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Abstract - Personalized pricing strategies increasingly rely on machine learning to tailor discounts based on user behavior. 

While these methods promise improved conversion and revenue, their fairness and targeting precision remain underexplored. In 

this study, we simulate two behavior-based pricing policies, one broad and one selective, using session-level e-commerce data 

and estimate their impact using uplift modeling techniques.We implement and compare the TwoModel (T-Learner) and Class 

Transformation frameworks to evaluate treatment effectiveness. Our results show that stricter treatment rules, though applied to 

fewer users, yield higher conversion uplift and revenue per treated session. However, they also exclude many high-opportunity 

users, raising fairness concerns.By integrating causal inference, pricing simulation, and behavioral fairness analysis, this paper 

highlights the tradeoffs between targeting precision, business value, and equitable incentive distribution. We propose uplift 

modeling as a robust foundation for building fair and profitable personalized pricing systems. 

Keywords - Behavioral pricing, Conversion uplift, Machine learning, Personalized pricing, Revenue optimization.

1. Introduction 
In the age of algorithmic commerce, personalized pricing 

has emerged as a powerful strategy for maximizing revenue 

and conversion by offering individualized discounts. By 

analyzing user behavior in real-time, businesses adjust prices 

or promotions dynamically, often targeting users deemed at 

risk of not converting. While this machine learning-driven 

approach holds economic promise, it also raises critical 

concerns about effectiveness, transparency, and fairness. 

Many real-world pricing systems continue to rely on 

simplistic heuristics—such as whether a user is new or has a 

high bounce rate—without estimating how pricing 

interventions actually affect behavior. These signals may 

reflect urgency, disinterest, or loyalty, but their interpretation 

is often misaligned with business objectives. As a result, such 

systems risk either excluding high-intent users from discounts 

or misallocating incentives to low-probability converters. 

While personalized pricing is increasingly adopted in e-

commerce, most implementations rely on non-causal, rule-

based targeting rather than estimating the true incremental 

benefit of an offer. This introduces both revenue inefficiencies 

and fairness risks. Prior research focuses heavily on predictive 

response modeling [1, 3], yet few studies apply uplift 

modeling—a causal inference framework—to simulate and 

evaluate targeting strategies. This study addresses that gap.We 

apply uplift modeling to estimate the incremental effect of a 

price incentive on conversion rather than simply predicting 

purchase likelihood. Uplift models estimate the difference in 

outcome probability with vs. without treatment, making them 

well-suited for policy evaluation and targeting optimization. 

This study makes three key contributions: 

• We simulate two behavioral pricing policies using 

publicly available e-commerce data, reflecting real-world 

discount logic. 

• We apply and compare two uplift modeling approaches—

TwoModel and Class Transformation—to estimate 

conversion uplift and evaluate model robustness. 

• We assess not only revenue outcomes but also fairness 

tradeoffs, asking: Are we targeting users who need 

support or just those who are easiest to influence? 

 

By analyzing both the financial and ethical implications 

of pricing interventions, this study emphasizes the need for 

behavioral fairness in algorithmic pricing—ensuring that 

intent and loyalty are not penalized by targeting systems 

optimized only for click probability. Our findings offer 

practical guidance for data scientists and product managers 

building pricing systems that aim to be both profitable and 

justifiable. 

2. Related Work 
Personalized pricing has evolved significantly with the 

integration of machine learning techniques, enabling 

businesses to offer individualized prices based on real-time 
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behavioral and contextual data. In their study on high-

dimensional features and demand heterogeneity, Ban and 

Keskin [1] demonstrate that machine learning can model 

personalized elasticities and drive measurable improvements 

in pricing performance. Similarly, Baier and Stöcker [2] show 

that integrating uplift modeling into direct marketing 

campaigns leads to significant profit improvements by 

targeting customers based on estimated incremental gains 

rather than raw response rates. In e-commerce settings, El 

Youbi et al. [3] implement a machine learning-driven pricing 

strategy using Gradient Boosted Trees, showing notable 

predictive power when adjusting prices dynamically.  

Their approach aligns with prescriptive strategies that not 

only estimate purchase likelihood but also consider optimal 

intervention thresholds. From a methodological perspective, 

uplift modeling has gained momentum as a causal technique 

for estimating individual treatment effects. Gutierrez and 

Gérardy [4] provide a foundational review of uplift modeling 

strategies such as the TwoModel and Class Transformation 

methods, which serve as the basis for our modeling 

framework. Lo and Pachamanova [6] build on this by 

developing prescriptive uplift analytics, integrating estimation 

uncertainty into pricing decision-making - a vital extension for 

real-world policy deployment where pricing errors carry direct 

costs.Fairness in algorithmic pricing has become an 

increasingly important research focus.  

Kallus and Zhou [5] introduce a formal framework for 

evaluating equity and welfare in personalized pricing 

decisions, identifying tradeoffs between profit maximization 

and group-level fairness. Priester et al. [7] explore this issue 

from the consumer’s viewpoint, finding that perceived 

fairness in dynamic pricing heavily depends on transparency 

and the framing of personalization. Zuiderveen Borgesius [9] 

critiques personalization through a regulatory lens, examining 

how algorithmic decision-making may violate anti-

discrimination laws, particularly in the context of opaque 

targeting mechanisms. Complementing these theoretical 

contributions, open-source tools such as scikit-uplift [8] have 

made causal targeting techniques more accessible to 

practitioners. These tools are crucial for scaling experiments 

and evaluating personalization policies beyond correlation-

based targeting. 

Finally, Das et al. [12] present an engineering-focused 

study that applies machine learning to optimize real-time 

pricing in retail and e-commerce. While their work is largely 

predictive, it reinforces the practical momentum behind data-

driven pricing systems. It signals a growing need for causal 

and fairness-aware pricing frameworks such as the one 

proposed in our study. Together, these works provide a strong 

foundation for our research, which contributes by simulating 

personalized discounting policies, estimating individual uplift, 

and analyzing behavioral fairness tradeoffs using real e-

commerce data. 

3. Methodology 
3.1. Dataset and Preprocessing 

We used the UCI Online Shoppers Purchasing Intention 

Dataset, which contains 12,330 user sessions. Each session 

includes user behavior metrics such as bounce rates, exit rates, 

page durations, number of product-related pages viewed, and 

session attributes like traffic source, month, and visitor type. 

Preprocessing steps included: 

 

• One-hot encoding of Month and VisitorType 

• Converting Revenue into binary (1 = purchase, 0 = no 

purchase) 

• Standardizing boolean fields (Weekend) as integers 

• Keeping bounded behavioral metrics like BounceRates in 

raw form. 

The final dataset preserves behavioral signals necessary 

for realistic policy simulation. 

3.2. Simulated Treatment Assignment 
Since no real pricing interventions exist in the dataset, we 

simulated binary treatment T∈{0,1, where: 

• T=1: user is treated (discount applied) 
• T=0: the user is not treated 

Policy 1 (Broad Targeting) 

 

Policy 2 (Selective Targeting)

 

Where Q0.75 is the 75th percentile of bounce/exit rates, 

these simulate targeting strategies based on disengagement, 

urgency, or perceived price sensitivity. 

3.3. Uplift Modeling Approaches 
We compare two widely used uplift modeling 

frameworks: 

3.3.1. TwoModel (T-Learner) 

 

 

The individual uplift score is computed as: 

    
 

This method allows high flexibility and has shown strong 

performance in heterogeneous treatment effect estimation 

(Gutierrez & Gérardy, 2017). 

This approach transforms the target variable using 

treatment and outcome: 
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A standard classifier is then trained on this transformed 

label. The predicted probability is interpreted as an uplift 

proxy. While this technique reduces model complexity, it may 

introduce noise if the transformation is not well aligned with 

the underlying causal structure. 

3.4. Training Details 

• All models implemented using scikit-learn and scikit-

uplift 

• Random Forest (100 estimators, balanced subsampling) 

used as base learner 

• Training/test split: 70/30 stratified by treatment label 

• Features used: behavioral and temporal (e.g., PageValues, 

BounceRates, Month_*, etc.) 

We trained models separately under Policy 1 and Policy 

2 to isolate the impact of treatment design. 

3.5. Evaluation Metrics 
We use three categories of metrics: 

3.5.1. Qini AUC Score 
A standard evaluation metric in uplift modeling that 

captures cumulative gain relative to a random baseline. Higher 

values indicate better identification of persuadable users. 

3.5.2. Revenue Proxy 
We simulate revenue with synthetic pricing: 

 

This allows us to compute ROI tradeoffs across policies. 

3.5.3. Fairness Metrics 

To assess behavioral fairness, we compute the following: 

• The top 20% uplift-scored users who were treated 

• Average uplift score among treated users 

• Treatment rates stratified by VisitorType 

These provide insight into whether a policy favors 

disengaged users at the expense of loyal ones. 

4. Results 
We evaluated two behavioral treatment policies, Policy 1 

(broad) and Policy 2 (selective), using TwoModel and Class 

Transformation uplift estimators. Each policy’s effectiveness 

was measured using Qini AUC, revenue proxy, and fairness 

metrics. 

4.1. Uplift Modeling Performance 
To assess each model’s ability to identify users most 

influenced by price incentives, we measured Qini AUC, a 

ranking-based metric widely used in uplift modeling. 

 

Fig. 1 Average Uplift by Visitor Type: Returning visitors had a 

significantly higher average uplift than new visitors, suggesting they 

were more likely to convert if treated—yet many were excluded under 

behavior-based targeting policies. 

 

Fig. 2 Percentage of high-opportunity users (top 20% uplift) who 

received treatment under each policy. Policy 1 reached 3.65% of high-

uplift users, while Policy 2 reached only 0.77%, highlighting a tradeoff 

between precision and coverage in targeting. 

Table 1. Qini AUC Scores by Model and Policy 

Model Policy Qini AUC 

TwoModel Policy 1 0.3784 

TwoModel Policy 2 0.3817 

Class Transformation Policy 2 0.3671 
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Fig. 3 Revenue Proxy by Treatment Group: Average revenue generated 

from treated sessions under each policy. Policy 2, though more selective, 

led to higher per-session revenue ($19.76 vs $17.88), supporting the 

effectiveness of precision-based targeting. 

 

Fig. 4 Qini Curve – TwoModel vs Class Transformation: Qini curves 

comparing the uplift ranking performance of TwoModel and Class 

Transformation approaches. TwoModel achieved a marginally better 

uplift ranking throughout the targeting range. 

Interpretation 

Policy 2 achieved a higher Qini AUC than Policy 1 under 

both models despite treating fewer users. This indicates that 

more targeted pricing (using bounce and exit rates) better 

isolated persuadable users. TwoModel slightly outperformed 

Class Transformation, but both supported the same directional 

conclusions. 

4.2. Revenue Impact of Pricing Policies 
We simulated session-level revenue by assigning: 

• $90 to treated users (received discount) 

• $100 to untreated users (paid full price) 

Table 2. Average Revenue by Policy and Treatment Group 

 
Avg Revenue 

(Treated) 

Avg Revenue 

(Untreated) 

Policy 1 $17.88 $15.56 

Policy 2 $19.76 $15.65 
 

Interpretation 

Policy 2, though applied to only ~0.4% of sessions, 

generated significantly more revenue per treated user. This 

suggests that precision in discounting may be more profitable 

than widespread offers, particularly when behavioral filters 

isolate users most at risk of abandonment. 

4.3. Fairness Metrics: Coverage vs Precision 
To evaluate fairness, we measured: 

• How many high-uplift users were treated 

• The average uplift among those treated 

• The treatment rate by VisitorType 

Table 3. Fairness Metrics by Policy 

 
% Top 20% Uplift 

Treated 

Avg Uplift (Treated 

Users) 

Policy 1 3.65% 0.0296 

Policy 2 0.77% 0.0498 

 

Fig. 5 Fairness Tradeoff – Coverage vs Precision: Comparison of two 

fairness metrics: the percentage of top uplift users treated (coverage) 

and the average uplift among those treated (precision). Policy 1 favored 

coverage; Policy 2 prioritized precision. 

4.3.1. Interpretation 

Policy 1 was more inclusive, and it treated more of the top 

20% uplift users. However, Policy 2 had better uplift 

efficiency, treating fewer users with a much higher chance of 

converting. This reveals a coverage vs. precision tradeoff that 

has both ethical and business implications. 
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4.4. Summary of Key Tradeoffs 
We simulated session-level revenue by assigning: 

Metric 
Policy 1 

(Broad) 

Policy 2 

(Selective) 

Treatment Coverage 
Higher 

(~1.3%) 
Lower (~0.4%) 

Qini AUC 

(TwoModel) 
0.3784 0.3817 

Revenue per Treated 

Session 
$17.88 $19.76 

% Top Uplift 

Treated 
3.65% 0.77% 

Avg Uplift (Treated) 0.0296 0.0498 

Business Efficiency Moderate High 

Fairness Coverage Higher Lower (Risky) 

 

4.4.1. Interpretation 

Policy 2 provides better business outcomes and more 

targeted uplift but may exclude valuable users. Policy 1 is 

more equitable in access but less efficient in ROI per treated 

user. These tradeoffs inform how businesses must weigh profit 

optimization against inclusive access to benefits. 

5. Discussion 
Our experiments demonstrate that the design of 

personalized pricing policies, particularly the behavioral 

signals used to determine eligibility, can significantly 

influence both business outcomes and perceived fairness. 

Policy 2, which used a stricter targeting heuristic (BounceRate 

+ ExitRate), consistently outperformed Policy 1 across 

multiple dimensions: it achieved higher uplift (Qini AUC of 

0.3817 vs. 0.3784), increased revenue per treated user, and 

higher average uplift among treated sessions. Interestingly, 

despite this improved targeting precision, Policy 2 treated a 

smaller proportion of top uplift users (0.77%) than Policy 1 

(3.65%). This points to a key tradeoff between coverage and 

precision. Broader policies may reach more users, including 

some who might benefit marginally from incentives, but they 

risk diluting effectiveness and driving up costs.  

Conversely, more selective strategies may leave value on 

the table by under-treating potentially persuadable users. From 

a modeling perspective, the comparison between TwoModel 

and Class Transformation uplift estimators confirms the 

robustness of our findings. While the Class Transformation 

model yielded a slightly lower Qini AUC (0.3671), it still 

ranked Policy 2 as superior. This cross-model consistency 

suggests that our insights are not model-dependent and that 

behavioral pricing can be studied reliably using standard uplift 

frameworks. Ethically, this study contributes to the emerging 

conversation on behavioral fairness in machine learning for 

personalization. Whereas most fairness frameworks focus on 

group-level equity (e.g., by gender or race), personalized 

pricing raises new challenges. Should we offer discounts only 

to those who are least likely to buy, or should loyalty, intent, 

and prior behavior also factor into pricing decisions? Our 

analysis shows that systems optimized for conversion may 

implicitly penalize loyal users by withholding incentives, 

creating algorithmic asymmetries not based on identity but 

behavior. By bridging uplift modeling, pricing, and fairness 

evaluation, this study provides a foundation for future work on 

fair incentive allocation where both business performance and 

equitable access to benefits are optimized together.  

6. Limitations 
While this study provides practical insights into 

personalized pricing strategies using uplift modeling, it is 

important to acknowledge certain limitations. First, our 

analysis is based on a publicly available clickstream dataset 

that lacks granular pricing, loyalty, and demographic 

variables. As a result, we simulate treatment effects using 

behavioral proxies like bounce and exit rates, which may not 

fully capture price sensitivity or willingness to pay. In 

contrast, studies such as Ban and Keskin [1] utilize detailed 

transaction-level data, enabling real-world causal evaluation 

of personalized pricing strategies. Second, our uplift modeling 

framework estimates the incremental effect of treatment but 

does not incorporate uncertainty-aware or Bayesian 

optimization methods that could better capture pricing 

volatility or estimation risk.  

This stands in contrast to prescriptive frameworks like 

that of Lo and Pachamanova [6], who explicitly account for 

estimation errors in treatment selection. Third, we do not 

include multi-treatment uplift or multi-objective optimization. 

Our modeling focuses on binary discount treatment (treated 

vs. not treated), whereas more advanced personalization 

strategies might assign varying price levels or use 

reinforcement learning–based optimization, as suggested in 

broader dynamic pricing literature. Fourth, while we analyze 

fairness in treatment allocation (e.g., % of high-uplift users 

treated), we do not evaluate post-treatment user outcomes or 

downstream impact on customer loyalty or trust, areas 

explored in greater depth in works such as Priester et al. [7] 

and Kallus and Zhou [5]. Lastly, generalizability is limited. 

Our findings are based on a single e-commerce dataset, and 

results may vary significantly across industries or user 

contexts, particularly in regulated sectors like finance or 

healthcare, where pricing personalization is subject to legal 

constraints, as discussed by Zuiderveen Borgesius [9]. 

7. Conclusion 
This study evaluated personalized pricing strategies using 

uplift modeling techniques applied to session-level e-

commerce data. We simulated two treatment policies based on 

bounce and exit rates and compared their performance across 

multiple machine-learning models. Our results show that 

stricter behavioral filters, despite treating fewer users, can 

improve uplift accuracy, increase per-session revenue, and 

enhance targeting efficiency. However, they also introduce 
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fairness concerns by excluding users with a high potential to 

respond. Modeling comparisons further showed that uplift 

insights are stable across architectures, with TwoModel 

performing slightly better than Class Transformation in our 

setting. These findings suggest that effective personalized 

pricing requires not only strong models but also responsible 

policy design. Fairness-aware uplift modeling, constrained 

optimization, and long-term customer equity metrics are 

promising directions for developing pricing systems that 

maximize both profit and trust.
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