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Abstract—Real life environment consists of various kinds of
sounds other than speech and music. All these sounds carry
information about our everyday environment and have its own
features. In order to categorize different kinds of sounds and
to study them separately, tagging is introduced into the area
of sound analysis. Environmental audio tagging predicts the
presence or absence of certain acoustic events in the interested
acoustic scene. Audio tagging forms the backbone of sound
recognition and classification work. This work on audio tagging
consists of extracting relevant features from input audio and of
using those features to identify a set of classes into which the
sound is most likely to fit. Existing works for this task largely uses
conventional classifiers which do not have the feature abstraction
found in deeper models. A deep learning framework is used here
for unsupervised feature learning and classification.

Keywords—deep learning, environmental audio tagging, unsu-
pervised feature learning, multilabel classification.

I. INTRODUCTION

The main challenge limiting widespread acceptance of large,
freely available internet audio archives is the difficulty in
organizing and accessing them. Traditionally, text-based re-
trieval approaches are often employed. But the disadvantage
is that it is impossible to search for unlabeled sound files. To
overcome this, there has been much recent interest in retrieving
unlabelled audio from text queries and the related problem
of auto-tagging, i.e., the ability to automatically describe and
label a sound clip based on its audio content.

There has been a considerable amount of attention paid
to the automatic prediction of tags for music and audio.
Social tags are user-generated keywords associated with some
resource on the Web. There have been many attempts at
automatically applying tags to audio for different purposes:
database management, music recommendation, improved hu-
man computer interfaces, estimating similarity among songs,
and so on.

Audio tagging aims at putting one or several tags on a sound
clip. The tags are the sound events that occur in the audio clip,
for example, speech, television, percussion, bird singing, and
so on. Audio tagging has many applications in areas such as
information retrieval, sound classification and recommendation
system. For environmental audio tagging, there is a large
amount of audio data on-line. How to utilize them, predict
them and further add some new tags on the related audio is

a challenge. The audio recordings from surrounding environ-
ment are more complicated than the pure speech or music
recordings due to the multiple acoustic sources and incidental
background noise. This will make the acoustic modeling more
difficult. On the other hand, one acoustic event (or one tag)
in environmental audio recordings might occur in several long
temporal segments. A compact representation of the contextual
information will be desirable in the feature domain.

II. LITERATURE REVIEW

The sound events in real life have no fixed pattern. Different
contexts, such as forest, city and home contain different kinds
of sounds. They can be of different sparsity based on the con-
text. They can occur in isolation or be completely overlapped
with other sound events. Identifying isolated sounds have been
done with considerable accuracy. But identifying a mixture of
labels in an overlapped sound environment is a challenging
task, where still considerable amount of improvements can be
made.

Recently, the deep learning based methods have also been
widely used for environmental audio tagging, a newly proposed
task in DCASE 2016 challenge based on the CHiME-home
dataset [18]. However, it is still not clear what would be
appropriate input features, objective functions and the model
structures for deep learning based audio tagging. Furthermore,
only the chunk-level instead of frame-level labels are available
in the audio tagging task. Multiple acoustic events could
occur simultaneously with interfering background noise, for
example, child speech could occur with TV sound for several
seconds. Hence, a more robust deep learning method is needed
to improve the audio tagging performance.

A. Mood Detection System
Garima Vyas et al. used K-means clustering algorithm and

decision rule to identify the mood underlying a piece of music
by extracting suitable and robust features from music clip [1].
The objective here is to accurately attach mood tag to a musical
audio. Mel frequency cepstral coefficients, frame energy and
peak difference are the three features that were extracted to
decide the mood tag of the musical piece. The Audio Pre-
processor performs the task of pre-processing the audio clips
provided by the user to the system. The pre-processing job
involves the following steps:
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1) Audio File Splitting: An audio with duration of 45 sec
is clipped. Such a clip has proved to be acceptable from
experimentation point of view as it is not very short to
lose any important information and not very long to
increase the processing time.

2) Audio Format Conversion: Each music clip of 45 sec-
ond is transformed to a standard format namely WAV
(type as stereo and 16 bits PCM) with a rate of sampling
44.1 kHz. Thus, this component makes sure that the
input music clips given by the user are transformed
so that they can be developed for processing and
analyzing.

The Audio Feature Extractor revolves around the features
of audio signal associated with the music clips obtained as a
result from the Audio Pre-processor. The audio clip of 45sec
is segmented into frames of 55 60ms with an overlap of 35
40ms. From each frame the MFCCs (Mel frequency cepstral
coefficients) and energy is computed. Then the maximum and
minimum peak is calculated which in turns gives the peak
difference.

The Mood Identification System is the major processing unit
of the whole system and is accountable for mining the mood
from the music dataset acquired as input from the audio feature
extractor module. The module has two important functions to
perform as mentioned below:-

1) Mood Learner: The input is received in the form of
a training dataset of music features with the manually
updated mood attribute by the domain experts, from the
training point of view. In this case clustering is used to
train the system.

2) Mood Detector: The Mood detector is used to evalu-
ate the dataset under consideration against the mood
classifier model that is finalized. The evaluation uses
the threshold value to classify the mood of an audio.
In case a full song is fed instead by the user, the
system reciprocates the maximum voted mood from the
moods predicted for the clips derived from that song.
The final output of this module is generally utilized
by the end-user application like any Music information
retrieval application or a mood-annotator. Decision Rule
is used for tagging a mood to the musical song on the
basis of peak difference and frame energy. According
to a comprehensive study, it is observed that sad mood
music clips have peak difference less than 0.6000 and
frame energy less than 57.0000. On the other side, the
happy mood songs have peak difference greater than
0.8000 and energy greater than 57.0000.
The architecture of mood detection system is shown in
figure 1. The audio pre-processor, mood identification
system and audio feature extractor are the various
modules in the mood detection system.

B. Support Vector Machine
Jrgen T. Geigeret al. use SVM for acoustic scene classifica-

tion [2]. The system classifies 30 second long recordings of 10
different acoustic scenes. From the extremely uneven record-
ings, a large number of spectral, cepstral, energy and voicing-

Fig. 1. Mood Detection System

related audio features are extracted. Using a sliding window
approach, classification is performed on short windows. SVM
are used to classify these short segments, and a majority voting
scheme is employed to get a decision for longer recordings.
To better capture the non-stationary nature of the scenes,
classification is performed on smaller windows. Each recording
is split into (overlapping) windows with a length of several
seconds, and the statistical functionals are computed for all low
level descriptors in those segments. Longer windows lead to
better results. This windowing is done on the training data and
on the test data. Thus, models are trained with a larger number
of training instances per class. Classification is performed on
the windowed test data. Each of the windows is separately fed
to the classifier to recognize one part of the scene. In order
to get one decision for the whole instance, a majority voting
scheme is employed.

For evaluation of the system, the official dataset of the IEEE
AASP Challenge on Detection and Classication of Acoustic
Scenes and Events were employed. This dataset contains 30
seconds recordings of various acoustic scenes, categorised into
ten dierent classes. Using large-scale audio feature extraction
and SVM, an accuracy of 73% is obtained on the development
set of the D-CASE challenge.

C. The Random Forests
Li Yang and Feng Su, employed a random forest based en-

semble learning and classication model for auditory contexts,
in which individual segments of audio stream are classied and
aggregated by Hough voting or bagging to form the nal context
category [3]. Auditory contexts refer to the acoustic modeling
of a specic location or site such as restaurant or bus station,
while audio events are short audio segments with distinct
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acoustic patterns corresponding to specic object or event in
an auditory context, such as laughing or gunre.

The block diagram of the auditory context classication is
shown in figure 2. A composite audio feature representation
that characterizes dierent aspects of the signal stream at
audio event scale is employed. Three elementary features: the
local discriminant bases (LDB) feature, the pseudo-semantic
(PSEM) feature, and the bag-of-audio-words (BOAW) feature,
are concatenated to form the feature vector for an audio
signal segment. Random forest based method for auditory
context classication is applied. Correspondingly, an ensemble
bagging/voting scheme for auditory context classication, which
aggregates the class votes casted by individual segments of
the input audio stream for the potential context category is
employed.

To evaluate the auditory context classification method, the
test data is collected for 10 auditory contexts from Internet
and some movie/TV clips, including 6 outdoor and 4 indoor
contexts: auditorium, war field, forest, beach, train station,
street, inside vehicle, playground, restaurant and raining. Total
21 audio event categories are considered, including engine,
car-braking, siren, horn, music, gun-shot, explosion, running
water, bird twittering, thundering, talking, applause, laughter,
cheer, etc. The training and testing set contain around 100
and 150 mono channel audio samples, respectively, for each
audio event and context category. The typical sample length
is 1-3 seconds for audio events and 15 seconds 2 minutes
for contexts with 44.1kHz sampling rate. The experiment
results show the effectiveness of the random forest based
framework, and combination of several heterogeneous features
incrementally enhances the average performance. The flexibil-
ity in tuning feature compositions according to the complexity
and efficiency requirements makes the framework potentially
applicable to a wide range of circumstances.

D. Know Thy Neighbor
The Know-Thy-Neighbor(KTN) algorithm is used by

Alexandros Nanopoulos et al. to measure the similarity of
2 musical pieces [4]. The k-nearest neighbors algorithm (k-
NN) is a non-parametric method used for classification and
regression. In both cases, the input includes k nearest training
examples in the feature space. The output relies on whether
k-NN is used for classification or regression.

The Know-Thy-Neighbor (KTN) method, commences with
a training phase in which the tracks of collection, D act as
training data for which weights are learned. The weight of
each such track is defined as its number of occurrences, i.e.,
the number of times it appears among the n nearest neighbors
of the rest tracks in D. The n-occurrences are initialized to zero
and computed as follows. For each track in D, find a list: L1
of its n nearest neighbors based on the audio feature space and
L2 of its n nearest neighbors based on the tag feature space.
Then, increase the number of n-occurrences for each track in
L1 L2, treat the two feature spaces uniformly.

The intuition behind KTN is as follows: since adequate
tags does not exist for the query track, KTN identifies a
representative neighbor for the query track in the audio feature

Fig. 2. Block diagram of the auditory context classification
algorithm

space. The representatives of tracks in the audio feature space
is determined by their learned weights, i.e., their occurrences,
which promotes tracks that have the property of being popular
nearest neighbors. This property is known as hubness. Since
the selected neighboring track is considered as representative,
its k nearest neighbors based on the tag feature space are re-
turned as an accurate estimation of the actual nearest neighbors
of the query song. Therefore, KTN combines effectively both
feature spaces to address the cold start problem.

Audio data were harvested using the iTunes API. Track
selection was based on the cumulative highest popularity tags
offered for the track in Last.fm by selecting the 50 top rank
tracks for each top rank tag. The data gathered contain 5,459
discrete tracks and each track is a 30 second clip of the original
audio.

The KTN method is suitable in the case of the cold-start
problem that results from the lack of adequate tags. This
method avoids the forced use of solely audio-based similarity
measures when measuring music similarity and utilizes avail-
able contextual knowledge in the form of social tags. The KTN
is also shown to be effective in comparison to the audio-based
similarity computation with respect to precision of the resulting
similarity measures. This is verified through experimental
results with real data, which illustrate the suitability of this
method.

E. Hidden Markov Model
Xi Shao et al. suggested Hidden Markov Model as an

unsupervised approach for automatic music genre classifica-
tion. The observed low-level audio features are classified into
different music categories. A hidden Markov model is a doubly
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embedded stochastic process, where the actual states producing
the output are hidden. In simpler Markov models (like a
Markov chain), the state is directly observable, and therefore
the state transition probabilities are the sole parameters, while
in the hidden Markov model, the state is not directly visible,
but the output, dependent on the state, is visible. Each state
has a probability distribution over the possible output tokens.
Therefore, the series of tokens created by an HMM provides
some information about the series of states.

This approach contains two steps:
• Every individual music piece is segmented into clips,

and each clip is further segmented according to its
intrinsic rhythmic structure. Features are extracted based
on these segments. Then train a Hidden Markov Model
(HMM) for this music piece based on these features.

• Embed the distance between every pair of music pieces
into a distance matrix and perform clustering to generate
desired clusters.

Clustering by Hidden Markov Models: Initially, a HMM
model is build for each music piece. Every music piece is
split into clips. These clips belonging to one music piece are
used to train a HMM model as shown in figure 3. Assume
there are N pieces of music in the database, then the distance
between two music pieces will be calculated and the distance
matrix D is N x N dimension. Given a distance matrix D, many
clustering methods can be used. Here, Agglomerative Hier-
archical Clustering is used to generate clusters. This method
does bottom-up clustering. It starts with N singleton clusters
and forms a sequence of clusters by successive merging. For
the scenario where the number of desired clusters is known
(denoted as c), the merging process will come to an end when
the C clusters are produced. While for the number of desired
clusters is unknown, the merging process will come to an end
when the distance between two nearest clusters is above a
threshold.

The music dataset for each genre contains 50 music pieces.
The genres are Pop, Country, Jazz and Classic. They are
obtained from music CDs and internet. All data are 44.l kHz
sample rate, mono channels and 16 bits per sample. The
average classification accuracy is 89% using this dataset and
HMM topology.

F. Soft Annotator Fusion
Remi Foucard et al. described a method of fusing annota-

tions that preserves information about the uncertainty of the
tag/song association [6]. This fusion provides with continu-
ous scores, that are used for training a regressive boosting
algorithm. Boosting is a learning technique, training iteratively
several complementary versions of a weak (performing badly)
classifier.

The soft scores are constructed based on the annotators indi-
vidual responses. Firstly, every possible response is converted
to a value v ∈ [0, 1]. Consecutive values are equally spaced,
moreover v = 0 and v = 1 must always be possible answers.
For instance, there are four possible responses for the tag
Instrument-Trumpet: None, Uncertain, Present and Prominent.
They are respectively mapped to: 0, 0.33, 0.67 and 1. Because

Fig. 3. HMM training for individual piece music

majority voting and threshold mean calculation do not reflect
uncertainty, the individual scores are averaged as given in
equation 1.

Vs =
1

K

K∑
k=1

vk (1)

where vk is the value corresponding to the choice made by
annotator k. Alternatively, for the negative tags (e.g. Emotion
NOT happy), the value is simply V = 1 − P , where P is the
value associated with the corresponding positive tag.

Adaboost: The soft scores obtained by annotator fusion will
be used to train a regressive boosting system. AdaBoost, which
is an abridged form of ”Adaptive Boosting”, is a machine
learning meta-algorithm. It can be used along with many other
types of learning algorithms to improve their performance. The
output of the other learning algorithms (’weak learners’) is
combined into a weighted sum that depicts the final output
of the boosted classifier. AdaBoost is adaptive in the sense
that subsequent weak learners are adjusted in favor of those
instances misclassified by preceeding classifiers.

The experiment is done on the CAL500 database. This
database contains 500 pop songs, with tags describing mood,
instrumentation, genre, etc. The tests are conducted with 10-
fold cross-validation, keeping 450 songs for training, and 50
for testing. For complexity reduction, Remi Foucard et al. only
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use 30 seconds of each song: between instants 30 seconds and
60 seconds.

Two different ranking metrics are used to evaluate this
output. Ranking metrics evaluate the list of examples ranked
by predicted score Sn. This list is compared against the binary
ground truth. A perfect ranking would put all positive songs
at the top.
• The first measure is the Mean Average Precision (MAP).

It can be obtained by moving down the ranked list, and
averaging the precision obtained at every truly positive
example.

• The second is the Receiver Operating Characteristic
(ROC) curve. This curve represents the correct detection
rate with respect to the false alarm rate, computed at
each element in the ranking.

Remi Foucard et al. also employed regressive boosting for
learning the scores obtained by this fusion.The results show
that the soft scores, combined with regressive learning, lead to
a better learning of the tags.

G. Convolutive Non-negative Matrix Factorization
Courtenay V. Cotton and Daniel P. W. Ellis employs con-

volutive non-negative matrix factorization (NMF) as an ap-
proach for detecting and modeling acoustic events that directly
describes temporal context [7]. NMF is useful for finding
parts-based decomposition of data; It is used to discover a
set of spectro-temporal patch bases which aptly describe the
data, with the patches analogous to event-like structures. Then
features are derived from the activations of these patch bases,
and perform event detection on a database made up of 16
classes of meeting-room acoustic events. This NMF algorithm
allows both to locate transients in time and to build a dictio-
nary of event-patch codewords, within a single optimization
framework, avoiding the separate transient detection and patch
clustering. The metric used for evaluation is the acoustic event
error rate (AEER) that was used in CHIL evaluations for the
event detection task and is defined in equation 2.

AEER = 100(D + I + S)/N (2)

where D is the number of deletions, I is the number of
insertions, S is the number of substitutions, and N the total
number of events that occur in the ground truth labels.

H. Joint Detection - Classification Model
Qiuqiang Konget al. used a joint detection-classification

(JDC) model to detect and classify the audio clip simultane-
ously [8]. The JDC model has the capability to handle infor-
mative and disregard uninformative sounds. Then only infor-
mative regions are used for classification. The joint detection
classification (JDC) model is inspired by humans perception.
Humans use two steps to label an audio, a detection step and
a classification step. In the detection step, humans listen when
to attend to sounds and when to ignore sounds. They attend to
informative audio events and ignore uninformative sounds or
silences. In a classification task, humans only tag informative
events. The JDC model is trained on weakly labelled data,

without requiring event level labelled data. The JDC model
has the following features:
• Weakly labelled data can be fed into the model directly

without the event level label.
• The detectors attend and ignore mechanism simulates

the humans perception.
• The detectors attend and ignore mechanism facilitates

the recognition of short audio events.
• Audio event detector is trained without the event level

label.
For the audio tagging task, assume there are K different

audio tags. The labelled target of an audio clip can be denoted
as t ∈ (0, 1)k where tk ∈ 0, 1 represents the existence of
the kth tag. The JDC model consists of a detector and a
classifier acting on each tag and each block with output value
between 0 and 1. The output of the classifier on the kth tag
and the mth block indicates how possible the mth block has
tag k. The output of the detector wkm on the kth tag and the
mth block indicates how informative the mth block is when
classifying the kth tag. If wkmis close to 1 it means the mth

block is informative and should be attended when classifying
the kth tag. If wkm is close to 0 it means the mth block is
uninformative and should be ignored when classifying the kth
tag. The loss function of the JDC model is defined in equation
3:

loss =

K∑
k=1

d(pk, tk) (3)

where d(pk, tk) is the binary cross-entropy error.
The experimental results on the CHiME Home dataset

show that the JDC model reduces the equal error rate (EER)
from 19.0 % to16.9%. The audio event detector is trained
successfully without requiring the event level label.

I. Automatic Music Annotation with Acoustically-Objective
Tags

Derek Tingle et al. developed an autotagging system to
create a large-scale semantic music discovery engine[9]. The
acoustic tags are considered acoustically objective because
they can be frequently implemented to songs by expert mu-
sicologists. The audio features used for comparison are Echo
Nest Timbre (ENT), Echo Nest Song (ENS) and Mel frequency
cepstral coecients (MFCC).

Autotagging can be considered a multiclass, multilabel
classification problem in which each song can be labeled with
multiple tags. For each tag in the vocabulary, Derek Tingleet
al. train a classifier using the audio features that are extracted
from annotated training songs. To annotate a new song, each
tag-level classifier is used to predict a relevance score (e.g.,
probability) that is proportional to the strength of association
between the song and the tag. Then during evaluation, songs
are rank ordered based on their predicted relevance to a given
tag.

J. Bag Of Features Approach
Axel Plinge et al.,proposed a Bag-of-Features approach for

classifying acoustic events [10].Mel and gammatone frequency
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cepstral coefficients that evolve from psychoacoustic models
are employed as input features for the Bag-of representation.
Rather than using a prior classification or segmentation step
to remove silence and background noise, Bag of Features
representations are learned for a background class. Supervised
learning of codebooks and temporal coding are used to im-
prove the recognition rates.

A Bag-of-Features approach is used for building a codebook
of acoustic words from the training set. Most Bag of Features
approaches use clustering algorithms, e.g. the Lloyd algorithm,
on the complete training set to derive a codebook and later
assign each feature to a centroid by hard quantization. The
expectation-maximization (EM) algorithm is applied to all
feature vectors yk for each class Ωc in order to estimate means
and deviations µic, σic for all C classes. A soft quantization
of a feature vector yk can be computed as given in equation
4:

q(k,l)(yk, vl) = N(yk|(µl, σl)) (4)

Then, a histogram b can be computed over all K frames of the
input window by using equation 5:

b(l)(yn, vl) =
1

K

∑
Kq(k,l)(yk, vl) (5)

This method of Bag-of-Super-Features is analogy to the super-
vector construct used in speaker identification.

The Bag of Features method was evaluated on the recent
IEEE AASP Challenge Detection and Classification of Acous-
tic Scenes and Events Event Detection development set. Since
the training data consists of event recordings only, non labeled
portions of the scripts not used in the test were used for training
in order to have training data. For the non-event class 88%
precision and 90% recall were obtained.

K. Deep Neural Networks
Robust sound event classification, the ability to recognize

sounds under real-world noisy conditions, is an especially chal-
lenging task. A sound event classification framework compares
auditory image front end features with spectrogram image-
based front end features using deep neural network classifiers
[11]. The requirement is that a trained system, when presented
with an unknown sound, is capable of correctly identifying the
class of that sound. Furthermore, these techniques should be
robust to interfering acoustic noise.

Both Stabilised Auditory Image (SAI) and time-frequency
domain Spectrogram Image Features (SIF), will be evaluated
for standard robust sound event classification tasks [11]. The
sound event detectors or classifiers have been used here. They
have been evaluated under real world conditions including
severe levels of degrading acoustic background noise. In each
case, the front end analysis and feature extraction operations
are followed by back-end machine learning methods.

Ian McLoughlin et al., first investigated the use of
Googlestyle SAI features with a back end SVM classifier and
used this baseline to evaluate the effect of several modifica-
tions to the feature extraction and representation process [11].
Next, the SVM classifier in the best performing system is

replaced with a DNN back-end. Finally, the DNN classification
performance is evaluated with a number of different feature
representations that are derived from an SIF. A block diagram
of the SAI extraction and feature vector formation can be
seen in Fig. 4. Subsequently, a novel low-resolution overlapped
spectrogram image feature was developed and evaluated with
the DNN classifier. Several variants of the system were then
proposed and evaluated, including a simple de-noising method
as well as post-processing of context-by-context classification
outputs across a single sound.

Fig. 4. Block diagram of audio event classification system
using front-end SAI and SIF analysis

A total of 50 sound classes are chosen from the Real
World Computing Partnership (RWCP) Sound Scene Database
in Real Acoustic Environments as the dataset. In the RWCP
database, every class contains 80 recordings and contains a
single example sound per recording. The sounds were captured
with high SNR and have both lead-in and leadout silence
sections. The training data set comprises 50 randomly-selected
files from each class. The remaining 30 files from each
class are set aside for evaluation. Therefore, a total of 2500
files are available for training and 1500 per testing run. All
evaluations apart from the multi-condition tests use classifiers
that are trained with exclusively clean sounds, with no pre-
processing or noise removal applied. In all cases, evaluation is
performed separately for both clean sounds, as well as sounds
corrupted by additive noise. The noise-corrupted tests use four
background noise environments selected from the NOISEX-92
database.

L. Convolutional Gated Recurrent Neural Network
Yong Xu et al. proposed a convolutional neural network

(CNN) to extract robust features from mel-filter banks (MFBs),
spectrograms or even raw waveforms for audio tagging [12].
Gated recurrent unit (GRU) based recurrent neural networks
(RNNs) are then grouped to model the long-term temporal
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structure of the audio signal. To accompany the input infor-
mation, an auxiliary CNN is proposed to learn on the spatial
features of stereo recordings.

Fig. 5 shows the framework of a convolutional gated recur-
rent neural network for audio tagging. The CNN is regarded as
the feature extractor along the short window (e.g., 32ms) from
the basic features, e.g., MFBs, spectrograms or raw waveforms.
Then the robust features extracted are fed into the GRU-RNN
to learn the long-term audio patterns. The CNN also assists
to extract robust features opposed to the background noise by
the max-pooling operation, especially for the raw waveforms.
Since the label of the audio tagging task is at the chunk-
level rather than the frame-level, a large number of frames
of the context were fed into the whole framework. The GRU-
RNN can select related information from the long term context
for each audio event. A bi-directional GRU-RNN is designed
to utilize the future information. Finally the output of GRU-
RNN is mapped to the posterior of the target audio events
through one feed-forward neural layer, with sigmoid output
activation function. This framework is flexible enough to be
applied to any kinds of features, especially for raw waveforms.
Raw waveforms have lots of values, which leads to a high
dimension problem. However the proposed CNN can learn on
short windows like the short-time Fourier transform (STFT)
process, and the FFTlike basis sets or even mel-like filters can
be learned for raw waveforms. Finally, one-layer feed-forward
DNN gets the final sequence of GRUs to predict the posterior
of tags.

Fig. 5. The framework of convolutional gated recurrent
neural network for audio tagging

M. Semi-Supervised Canonical Density Estimation

Jun Takagi et al. proposed a novel semi-supervised method
for building a statistical model that represents the relationship
between sounds and text labels (tags)[13]. This method, of
semi-supervised canonical density estimation (SSCDE), makes
use of unlabeled sound data in two ways:

• A low-dimensional latent space representing several top-
ics of audio is extracted by a semi-supervised form of
canonical correlation analysis.

• Topic models are learned by multi-class extension of
semi-supervised kernel density estimation in the topic
space.

SSCDE fully makes use of unannotated sounds for both
feature extraction and model estimation. More specically, a
low dimensional latent space representing topics of music is
estimated by applying a semi-supervised variant of canonical
correlation analysis called SemiCCA, which extends the or-
dinary CCA to be able to utilize both paired and unpaired
samples. Then, in the estimated latent space, topic models
are learned by multi-class extension of semi-supervised non-
parametric density estimation called semi-supervised kernel
density estimation (SSKDE).

N. Automatic Audio Tagging Using Covariate Shift Adaptation
Gordon Wichern et al. demonstrated a semi-supervised

approach to automatic tagging of general audio files under a
covariate shift assumption[14]. They assumed the audio files
follow a covariate shift model in the acoustic feature space, i.e.,
the feature distributions are different in the training and test
phases, but the conditional distribution of labels given features
remains unchanged. This method uses a specially designed
audio similarity measure as input to a set of weighted logistic
regressors, which attempt to alleviate the influence of covariate
shift. The trends in low-level audio feature trajectories (does
each feature stay constant, go up, down, or vary in more
complex ways) are approximated and use the distance between
these low-level feature trends as a kernel function in a kernel
logistic regression classification scheme. Importance weights
[16] are then applied to overcome possible shifts in the
audio feature space between the training and test sets, where
weights are estimated using the Kullback-Leibler importance
estimation procedure [17]. The performance is tested using
data from the Freesound project, a database of freely available
sound recordings uploaded by users of the site. The classifiers
are trained using only uncompressed high bit rate audio files,
while testing data contains only low bit-rate compressed files.

O. Attention and Localization based on a Deep Convolutional
Recurrent Model for Weakly Supervised Audio Tagging

Audio tagging aims to perform multi-label classification on
audio chunks. The problem with audio tagging is that it has
only a chunk-level label lacking a frame-level label. Yong
Xu et al. presents a weakly supervised method to not only
predict the tags but also specify the temporal locations of the
occurred acoustic events [15]. There are 2 modules in this deep
convolutional recurrent model:
• Attention module
• Localization module
The term attention is used to focus on specific parts of the

input. For the audio tagging task, the attention method can
automatically select and attend on the important frames for the
targets while ignoring the unrelated parts (e.g., the background
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noise segments). It can also be regarded as learning a weighting
factor on each frame.The attention scheme is conducted based
on the convolutional gated recurrent neural network. The local-
ization module is defined to find the temporal locations when
the specific event happens. Attention is used for global event-
independent frame-level feature selection, while the event-
dependent localization is used to find the locations of each
event.

Fig. 6. The framework of the chunk level convolutional gated
recurrent neural network for audio tagging

The framework of the chunk-level convolutional gated re-
current neural network for audio tagging is shown in Fig.
6. The whole audio chunk is chopped into frames with half
overlap. Each frame is fed into a convolutional neural network
(CNN) with a large receptive field considering that only one
CNN layer is used. The CNN can help to extract more robust
features through the max-pooling operations. Rectified Linear
Unit (ReLU) is the activation function of CNNs. The output
activations of each frame from the CNNs are fed into the
following gated recurrent unit (GRU) based recurrent neural
network (RNN). Then three-layer GRU-RNNs are followed
by one-layer feed-forward neural network (FNN) and the
activation function is Sigmoid. The audio tagging is a multi-
label task which means several acoustic events could happen
simultaneously. Hence the output activation function should be
sigmoid. Ultimately, each frame can create one prediction for
the audio tags. Their results should be averaged together to
obtain the final predictions. The binary cross-entropy and tag
vector are calculated using equations 6 and 7.

E = −
N∑
n=1

(PnlogOn + (1− Pn)log(1−On)) (6)

O =
1

T

T−1∑
t=0

(1 + exp(−St))−1 (7)

where E is the binary cross-entropy, On and Pn denote
the estimated and reference tag vector at sample index n,
respectively. The bunch size is represented by N. The feed
forward neural network (FNN) linear output is defined as St
at tth frame before the sigmoid activation function is applied.
T denotes the total number of frames in the whole audio chunk.

III. DEEP NEURAL NETWORK AND AUTO ENCODER FOR
AUDIO TAGGING

Deep neural networks (DNNs) are receiving attention as a
technology that has shown remarkable performance enhance-
ment in current machine learning fields. A DNN is a deep
artificial neural network composed of many hierarchies and can
achieve better performance in classification problems because
complex nonlinear learning boundaries can be separated better
than with conventional artificial neural networks. DNN has
shown great potential when applied to speech recognition and
image classification, but the cases in which it has been applied
to audio event classification is much less. In this work, an audio
event classifier using DNN was implemented.

A. Fundamentals of Deep Neural Network and Auto Encoder
A DNN is a family of ANNs that consists of many hidden

layers. The deep architecture of DNN consists of several
hidden layers, and every hidden layer carries a nonlinear trans-
formation from the preceeding layer to next one. In the context
of Deep Learning, the idea of pre-training was introduced by
Hinton and Salakhutdinov in 2006. The pre-training algorithm
make sure of generalization and fine-tuning lets deep networks
to train well. Due to multiple hidden layers in DNNs, they
possess considerable ability to capture powerful abstracted
features from training data. Furthermore, an Auto Encoder
(AE) is an unsupervised learning algorithm that utilizes back
propagation to set the target output to be its input as shown
in Figure 7. The specialty of AE is that it discover patterns
in a dataset by identifying the key features. As a result,
they are used extensively in feature extraction applications,
compression, learning generative models and dimensionality
reduction. Figure shows an AE that contains three layers,
namely, input layer that represents the input, hidden layer that
depicts the learned features and output layer that indicate the
reconstruction.

The input and hidden layers of Auto Encoder part are in
charge for mapping the input data into hidden representations.
However, the hidden and output layers from decoder part
are accountable for rebuilding the actual input data from the
learned hidden representations. A dataset with the input vector
x, the representation vector ad and reconstruction vector x̂
can be represented by Equations (8) and (9), where w and w

′

signifies the weights of encoder and decoder respectively. The
mapping functions are shown with f() and g(). Furthermore, the
reconstruction error between x and x̂ is given in Equation (10).
The overall cost function in the case of m training samples

International Journal of Computer Trends and Technology (IJCTT)  - Volume 62 Number 1 - August 2018

ISSN: 2231-2803                                          http://www.ijcttjournal.org                                             Page 8



9

Fig. 7. Structure of a typical Auto Encoder Model

is defined in Equation (11). In Equation (11), λ is a weight
decay term, nl shows the number of layers in the network
and W

(l)
ji specifies the weight of ith neuron of layer l. The

expression b represents a bias term. The first term in Equation
(11) represents the reconstruction error, and the second term
is a weight decay term, which is a regularization term. The
goal of the regularization term is to reduce the magnitude of
the weights to keep away overfitting.

a = f(wx+ b) (8)

x̂ = g(w
′
x+ b̂) (9)

J(W, b;x, x̂) =
1

2
‖hw,b(x)− x̂‖2 (10)

J(W, b) = [
1

m

m∑
i=1

J(W, b;x, x̂)] +
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )2

(11)

B. Unsupervised feature learning by Stacked Auto Encoders
A stacked AE (SAE) consists of several layers of Auto

Encoders, where the output of every layer is used as the
input to the next layer, as shown in Figure 8. By stacking an
autoencoder, the deep architectures of input data can be learned
effectively. In this work, a greedy layer-wise unsupervised pre-
training technique is used to extract features layer by layer in
an unsupervised setting. The benefit of this approach is that
it not only yields better local minima by proper initialization
of the weights in the DNN and training each autoencoder in
sequence but also reduces the generalization restrictions of
traditional machine learning algorithms. Thus a greedy layer-
wise unsupervised pre-training is implemented on SAE on the
raw inputs x(k) to extract primary features h(1)k in the hidden
layer, as shown in Figure 8.

After training the first AE, second AE is then trained by
using the primary features h

(1)
k of the first AE as the raw

input to next SAE to extract secondary features h(2)k from the
dataset, as shown in Figure 9. The distinction between two AEs
was that, the features that were generated from the first AE

Fig. 8. Layer wise unsupervised pretraining

is used as the training input to the second. This greedy layer-
wise process is known as pre-training. The extracted features
h
(2)
k from the second autoencoder were used as raw input to a

softmax layer. Finally, a deep network is obtined by training
the softmax layer and stacking the AE layers. Consequently,
the softmax classifier is capable of classifying the different
audio events into seven classes. The features acquired by the
stacked autoencoders are high-level patterns. The use of these
features significantly improves the classification accuracy. In
addition to unsupervised pre-training, a fine-tuning strategy is
also adopted to further improve the classification results. The
whole network is retrained in a supervised manner using a back
propagation algorithm as shown in Figure 9. This supervised
optimization step is called ”Fine-tuning”.

Fine tuning approach is normally used in deep learning
applications, and it greatly improves the performance of a
stacked Auto Encoder. It regards every layers of stacked AEs as
a single model. Thus, in each iteration, all weights of stacked
autoencoder is refined. Stacked Auto Encoders ensure the deep
representation of input features with robust feature extraction
ability.

Fig. 9. Supervised Fine-tuning

C. Softmax Classifier for Classification
After fine-tuning, the data is classified by feeding the results

from the stacked AE to a softmax classifier. The softmax

International Journal of Computer Trends and Technology (IJCTT)  - Volume 62 Number 1 - August 2018

ISSN: 2231-2803                                          http://www.ijcttjournal.org                                             Page 9



10

classifier can handle multi label classification problems. Audio
tagging deals with classifying audio into seven classes. For a
given test input x, softmax classifier estimates the probability
p(y = j|x) of each class j = 1, . . . , k, where k = 7, represents
seven different classes. The probabilities of each class are
calculated using equation 12 as follows:

p(y(i) = j|x(i); θ) =
eθ

T
j x(i)

eθ
T
l
x(i)

(12)

where y(i) is the output class corresponding to input vector x(i)
and θj represents the parameter vector of softmax regression
model for the class j, j = 1, 2, 3 . . . , k. The maximum
probability of each class is determined by the following
equation 13:

Class(x(i)) = argj=1,....kmaxp(y
(i) = j|x(i); θ)

(13)

where x(i) represents class with the highest probability. The
softmax layer outputs probabilities in the range of [01].

D. Methodology
The DNN method consists of three main parts. In the first

part, the audio recordings were downloaded. The dominant
sound sources in the audio environment are two adults and two
children, television and electronic gadgets, kitchen appliances,
footsteps and knocks produced by human activity, in addition
to sound originating from outside the house. The second
part is the feature extraction process, where Mel Frequency
Cepstral Coefficients (MFCC) are extracted from audio. MFCC
is used as the basic feature for DNN training. Two Auto
Encoders are trained in unsupervised fashion by using greedy
layer by layer pre training strategy. During training, the first
autoencoder gets trained, and features are extracted in the
hidden layer. Likewise, the second AE is trained in similar
fashion, except that the features of the first AE is used as
inputs of the second AE. The extracted features are then fed
into softmax layer, which is trained in a supervised manner.
As the AE learns compact data aptly, deep networks can be
build by stacking it. Two Auto Encoders are stacked with
softmax layer to form a deep model. After constructing a
deep model, results are ultimately optimized by retraining the
complete model in supervised manner. This procedure is often
known as fine-tuning. The classification results reveal that
fine-tuning approach produce notable improvement in network
performance.

IV. SUPPORT VECTOR MACHINE FOR AUDIO TAGGING

Support Vector Machine (SVM) has been successfully used
in pattern recognition such as speaker identification, face
detection, and text recognition. Compared to other classi-
fiers that separate the data in its original space, such as k
Nearest Neighbor(k-NN), Neural Network (NN), and Naive

Bayes (NB), SVM maps non-linear separable data to higher
dimensional space and performs separation in that space. This
characteristic is exploited here and propose a SVM based audio
classifier to classify mixed type audio data.

A. Fundamentals of SVM

Support Vector Machine (SVM) is a supervised machine
learning algorithm which can be used for classification or
regression tasks. It is seen that, SVM is mostly used in
classification tasks. This method plot each data item as a
point in n-dimensional space (where n is number of features)
with the value of each feature being the value of a specific
coordinate. Then, classification is perfrmed by finding the
hyper-plane that differentiate the two classes very well. A
better separation is obtained by the hyperplane that has the
maximum distance to the nearest training-data point of any
class.

B. SVM for multilabel classification

In this work, multi-label classification problem is trans-
formed into 7 independent binary classification problem via
the one-versus-all scheme. This is a conceptually simple and
computationally efficient solution for multi-label classification.
A one-versus-all binary SVM classifier is trained for each class
by taking all the training data of the class as positive examples
and all the rest of the data as negative examples. Given a
labeled multi-label training set D = (xi, yi) where xi is the
input feature vector for the ith instance, and its label vector
yi is a 0, 1 valued vector with length K such as K = |Y |. If
yik = 1, it indicates that the instance xi is assigned into the
kth class; otherwise, the instance does not belong to the kth
class. For the kth class (k = 1,....,K), the binary SVM training
is a standard quadratic optimization problem as expression 14
below:

minwk,bk,εik
1
2
||Wk||2 + C

N∑
i=1

εik (14)

subject to equation 15

yik(WT
k xi + bk) ≥ 1− εik, εik ≥ 0 (15)

where εik are the slack variables and C is the trade-off
parameter. It augments the soft class separation margin. The
model parameters wk and bk returned by this binary learning
problem define a binary classifier associated with the kth class:
fk(xi) = wTk xi + bk. The set of binary classifiers from all
classes can be used independently to predict the label vector
ŷ for an unlabeled instance x̂. The kth component of the label
vector ŷk has value 1 if fk ˆ(x) > 0, and has value -1 otherwise.
The absolute value |fk ˆ(x)| can be viewed as a confidence value
for its prediction ŷk on instance x̂k.
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V. COMPARING DEEP AUTO ENCODER WITH SUPPORT
VECTOR MACHINE

The audio tagging performance of the DNN is compared to
SVM, in this work. Figure 10. shows the classification results
of the DNN classifier and SVM classifier. The eventwise
performance of each of the class labels is shown in figure 12,
figure 13, figure 14 and figure 15. Figure 16 shows the Preci-
sion Recall (PR) graph and Receiver Operating Characteristic
(ROC) curve. ROC and PR curves are typically generated to
evaluate the performance of a machine learning algorithm on
a given dataset. In ROC space, one plots the False Positive
Rate (FPR) on the x-axis and the True Positive Rate (TPR)
on the y-axis. The FPR measures the fraction of negative
examples that are misclassified as positive. The TPR measures
the fraction of positive examples that are correctly labeled.
In PR space, one plots Recall on the x-axis and Precision on
the y-axis. Recall is identical to TPR, for precision measures
that fraction of examples classified as positive that are truly
positive. From figures and graphs below, it can be seen that
the DNN classifier achieves the best overall performance in
most of the per-class results. The overall accuracy of DNN
classifier is 97% compared to SVM classifier with an accuracy
of 93%. The DNN classifier is useful for audio tagging task
and performs better than SVM.

Fig. 10. Audio Tagging Output

TABLE I. COMPARISON BETWEEN DNN AND SVM METHODS

Fig. 12. Eventwise Accuracy of DNN and SVM

VI. CONCLUSION

Although several techniques are used for audio tagging,
research works are still going on for optimization of multi-
label acoustic classication. A Deep Neural Network (DNN)
framework incorporating unsupervised feature learning and
supervised fine tuning is used for handling the multilabel
classification task. The DNN classifier achieves the best overall
performance in most of the per-class results. The overall
accuracy of DNN classifier is 97% compared to SVM classifier
with an accuracy of 93%. Hence, the DNN classifier is
useful for audio tagging task and performs better than SVM.
Therefore it is strongly recommended to use DNN based
audio tagging for applications such as, keyword based audio
retrieval, multimedia database search, intelligent monitoring
systems to recognize activities in the environments and so on.
Here, MFCC is used as the basic feature for DNN and SVM
training. In future, more audio features can be employed to
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Fig. 13. Eventwise Precision of DNN and SVM

Fig. 14. Eventwise Recall of DNN and SVM

Fig. 15. Eventwise F-Measure of DNN and SVM

classify various sound sources. More audio classes can also
be incorporated by extending the work in future for increasing

Fig. 16. Precision Recall graph and ROC curve

the accuracy of multi label classification.

REFERENCES

[1] Garima Vyas, Malay Kishore Dutta “Automatic Mood Detection of
Indian Music Using MFCCs and K-means Algorithm ”, Contemporary
Computing (IC3), IEEE Seventh International Conference, 7-9 Aug 2014.

[2] Jurgen T. Geiger, Bjorn Schuller, Gerhard Rigoll “Large Scale Audio
Feature Extraction And SVM For Acoustic Scene Classification ”, IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics,
2013.

[3] Li Yang and Feng Su, “Auditory Context Classification Using Random
Forests ”, Acoustics, Speech and Signal Processing (ICASSP), IEEE
International Conference on 25-30 March 2012.

[4] Alexandros Nanopoulos, Ioannis Karydis, “Know Thy Neighbor: Com-
bining Audio Features And Social Tags For Effective Music Similarity
”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2011.

[5] Xi Shao and Changsheng Xu and Mohan S Kankanhalli, “Unsupervised
classification of music genre using hidden markov model ”, IEEE
International Conference on Multimedia and Expo, 2004.

[6] Remi Foucard, Slim Essid, Mathieu Lagrang and Ga el Richard, “A
regressive boosting approach to automatic audio tagging based on soft
annotator fusion ”, IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 25-30 March 2012.

[7] Courtenay V. Cotton and Daniel P. W. Ellis, “Spectral VS. Spectro -
Temporal Features For Acoustic Event Detection ”, IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WASPAA)
2011.

[8] Qiuqiang Kong, Yong Xu, Wenwu Wang, Mark D. Plumbley “A Joint
Detection -Classification Model For Audio Tagging Of Weakly Labelled
Data ”, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) 2017.

[9] Derek Tingle, Youngmoo E. Kim, Douglas Turnbull “Exploring
Automatic Music Annotation with ’Acoustically-Objective’ Tags ”,
MIR,Philadelphia,Pennsylvania, USA. Copyright 2010 ACM.

[10] Axel Plinge, Rene Grzeszick, and Gernot A. Fink, “A BAG-OF-
FEATURES Approach To Acoustic Event Detection ”, IEEE Interna-
tional Conference on Acoustic, Speech and Signal Processing (ICASSP),
2014.

[11] Ian McLoughlin, Haomin Zhang, Zhipeng Xie, and Wei Xiao “Robust
Sound Event Classification using Deep Neural Networks ”, IEEE/ACM
Transactions on Audio, Speech, and Language Processing, Volume: 23,
Issue: 3, March 2015.

[12] Yong Xu Qiuqiang Kong Qiang Huang Wenwu Wang Mark D. Plumbley
“Convolutional Gated Recurrent Neural Network Incorporating Spatial
Features for Audio Tagging ”, Neural Networks (IJCNN), International
Joint Conference on 14-19 May 2017.

International Journal of Computer Trends and Technology (IJCTT)  - Volume 62 Number 1 - August 2018

ISSN: 2231-2803                                          http://www.ijcttjournal.org                                             Page 12



13

[13] Jun Takagi, Yasunori Ohishi, Akisato Kimura, Masashi Sugiyama,
Makoto Yamada, Hirokazu Kameoka “Automatic Audio Tag Classi-
fication Via Semi-Supervised Canonical Density Estimation ”, IEEE
International Conference on Acoustic, Speech and Signal Processing
(ICASSP), 2011.

[14] Gordon Wichern, Makoto Yamada, 1Harvey Thornburg, 2Masashi
Sugiyama, and Andreas Spanias “Automatic Audio Tagging Using Co-
variate Shift Adaptation ”, IEEE International Conference on Acoustics,
Speech and Signal Processing, 2010.

[15] Yong Xu, Qiuqiang Kong, Qiang Huang, Wenwu Wang, Mark D.
Plumbley “Attention and Localization based on a Deep Convolu-
tional Recurrent Model for Weakly Supervised Audio Tagging ”,
http://dx.doi.org/10.21437/Interspeech.2017.

[16] H. Shimodaira “Improving predictive inference under covariate shift by
weighting the log-likelihood function, ”Journal of Statistical Planning
and Inference, vol. 90, 2000.

[17] M. Sugiyama, S. Nakajima, H. Kashima, P. von Bunau, and M.
Kawanabe, “Direct importance estimation with model selection and
its application to covariate shift adaptation ”, Advances in Neural
Information Processing Systems. Cambridge, MA: MIT Press, 2008.

[18] Yong Xu, Qiang Huang, Wenwu Wang, Peter Foster, Siddharth Sigtia,
Philip J. B. Jackson, and Mark D. Plumbley, “Unsupervised Feature
Learning Based on Deep Models for Environmental Audio Tagging ”,
IEEE/ACM Transactions on Audio, Speech and Language Processing,
VOL. 25, NO. 6, June 2017.

International Journal of Computer Trends and Technology (IJCTT)  - Volume 62 Number 1 - August 2018

ISSN: 2231-2803                                          http://www.ijcttjournal.org                                             Page 13




