
International Journal of Computer Trends and Technology Volume 73 Issue 4, 72-78, April 2025

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V73I4P110 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

From Monoliths to Composability: A Socio-Technical

Analysis of Integration Complexities in

Composable Enterprise
Shashi Nath Kumar

Software Architect, Florida, USA.

Corresponding Author : 2snku@gmail.com

Received: 11 March 2025 Revised: 12 April 2025 Accepted: 21 April 2025 Published: 30 April 2025

Abstract - Enterprises are transitioning towards composability with a mix and match of commercially off-the-shelf Software and

bespoke business software (through on-prem, cloud services or Software as a Service offering) popularized as MACH

Architecture by MACH Alliance and Packaged Business Capabilities by Gartner. This strategy leads to selecting best-of-breed

heterogeneous products, where system integration takes centre stage and has some significant socio-technical impact. This

paper investigates the interplay of System Integration with critical organizational factors like governance, team structure,

process alignment, skills, etc. It explores how managing API contracts, addressing diverse protocols and data formats, ensuring

end-to-end observability, and implementing robust governance is crucial for mitigating the potential chaos of heterogeneous

integration in composable ecosystems.

Keywords - System integration evolution, Packaged Business Capabilities, MACH, System integration, Enterprise integration,

Composable enterprise.

1. Introduction
The search for agility, rapid innovation and customer-

centricity has led organizations to adopt composable

Enterprise Strategies. This strategy demands assembling end-

to-end business capabilities through the selection of modular

“Packaged Business Capabilities” (PBC) [1] leveraging

Microservices, API First, Cloud Native, Headless (MACH) [2,

3]. This allows organizations to select best-of-breed software

components, including internal bespoke microservices,

Commercially Of The Shelf (COTS), and external Software-

as-a-Service (SaaS). The Commerce and Retail industry is

spearheading this strategy, however, it has gained significant

adoption in other industries such as Financials, Healthcare,

Manufacturing and others.

This move from monolithic systems towards

composability significantly increases the complexity of

integration. The components may have vastly different

integration requirements, protocols, data formats, security

models, and levels of API maturity. Networking also plays a

critical role as security requirements imposed by various

compliances require varying degrees of secured private

connectivity between on-prem and SaaS providers. Managing

the interactions within this potentially chaotic landscape

becomes a critical success factor in the organization.

The benefits of composable enterprise with MACH and

PBCs are discussed widely, but there is a vast gap in

addressing the specific socio-technical integration

complexities. Existing research is focused on the technical

aspects of microservices / APIs and the broader organizational

changes required for agility; however, it overlooks the friction

points specific to integrating diverse capabilities. This paper

addresses this gap by analyzing the socio-technical

dimensions of this integration complexity within MACH and

PBC ecosystems. The core problem investigated is the

conflicting expectations around the flexibility and the

practical challenges faced while forming a multi-component,

potentially multi-vendor ecosystem capable of deriving

business value from the investments. It investigates the

interplay between critical technology (patterns, standards,

choices) and organizational (governance, team structure

process alignment, skills development, and cultural

adaptation) dimensions.

 By analyzing these socio-technical dimensions, I have

proposed that effectively managing this complexity requires

robust technical solutions (like API gateways and event buses)

and deliberate strategies for evolving the organizations

beyond the technology factors and making an inverse

Conway's Law manoeuvre.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shashi Nath Kumar / IJCTT, 73(4), 72-78, 2025

73

2. Background and Literature Review
The evolution of software architecture represents an

ongoing progression to manage complexity and accommodate

accelerated change cycles. The N-tier architectures improved

upon the separation of concerns provided by Client-Server

models but often resulted in monolithic deployments with

high internal coupling risky and big bang releases. Service-

Oriented Architecture (SOA) aimed to improve reuse and

integration; however, common implementations often

suffered from centralized bottlenecks (Enterprise Service

Buses), cumbersome standards, and persistent data

dependencies. These limitations impede the velocity and

adaptability essential for contemporary enterprises.

Integration challenges were also inherent in these architectural

paradigms. Integration was always a critical challenge in that

paradigm. Although the MACH approach that promises

Composable, Connected, Incremental, Open and Autonomous

architecture provides increased flexibility through APIs, the

rapid increase and heterogeneity of components further

complicates the integration challenges and negates the

proposed benefits. This necessitated proactive management to

avert the formation of a distributed “Big Ball of Mud” [4] in

the distributed ecosystem. The “Architect's Paradox”

highlights the conflict between designing for perceived

stability (correctness) and the inevitability of continuous

evolution [5, 6, 7] that is amplified by the dynamic and

heterogeneous nature of composable components. Similar

complexities are encountered in the Networking and

Infrastructure area to maintain a robust, scalable, observable

and secure ecosystem with diverse deployment and security

models.

3. Conceptual Framework
3.1. MACH Architecture

The MACH Architecture approach advocated by the

MACH Alliance leverages four Key Pillars [9]:

3.1.1. Microservices

Business capabilities are realized by autonomous services

that offer modularity and allow for independent deployment

and scaling.

3.1.2. API-First

Decoupling and seamless integration are enabled by APIs

as stable contracts. Essential components include API

gateways and governance.

3.1.3. Cloud-Native

Fully leverage the features of cloud platforms to enable

scalability, resilience, and automation (IaC, CI/CD).

3.1.4. Headless

Backend APIs can be consumed to build flexible

omnichannel experiences, which are made possible by

decoupling frontends.

3.1.5. Extendibility

This translates to the service's ability to be closed to

modification but open to extension. It is often promoted, but

not officially, as part of MACH Architecture.

These pillars form the MACH Principles that advocate for

a Composable, Connected, Incremental, Open, and

Autonomous ecosystem [9].

3.2. Packaged Business Capabilities

Gartner and industry analysts define PBCs as

fundamental building blocks of a composable enterprise. They

are self-contained, ideally autonomous, and exposed via API

modules that align with well-defined business functions [8].

This modular structure allows organizations to assemble and

reconfigure solutions to promote reusability and adaptability

dynamically.

3.3. API-First as the Intended Solution

The MACH architecture's API-first principle directly

addresses integration challenges. This is achieved by

establishing APIs as reliable, well-documented contracts

creating a standardized interaction method for components

like microservices, PBCs, and frontends, irrespective of their

internal workings. API Gateways and Schema Registries are

essential in managing these interactions, potentially

overseeing routing, security measures, rate limiting, and

protocol/data transformations.

Fig. 1 Promise of MACH architecture: Composable and connected

PBCs and SaaS

Shashi Nath Kumar / IJCTT, 73(4), 72-78, 2025

74

3.4. The Reality of Heterogeneous PBC Integration

The API-first principle of MACH guides the integration

of PBCs. However, their heterogeneous nature has become

immensely difficult to integrate. Irrespective of commercially

off-the-shelf PBCs such as SaaS or internally developed

bespoke PBCs such as Microservices, all have some common

challenges while creating a homogeneous composable

ecosystem.

3.4.1. Varying API Maturity / and Styles

There is a range of inconsistencies and issues in SaaS-

based PBCs in their API diversity. The SaaS providers have

different maturity levels in terms of quality and robustness.

The design standards, coding practices, infrastructure

selection, and platforms they use significantly affect their

reliability. Their protocol selection also varies significantly.

The newer SaaS vendors tend to invest in the pace of technical

advancements, and no matter which infrastructure they use

under the hood, they tend to accommodate some of the more

recent protocols like GraphQL and Kafka, while more

established players like to stick to hardened and battle-tested

protocols like REST or MQTT. Practically, any new

ecosystem needs some synergy with the existing legacy

systems, which may still utilize legacy protocols like SOAP

and even proprietary protocols. To accommodate this

situation, a PBC ecosystem must support a variety of

Synchronous and asynchronous protocols that require

additional integration effort and expertise. This heterogeneity

complicates the development and maintenance of SaaS PBCs

and their seamless communication between the PBC and the

external services.

The bespoke custom-built microservice APIs also exhibit

inconsistencies due to various reasons. A microservices

ecosystem needs strong standardizations and governance

among the teams, as one of the core philosophies of

microservices teams is independence. Since they are

independent regarding technology and platform selection, this

can lead to different architectural patterns, data formats, or

authentication and authorization mechanisms. This internal

inconsistency further complicates the development and

integration process. Robust API management practices are

required to address these challenges, including careful

selection and evaluation of external APIs, strong governance

and standardization of internal APIs, and appropriate tools and

technologies to facilitate integration and ensure

interoperability [10].

3.4.2. Diverse Data Formats / Models

Several incompatibilities between the data models and

formats among the PBCs bring up the challenges of intricate

data mapping and transformation processes during the

integration. It can be due to adherence to different standards

(like Cloud Events vs others) or message formats like XML,

JSON, Avro or Protobuf. Anti-Corruption Layers (ACLs) are

a standard way to mediate the interactions. However, they add

complexity to the overall system architecture. Over time, these

ACLs have become a complex integration ecosystem rather

than staying true to their nature, and they need more capacity

to design, implement, and maintain. On top of that, it

introduces performance overhead because of the additional

data transformation steps involved.

3.4.3. Different Security Models

The security model of PBCs varies widely. It can include

OAuth 2.0 with various Grant types, SAML, API keys, basic

authentication and custom tokens. This creates a complicated

web of identity federation and token translation logic. The

need for different Compliance standards makes the ecosystem

further heterogeneous regarding security models. Some PBCs

need more granular role-based data access, whereas others

need more uniform one.

3.4.4. Asynchronous Integration Needs

Most SaaS provides synchronous APIs that are crucial but

insufficient for creating a strong system integration as they

introduce run-time dependency and uptime coupling. It is

equally important to work with the available interface to

integrate the PBC, and there should always be an attempt to

reduce these couplings through asynchronous API

communication [11]. SaaS platforms that offer Async APIs

differ considerably in their support for event publishing and

subscription. This inconsistency and limited support can cause

integration issues, potentially requiring workarounds like

polling or custom event connectors. Polling introduces latency

and unnecessary system load due to frequent requests.

Building custom event connectors is usually time-consuming

and resource-intensive, requiring specialized skills.

Fig. 2 The reality of a composable enterprise depicting the variety of

formats and protocols

3.5. Socio-Technical Analysis

Managing this heterogeneity requires a multi-faceted,

socio-technical approach beyond purely technical solutions.

Several studies have shown that acceptance and confidence

are crucial to adopting technology [12]. The following

strategies are needed to address the complexity of integration.

Shashi Nath Kumar / IJCTT, 73(4), 72-78, 2025

75

3.5.1. Effective Governance and Standardization

API Design Standards

To enable smooth integration and interoperability among

different PBCs, creating and applying a set of standardized

API design guidelines is essential. These guidelines should

include naming conventions, standardized error handling,

defined versioning strategies, consistent authentication /

authorization mechanisms, standardized data formats, and

standardized development processes (e.g., templates or code

generation) [13, 14].

Integration Patterns

Consistent and reusable integration patterns for common

integration scenarios go a long way in addressing the

heterogeneous integration requirements for PBCs. These

patterns must be defined in the organization's scope and

adopted uniformly. The typical example could be using an API

gateway and or Service Mesh for synchronous

communications but having separate patterns for internal and

external APIs, usage of API portal, API design first, Open API

Specification, usage of the type of messaging brokers in

various scenarios like cloud-based messaging broker for

external systems and on-prem broker, when to use persistent

queue against when to use an in-memory queue, using schema

registries with Async API specification.

Data synchronization patterns ensure consistency across

multiple systems and avoid run-time data fetch. It is also

crucial to balance standardization and flexibility to promote

innovation and counter vendor lock-ins.

Fig. 3 Harmonization with API design standards and integration

patterns where the api specification takes the centerstage

API and Event Contract Management

Robust process development and effective change

management across diverse system components are required

for managing API and event contracts. These processes should

include strategies for versioning, automated (build pipeline

embedded) consumer-driven contract testing for any breaking

changes, and up-to-date documentation.

Fig. 4 Harmonization with api gateway and integration orchestrator

Governance Models

Organizations must choose between a centralized or

federated governance model for managing their APIs and

events based on their size, culture and specific needs to

provide a common direction and uniformity to the

development teams to manage the APIs' design, development,

deployment and maintenance.

Additional Considerations

Uniform and robust monitoring and logging, rigorous and

automated testing and quality assurance, integrated security

practices, and architecting and designing for performance and

scalability can be embedded in the patterns and governance.

3.5.2. Platform Engineering and Tooling

The internal platform team is key to streamlining the

integration process for developers by providing the necessary

tools and infrastructure [9]. They can enable development

teams to self-service various infrastructures and follow

patterns and governance guidelines.

3.5.3. Process Alignment and Evolutionary Integration

Integration strategies must align with agile processes:

Incremental Integration: Instead of implementing large-

scale integrations simultaneously, consider adopting strategies

like the Strangler Figure pattern or gradually introducing new

SaaS PBCs alongside ACLs [16]. Fitness Functions for

Integration: Automate tests to verify key integrations, API

contracts, and end-to-end flows across multiple PBCs. These

fitness functions will prevent regressions as individual

components are updated [17]. Infrastructure as Code (IaC):

Ensure consistency and repeatability by automating the

configuration and deployment of integration components,

such as ACLs, brokers, and gateways.

Shashi Nath Kumar / IJCTT, 73(4), 72-78, 2025

76

3.5.4. Culture, Team Structure and Skills

A successful strategy around team structure and skills is

critical, and an inverse “Conway's Law” maneuver is needed

for the organization. This requires careful reorganization of

teams to reduce cognitive loads (align similar business

function PBCs and technical stack) and build a culture of

learning and transforming. It includes new strategies for

building:

Integration Expertise: Integrating diverse PBCs,

especially external SaaS platforms, requires specific skills

beyond basic application development, including a deep

understanding of various API styles, security protocol

patterns, data mapping techniques, event-driven patterns, and

specialized integration middleware. Targeted training, hiring,

or specialized roles/teams are needed to build this expertise.

Cross-Functional Teams and Enablers: The teams

managing end-to-end user journey must understand multiple

PBCs and underlying Integrations. Management, Architects

and Product teams are enablers to provide guidance and

resolve impediments and conflicts [18].

Collaboration: Successful integration necessitates

effective collaboration and communication between the teams

responsible for different PBCs (internal or vendor teams). This

includes clear communication about API changes, contracts,

and shared responsibilities.

Cultural Transformation through learning: Adopting

composable architectures requires a significant cultural shift

towards fostering collaboration and breaking down silos,

shared ownership and psychological safety and treating

internal capabilities as products consumed via APIs. This

requires learning from failures by blameless post-mortem,

experimentation and sharing knowledge.

3.5.5. Managing Coupling in a Heterogeneous Landscape

While aiming for loose coupling, integrating diverse

components introduces specific risks of data (use of PBC-

specific formats), platform (SaaS/PBC provider) and temporal

coupling (synchronous calls for queries) that requires a

strategy to accept or mitigate the risks arising out of them.

4. Discussion
This analysis highlights that effectively managing

integration complexity is a crucial socio-technical challenge.

Achieving success goes beyond simply implementing an API

Gateway. It necessitates strategic governance to define

preferred integration patterns and standards, robust platform

engineering to provide self-service integration capabilities,

agile processes that enable incremental integration and

validation through fitness functions, and teams with essential

integration skills operating within collaborative structures.

Navigating this landscape involves inherent socio-technical

trade-offs that need further deeper investigation. For example,

confident decisions regarding governance models (e.g.,

centralized vs. federated) present trade-offs between

integration velocity and long-term architectural consistency

that need careful consideration within heterogeneous PBCs.

Similarly, the level of investment in platform engineering

must be balanced against its impact on the cognitive load,

required autonomy and various other factors.

The specific dynamics of managing multi-vendor SaaS

ecosystems, including establishing inter-organizational trust

and navigating conflicting vendor priorities, add another

socio-technical complexity requiring deliberate management

strategies. Failure to address these interconnected socio-

technical aspects risks undermining the agility and flexibility

promised by composability. Without deliberate management

of integration complexity across technology, process, and

people-including understanding the cognitive biases affecting

decisions will inadvertently create a brittle, unmanageable

distributed system-a modern manifestation of the “Big Ball of

Mud” or the unrealized potential of earlier SOA initiatives

Fig. 5 Harmonization with the people at the core of the enterprise

Future research should focus on purely technical

dimensions such as patterns for effectively governing

heterogeneous API landscapes focussed on PBCs, strategies

for managing data consistency across internal services and

external SaaS PBCs, and developing better tools for testing

and observing complex, multi-component workflows

involving diverse integration points and a broader socio-

technical dimensions.

Conducting longitudinal studies tracking organizations as

they adopt and mature their composable architectures would

provide valuable insights into how socio-technical integration

challenges evolve and how organizational learning impacts

success. Developing and validating metrics or models to

quantify socio-technical factors such as team cognitive load

relative to PBC integration complexity, communication

overhead across boundaries, or the measurable impact of

specific governance interventions will be a critical next step.

More rigorous investigation into the socio-technical trade-offs

inherent in architectural and organizational decisions within

composable ecosystems is needed, potentially using case

study or simulation methods. Focused socio-technical

research is required to understand the complexities of

Shashi Nath Kumar / IJCTT, 73(4), 72-78, 2025

77

managing multi-vendor SaaS ecosystems, including trust

dynamics, governance across organizational boundaries, and

managing dependencies on external vendor roadmaps.

Analyzing security technically and as an emergent socio-

technical property within distributed, heterogeneous systems

requires further study, examining how factors like distributed

ownership, team structures, and organizational culture

influence the overall security posture. Exploring how these

socio-technical integration challenges manifest differently

across various industries (e.g., retail vs. finance) and adopting

composable approaches could yield context-specific insights.

Fig. 6 Wardley map [19] illustrates the value chain for 'Rapid Business Capability Deployment' within the analyzed composable ecosystem. The Y-

axis shows dependency from visible user needs (top) to invisible infrastructure (bottom). The X-axis depicts component evolution from genesis (left) to

commodity (right). The map highlights the heterogeneity of components (e.g., bespoke microservices, COTS/SAAS pics, commodity infrastructure)

and their complex interdependencies, illustrating the landscape where the discussed socio-technical integration challenges arise.

Further empirical studies examining the practical

application and effectiveness of concepts like the Inverse

Conway Maneuver and team cognitive load management

within PBC adoption contexts would also be valuable.

Addressing these future research directions will

contribute to a more comprehensive understanding of

successfully navigating the transition to composable

enterprise architectures.

5. Conclusion
The transition from monolithic architectures to

composable enterprise strategies introduces not only

technical challenges but also deep socio-technical

complexities. As organizations adopt modular and best-of-

breed components using MACH principles and Packaged

Business Capabilities (PBCs), the need for seamless, secure, and

scalable integration becomes paramount. This paper has

illustrated that the diversity in APIs, data models, security

standards, and communication protocols—combined with

fragmented team structures and organizational silos—poses a

significant risk of reintroducing the very chaos composability

seeks to eliminate.

To mitigate these challenges, enterprises must adopt a

holistic integration strategy that combines robust technical

mechanisms such as API gateways, event brokers, and

standardized contracts with strong governance models, platform

engineering, and cultural transformation. Socio-technical

strategies, including the inverse Conway’s Law maneuver,

Shashi Nath Kumar / IJCTT, 73(4), 72-78, 2025

78

collaborative cross-functional teams, and investment in

integration-specific skills, are critical to sustaining agility,

scalability, and long-term architectural coherence.

The research underscores that successful composability

hinges not just on choosing the right technologies, but on

rethinking how people, processes, and platforms interact. Future

studies should further investigate empirical metrics for socio-

technical integration performance, case-based learnings on

multi-vendor ecosystems, and the evolving role of governance

in distributed digital enterprises.

References
[1] Composable Enterprise as Innovation Strategy, The MAMBU Website, 2020. [Online]. Available: https://mambu.com/en/insights-

hub/articles/composable-enterprise-as-innovation-strategy

[2] Composable Commerce in 2025: Proven, Packaged, and Ready for the Mainstream, Composable.com. [Online]. Available:

https://composable.com/insights/composable-commerce-in-2025-proven-packaged-and-ready-for-the-mainstream

[3] MACH Technology Explained, MACH Alliance. [Online]. Available: https://machalliance.org/mach-technology

[4] Brian Foote, and Joseph Yoder, “Big Ball of Mud,” Pattern Languages of Program Design, vol. 4, pp. 654-692, 1997. [Google Scholar]

[Publisher Link]

[5] O'Reilly, Barry, Architect's Paradox, On the Youtube Channel the Complexity Lounge, 2025. [Online]. Available:

https://www.youtube.com/watch?app=desktop&v=Qq8x7KIV4W8&t=0s

[6] Barry O'Reilly, Software Architecture for a Rapidly Changing World, Boundaryless Podcast. [Online]. Available:

www.boundaryless.io/podcast/barry-oreilly/

[7] Barry M. O'Reilly, “Residuality and Representation: Toward a Coherent Philosophy of Software Architecture,” Procedia Computer

Science, vol. 224, pp. 91-97, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Sam Newman, Monolith to Microservices: Evolutionary Patterns to Transform Your Monolith, O'Reilly Media, pp. 1-255, 2019. [Google

Scholar] [Publisher Link]

[9] The MACH Principles, MACH Alliance. [Online]. Available: https://machalliance.org/mach-principles

[10] Open API Initiative Website. [Online]. Available: https://spec.openapis.org/oas/latest.html

[11] AsynAPI Initiative Website. [Online]. Available: https://www.asyncapi.com/docs/concepts

[12] Hamed Taherdoost, “A Review of Technology Acceptance and Adoption Models and Theories,” Procedia Manufacturing, vol. 22, pp.

960-967, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[13] API Design Guide, Google, 2025. [Online]. Available: https://cloud.google.com/apis/design

[14] Vadake Narayanan, and Yamuna Baburaj, “Technology Standardization in Innovation Management,” Business and Management, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[15] Gregor Hohpe, Platform Strategy-Innovation Through Harmonization, The Architect Elevator. [Online]. Available:

https://architectelevator.com/book/platformstrategy/

[16] Ian Cartwright, Rob Horn, and James Lewis, Patterns of Legacy Displacement, 2024. [Online]. Available:

https://martinfowler.com/articles/patterns-legacy-displacement/

[17] Paula Paul, and Rosemary Wang, Fitness Function-Driven Development, 2019. [Online]. Available: https://www.thoughtworks.com/en-

us/insights/articles/fitness-function-driven-development

[18] Gregor Hohpe et al., “The Software Architect's Role in the Digital Age,” IEEE Software, vol. 33, no. 6, pp. 30-39, 2016. [CrossRef]

[Google Scholar] [Publisher Link]

[19] Wardley Maps. [Online]. Available: https://www.wardleymaps.com/

https://mambu.com/en/insights-hub/articles/composable-enterprise-as-innovation-strategy
https://mambu.com/en/insights-hub/articles/composable-enterprise-as-innovation-strategy
https://machalliance.org/mach-technology
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Big+ball+of+mud&btnG=
http://www.laputan.org/pub/foote/mud.pdf
http://www.boundaryless.io/podcast/barry-oreilly/
https://doi.org/10.1016/j.procs.2023.09.015
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Residuality+and+Representation%3A+Toward+a+Coherent+Philosophy+of+Software+Architecture&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050923010621
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Monolith+to+microservices%3A+evolutionary+patterns+to+transform+your+monolith&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Monolith+to+microservices%3A+evolutionary+patterns+to+transform+your+monolith&btnG=
https://books.google.co.in/books/about/Monolith_to_Microservices.html?hl=pt-BR&id=iul3wQEACAAJ&redir_esc=y
https://machalliance.org/mach-principles
https://spec.openapis.org/oas/latest.html
https://www.asyncapi.com/docs/concepts
https://doi.org/10.1016/j.promfg.2018.03.137
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+review+of+technology+acceptance+and+adoption+models+and+theories&btnG=
https://www.sciencedirect.com/science/article/pii/S2351978918304335
https://doi.org/10.1093/acrefore/9780190224851.013.340
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Technology+Standardization+in+Innovation+Management&btnG=
https://oxfordre.com/business/display/10.1093/acrefore/9780190224851.001.0001/acrefore-9780190224851-e-340
https://doi.org/10.1109/MS.2016.137
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Software+Architect%27s+Role+in+the+Digital+Age&btnG=
https://ieeexplore.ieee.org/abstract/document/7725214

