DataOps for Pipeline Stability
As pipelines grow in complexity, manual deployments

and ad hoc fixes no longer scale. The rise of DataOps-inspired

by DevOps-brings stability, testing, and automation to data

workflows. (Thatikonda, 2023)

Key practices:
• Version control for data models and transformations (e.g.,

in dbt or Spark jobs).

• Automated testing (unit tests, regression tests, freshness

checks) baked into CI pipelines.

• Canary deployments and staging environments for

pipelines, just like with software.

This culture shift encourages teams to treat pipelines like

production-grade software with proper testing, observability,

and deployment rigor.

7.6. Observability as a Platform
 Observability is evolving from a collection of tools into a

centralized platform layer that spans data, infrastructure, and

business metrics. (Wang, Kon, & Madnick, 1993)

Unified platforms are emerging that combine:
• System metrics (CPU, memory, latency)

• Job-level monitoring (task success/failure, retries)

• Data quality checks (schema drift, volume anomalies)

• Business impact (e.g., this pipeline failure delayed the

marketing report or affected customer retention

dashboards)

These platforms allow cross-functional teams to detect

issues, assess downstream impact, and collaborate on

resolution in a shared interface. The pipelines of the future

won't just move data-they'll be aware of what they're doing,

confident in the data they produce, and capable of healing

themselves. As the data systems keep getting more complex,

so too will the expectations around resilience, reliability, and

transparency. For data engineers, it's no longer just about

knowing the right tools or frameworks. It's about thinking

differently, shifting from constantly putting out fires to

designing systems built to handle the unexpected. The end

goal isn't just keeping things running-it's building trust. Trust

that the pipeline will do its job. Trust that the data is accurate.

And trust that if something breaks, the system will either fix

itself or clearly show you where to look.

8. Conclusion
In a world where data drives everything-from business

forecasts to real-time personalization-the stakes for getting

data pipelines right have never been higher. But as we've seen

Dharanidhar Vuppu & Mounica Achanta / IJCTT, 73(4), 140-148, 2025

148

throughout this paper, building resilient data pipelines isn't

just about preventing failure-it's about designing for it,

detecting it quickly, and recovering from it with minimal

disruption. (Plale & Kouper, 2017). Modern data engineers are

no longer just builders of ETL scripts-they are architects of

reliability.

They must anticipate failure scenarios, put guardrails in

place, and enable pipelines that can withstand everything from

schema drift to infrastructure hiccups. That means sticking to

solid practices for handling errors, putting real effort into

monitoring and observability, and setting up recovery

processes that are automated and easy to repeat. (Raj, Bosch,

Olsson, & Wang, 2020). But resilience isn’t just a tech

problem-it’s a culture shift. It’s about moving from always

putting out fires to designing systems ready for the

unexpected. It’s about treating data pipelines like real

production systems, with proper testing, alerts, and

deployment workflows. Most importantly, it’s about building

trust-not just in the pipelines but in the insights and decisions

that come from them. Looking ahead, the future of data

engineering is heading toward smarter systems that can

monitor themselves, fix issues on the fly, and adapt over time.

Whether it’s through data contracts, smarter anomaly

detection, or automated workflows, the tools are getting better

fast. But the core idea stays the same: resilient pipelines lead

to resilient teams-and resilient companies. By adopting the

strategies outlined in this paper, data teams can move beyond

break-fix cycles and build systems that are not only scalable

and performant but also robust, transparent, and dependable-

even in the face of uncertainty.

References
[1] Beth Plale, and Inna Kouper, “The Centrality of Data: Data Lifecycle and Data Pipelines,” Data Analytics For Intelligent Transportation

Systems, pp. 91-111, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[2] Aiswarya Raj et al., “Modelling Data Pipelines,” 46th Euromicro Conference on Software Engineering and Advanced Applications,

Portoroz, Slovenia, pp. 13-20, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[3] Vamsi Krishna Thatikonda, “Beyond the Buzz: A Journey through CI/CD Principles and Best Practices,” European Journal of Theoretical

and Applied Sciences, vol. 1, no. 5, pp. 334-340, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Victor Chang, “Towards a Big Data System Disaster Recovery in a Private Cloud,” Ad Hoc Networks, vol. 35, pp. 65-82, 2015. [CrossRef]

[Google Scholar] [Publisher Link]

[5] Santosh Kumar Singu, “Designing Scalable Data Engineering Pipelines Using Azure and Databricks,” ESP Journal of Engineering &

Technology Advancements, pp. 176-187, 2021. [Google Scholar] [Publisher Link]

[6] Nicolas Notario et al., “Integrating Privacy Best Practices Into a Privacy Engineering Methodology,” IEEE Security and Privacy

Workshops, San Jose, CA, USA, pp. 151-158, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[7] J. Gray, and P. Shenoy, “Rules of Thumb in Data Engineering,” Proceedings of 16th International Conference on Data Engineering, San

Diego, CA, USA, pp. 3-10, 2000. [CrossRef] [Google Scholar] [Publisher Link]

[8] John Meehan, Nesime Tatbul, and Jiang Du, “Data Ingestion for the Connected World,” CIDR, pp. 1-11, 2017. [Google Scholar] [Publisher

Link]

[9] Dong Kyu Lee, “Data Transformation: A Focus on the Interpretation,” Korean Journal, vol. 73, no. 6, pp. 503-508, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[10] Scott Haines, “Workflow Orchestration with Apache Airflow,” Modern Data Engineering with Apache Spark, pp. 255-295, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[11] Khushmeet Singh, and Er Apoorva Jain, “Streamlined Data Quality and Validation using DBT,” International Journal of All Research

Education & Scientific Methods, vol. 12, no. 12, pp. 4603-4617, 2024. [Google Scholar] [Publisher Link]

[12] David Becker, Trish Dunn King, and Bill McMullen, “Big Data, Big Data Quality Problem,” IEEE International Conference on Big Data,

Santa Clara, CA, USA, pp. 2644-2653, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[13] R.Y. Wang, H.B. Kon, and S.E. Madnick, “Data Quality Requirements Analysis and Modeling,” Proceedings of IEEE 9th International

Conference on Data Engineering, Vienna, Austria, pp. 670-677, 1993. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/B978-0-12-809715-1.00004-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=The+centrality+of+data%3A+data+lifecycle+and+data+pipelines&btnG=
https://www.sciencedirect.com/science/article/abs/pii/B9780128097151000043
https://doi.org/10.1109/SEAA51224.2020.00014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modelling+Data+Pipelines&btnG=
https://ieeexplore.ieee.org/abstract/document/9226314
https://doi.org/10.59324/ejtas.2023.1(5).24
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Beyond+the+buzz%3A+A+journey+through+CI%2FCD+principles+and+best+practices&btnG=
https://ejtas.com/index.php/journal/article/view/286
https://doi.org/10.1016/j.adhoc.2015.07.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Towards+a+big+data+system+disaster+recovery+in+a+private+cloud&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S157087051500147X
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+scalable+data+engineering+pipelines+using+Azure+and+Databricks&btnG=
https://www.espjeta.org/jeta-v1i2p119
https://doi.org/10.1109/SPW.2015.22
https://scholar.google.com/scholar?q=Integrating+privacy+best+practices+into+a+privacy+engineering+methodology&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/abstract/document/7163219
https://doi.org/10.1109/ICDE.2000.839382
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rules+of+thumb+in+data+engineering&btnG=
https://ieeexplore.ieee.org/abstract/document/839382
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Data+Ingestion+for+the+Connected+World.&btnG=
https://people.csail.mit.edu/tatbul/publications/sstore_cidr17.pdf
https://people.csail.mit.edu/tatbul/publications/sstore_cidr17.pdf
https://doi.org/10.4097/kja.20137
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+Ingestion+for+the+Connected+World&btnG=
https://synapse.koreamed.org/articles/1156419
https://doi.org/10.1007/978-1-4842-7452-1_8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Workflow+orchestration+with+apache+airflow&btnG=
https://link.springer.com/chapter/10.1007/978-1-4842-7452-1_8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C44&q=Streamlined+Data+Quality+and+Validation+using+DBT&btnG=
https://www.ijaresm.com/streamlined-data-quality-and-validation-using-dbt
https://doi.org/10.1109/BigData.2015.7364064
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+data%2C+big+data+quality+problem&btnG=
https://ieeexplore.ieee.org/abstract/document/7364064
https://doi.org/10.1109/ICDE.1993.344012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+quality+requirements+analysis+and+modeling&btnG=
https://ieeexplore.ieee.org/abstract/document/344012

