
International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 6

Accelerating Hash Join Performance

by Exploiting Data Distribution

Yang Liu
#1

, Zhen He
#2

, Xiang Wu Meng
#3

#1
Engineering Consulting Department, Sinopec Engineering Incorporation,
21# Bldg.Anyuan,Anhuibeili,Chaoyang Dist.Beijing,China

#2
Department of Computer Science and Computer Engineering, La Trobe University

Plenty Road, Bundoora, Melbourne Victoria, Australia

#3
School of Telecommunication Engineering, Beijing University of Posts and Telecommunications,

10# Bldg.Xitucheng,,Haidian Dist.Beijing,China

Abstract—thejoin operator in relational databases

is one of the most IO intensive operations. Thelarge

size of input relations makes it hard to fit them

entirely in RAM during join processing. Therefore
therelations are processed in chucks inside a RAM

buffer of limited size.The ideabehindasuccessfuljoin

algorithm is to make the most efficient use of the

limited sized buffer to minimizethenumberof IOs.

The hash join algorithm has been a popular

algorithm due to its relativelylowIOcostscompared

to other methods. In this paper we make the

observation that the performanceofthehash join can

be dramatically improved if we take advantage of

skewed distributionsandmissingvalues in join

attributes. We propose the filtered hash join (FH-
join) which filtersouttuplesoftheinput relations

during the partitioning phase of the hash join to

minimize the workleft forthejoinphase. The results

show FH-join can outperform the hybrid hash join

by up to a factor 4 in terms of total execution time

when the data is much skewed.

Keywords —hash join, relational databases, query

processing

I. INTRODUCTION

It is commonly accepted that the join operator is

often the most expensive operator when executing a
database query. For example Hayes et al. [1] found

the join operator on average accounts for 60% of the

processing time across all the queries of the TPC-H

benchmark.

Currently most relational databases are disk based

where RAM is used as a temporary buffer for

keeping recently or commonly referenced data.

Typically a portion of the RAM space is reserved for

join query processing, however this space may not

beenough to fit any of the join relations in their

entirety. In this case the join needs to be processed
in parts, where each partprocesses a portion of the

relations. Processing by parts usually means multiple

passes through the data to complete the entire join.

The aim of efficient join processing in the above

environment is to process the join by incurring the

minimum number of read and write IO. Write IO is

used to write out intermediate data to disk during

join processing. There has been many different

classic approaches for solving this problem,
including, the nested loops join, sort-merge join,

indexed-loops join, hash join, etc. The hash join is

often found to be the most desirable among the

alternative approaches, due to its ability to prune the

number of comparisons without the need to first sort

the data or build an index, both of which are

expensive operations.

The classic GRACE and hybrid hash join methods

[2] process the join in two phases. The first is the

partitioning phase in which the input relations are

scanned and written out into hash buckets. The
second is the join phase where the two relations are

joined one hash bucket at a time. The hybrid hash

join differs from the above description by trying to

join a subset of the tuples during the partitioning

phase. It does this by keeping a memory resident

hash bucket of the outer relation R during the

partitioning phase. Then the tuples of the inner

relation S that fall into the memory resident hash

bucket are joined with the corresponding memory

resident R tuples during the partitioning phase. This

effectively filters out the tuples of the in-memory

hash bucket from the join phase. It is better to make
the outer relation R the smaller relation since this

allows the in memory hash bucket occupy a larger

percentage of total size of the outer relation.

Recently, Do et al. [3] performed a

comprehensive performance evaluation of join

algorithms on both hard disk drives and solid state

drives. They found that the hybrid hash join was

almost always the best performer on both types of

secondary storage. However, the performance of the

hybrid hash join can be significantly improved

because the hybrid hash join does not make efficient
use of the RAM space during the partitioning phase.

The hybrid hash join does not consider the data

characteristics of the two relations when it

determines which tuples of R to keep in RAM

during the partitioning phase. In contrast we take

advantage of skewed join attribute distributions and

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 7

missing values to magnify the benefit of joining

tuples in the partitioning phase and thereby filter out

a larger fraction of tuples from entering the join

phase.

Skewed join attribute distributions occur in many

real life situations. For example, Customers ⋈
C.CustomerID=O.CustomerID Orders. The number

of orders per customer is usually skewed due to

varied spending patterns of customers. For example,

some customers buy regularly from a store whereas

others shop rarely from the same store. Similarly the

following join is likely to have skewed distributions,

Orders ⋈O.ProductID=P.ProductID Products,

because orders are typically of different sizes.

There can be many join attribute values from one

relation which maybe missing from the other and
vice versa. This can occur due to a selection being

applied before the join for one or both of the

relations. For example for σC.State=NY Customers

⋈C.CustomerID=O:CustomerID Orders, the

selection on the Customers relation will likely mean

that there are many orders in the Orders relation that

will not find a match with the Customers relation.

In this paper we propose the filtered hash join

(FHjoin) which filters tuples out during the

partitioning phase of the hash join. FH-join uses two

types of filters which are designed to take advantage
of join attribute distribution skew and missing join

attribute values. The first is a range filter which

keeps in RAM R tuples that fall in certain join

attribute ranges during the partitioning phase and

then joining them directly with S’s tuples as they are

loaded during the partition phase. We keep the R

range that simultaneously fit in RAM and also

contains the largest number of S tuples. This allows

us to take maximum advantage of skewed join

attribute distributions. The second type of filter used

is the bloom filter [4] which approximately records
the presence or absence of individual join attribute

values of the two relations. This is then used to filter

out tuples of both R and S which have missing

values in the opposing relation during the

partitioning phase.

We performed an extensive performance study of

FH-join against the hybrid hash join algorithm. The

results show the FH-join outperforms hybrid hash

join on both the total execution time and the total IO

cost in all tested scenarios by up a factor of 4 for

total execution time and by up to an order of

magnitude for write IO when the data is highly
skewed.

This paper makes the following key contributions:

1) introduced the key observation that exploiting

join attributeskew and missing values can

dramatically improve the performance of the hash

join; 2) proposed the FH-join algorithm which

modifies the hash join to exploit these data

characteristics; and 3) performed an extensive

experimental study comparing the FH-join against

the hybrid hash join algorithm.

II. PRELIMINARES

In this paper we are interested in performing an

equi-join between two relations R and S. Throughout

the entire paper we will use R to denote the outer

relation and S to denote the inner relation. |R| will be

used denote the size of relation R in terms of the

number of pages, and similarly for S. B is the size of

a page. We will assume there is a RAM limit of M

pages. The outer relation R will also be the smaller

of the two input relations.

 We will use the phrase filtered out extensively

throughout this paper. We define it as follows: a
tuple is filtered out if itis not written out into a disk

resident hash bucket during the partitioning phase. A

filtered out tuple is effectively joined during the

partitioning phase of the hash join and therefore is

pruned from the entering the join phase.

III. RELATED WORKS

There are four fundamental approaches for joining

two relations. These include the block nested-loops

join, sort merge join, Indexed-loops join and hash

join. We will first briefly discuss these four

approaches and then we will discuss advanced hash
jointechniques. We give a more detailed discussion

on the hybrid hash join [2] in Section 4, since it is

the most similar join techniquecompared to our FH-

join. See the paper by Mishra et. al.[5], Nooshin et.al.

[6], and Balkesen et.al.[7] for a

comprehensivesurvey of classical join techniques.

A. Fundamental join System

 Block nested-loops join. The block nested-

loops join algorithm effectively processes the
join using a nested for loop, where tuples are

loaded into RAM at the block grain (multiple

consecutive pages). The smaller relation is

selected as the outer relation since these

results in less passes through the inner relation.

This approach performs comparisons between

every pair of inner and outer relation tuples

and therefore is very computationally

expensive. If the outer relation is quite large

compared to RAM size, then the block nested-

loops join is very IO intensive since it needs to
take one pass through the inner relation per

chuck of the outer relation that fit in RAM.

 Sort-merge join. The sort-merge joins first

sorts the two relations and then synchronously

steps through the two relations in sorted order

to perform the join. The sort-merge join

performs less computation compared to the

nested loops join since it uses the fact that the

input relations are sorted to avoid comparisons

between tuples that are far apart in sorted

order. However, if the relations are not pre-

sorted then the cost of performing the sort can
be expensive [6].

 Indexed-loops join. In this method an index

on the inner relation is used to process the join.

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 8

The join works by looping through the outer

relation, while probing the inner relation using

the index. The index on the inner relation

allows a lot of comparisons to be pruned. Note

random IO is incurred when probing the index;

this is expensive for hard disk drives (HDDs)
due to the high seek cost. This random IO cost

can be significantly reduced with the effective

buffering of pages of the inner relation.

Theindexed-loops join is only really useful if

there is a pre-built index on the inner relation.

Building the index on the fly is veryexpensive

due to the large number of random IOs.

 Hash join. The classic GRACE and hybrid

hash join methods were described in the

introduction. As already mentioned the

strength of the hash join approach is that it can

prune a lot of comparisons without the high
pre-processing cost of sorting or building an

index. Therefore it is often the preferred

approach when the input relations are not

sorted or pre-indexed [7].

B. Advanced hash join techniques

The focus of this paper is on improving the

performance ofthe hash join algorithm. Therefore in

this section we willreview some the more recent

advances in the area of hashjoin algorithms.

Recent research [8, 9, 10, 11, 12, 13] has

shownthat CPU processing occupies a significant

portion of the total join processing time for the

external hash join. This is due to the high cost of

CPU cache misses and the fact the external hash join

is very good at ensuring that all IO is sequential.
Therefore a number of different approaches have

been proposed to reduce CPU cache misses of the

hash join. These techniques include pre-fetching [8],

more temporal locality friendly reads and writes

[10,11] and multi-threading [8, 9].

Boncz et al. [11] proposed the radix clustering

approach for performing the hash partitioning in a

CPU cache friendly way. The idea is to recursively

partition data from course to finer and finer grained

hash buckets. This approach reducesthe number of

separate random locations written to at the same

time. Therefore this approach is both more CPU

cache and translation look aside buffer (TLB)

friendly. The results show this approach can
significantly reduce the partitioning cost of the hash

join.

Chen et al. [10] proposed two techniques for
speeding up the GRACE hash join. The first is called

group pre-fetching and the second is called software-

pipelined pre-fetching. The group pre-fetching

technique apply modified forms of compiler

transformations called strip mining and loop

distribution to allow pipelining of consecutive probe

tuples during the join phase. The results showed the

proposed techniques can speed up the join phase by

2.0-2.9X and speedup the partitioning phase by 1.4-

2.6X compared to the standard GRACE hash join.

Following the pre-fetching work, Chen et al. [12]

developed the inspector join. Their idea is to gather

statistics about the join attribute values of the two

input relations during the partitioning phase in order

to speed up the CPU performance of the join phase.

They use the statistics in two ways: 1) create
specialized filter indexes (multiple small bloom

filters); and 2) decide which join phase algorithm to

use for the specific data being joined. They want to

avoid having to do the multiple repartitioning passes

of the radix clustering algorithm by creating a

separate bloom filter for each sub-partition of R. The

sub-partitions are sized such that both a sub-partition

and its created hash table fit in the CPU cache.

Using the bloom filters they are able to tell which R

sub-partition each S tuple belongs to. This idea is

used to avoid writing to random locations when

creating the hash table during the join phase. They
also use the bloom filters to prune tuples of S that do

not match any R tuples. Their work differs from ours

in two respects. First, unlike us they do not take

advantage of skewed data distributions to filter both

R and S tuples during the partition phase. Second,

they build their bloom filters during the partition

phase in contrast we use pre-built bloom filters. The

benefit of prebuilt bloom filters is that we can prune

both R and S tuples during the partitioning phase.

Whereas the approach of Chen et al. [12] which can

only prune tuples of S during the partitioning phase.

Recently there has been a number of parallel hash

join algorithms [8, 9] proposed. Kim et al. [8]

compared the performance of sort merge join against
hash join on modern multi-core CPUs. They found

both join algorithms benefit greatly from multi-

threading and sort-merge join benefits greatly from

exploiting SIMD. They predict sort-merge join will

outperform hash join when 512-bit SIMD

instructions become available.

Blanas et al. [9] performed a thorough

performance evaluation of existing hash join

algorithms dissecting each internal phase and

considering different alternatives for each phase.

They found the partitioning phase does not benefit

from multi-threading but the join phase can easily

benefit from the added concurrency of multi-

threading.

In contrast to all the above algorithms our

algorithm is the only one to take advantage of data

distribution and missing values to prune the number
of tuples in both the R and S relations during the

partitioning phase. Our approach can be used in

conjunction with any of the above techniques to

further improve hash join performance.

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 9

C. Other earlier work on hash joins

Gray et al. [14] proposed an adaptive hash join

algorithm that is designed to work with dynamic

changes in the available memory. Martin et al. [15]

performed a detailed study comparing the hashed

loops; GRACE and Hybrid hash join algorithms for

multi-processor environments. Kitsuregawa et al.

[16] performed a study into how best to the tune the

size of the hash buckets for the GRACE hash join
algorithm. Kitsuregawa et al. [17] proposed a load

balancing strategy for parallel hash join algorithms.

Kitsuregawa et al. [18] performed a study into the

performance of the GRACE hash join algorithm for

the parallel disk environment. DeWitt et al. [19]

proposed skew handling methods for parallel joins.

None of the above techniques take data

distribution or missing values into consideration

when joining. The above techniques can all be

enhanced by embedding our approach into their hash

join algorithms.

IV. ANALYSIS OF HYBRID HASH JOIN

In this section we take a closer look at the hybrid

hash join, in particular we will analyze the RAM

buffer usage and IO costs of the hybrid hash join.

We then identify how it can be improved.

Figure 1 shows how the limited RAM space is
allocated to separate buffers during the partitioning

phase of the hybrid hash join. One input buffer (I) is

used to read in the input relations in large sequential

chunks. One output buffer (O) is allocated to each of
the disk resident hash buckets to enable sequential

writing. Finally the remaining RAM space called the

workspace (WS) is used to keep an in-memory hash

bucket of R.

Fig.1 Partitioning the outer relation R in hybrid hash

join

The partitioning phases of the hybrid hash join
works as follows. First one chuck of the outer

relation R is loaded into the input buffer. Next each

tuple in the input tuple is hashed. If a tuple is hashed

into the in-memory hash bucket then it is placed into

a second in-memory hash table located in the

workspace. Tuples that hash to other buckets are

placed in its corresponding out buffer. Whenever an

output buffer becomes full, its contents are flushed

into the corresponding disk-resident hash bucket.
This process is repeated until all the tuples in R have

been partitioned.

The S relation is partitioned after R has been
partitioned. The procedure for partitioning S is

exactly the same as R except the tuples that hash into

the in-memory hash bucket are immediately joined

with the R tuple in the in-memory hash table. After

S dataset has been partitioned. Then each of the

disk-resident hash buckets of R and S are loaded in

term into RAM and joined.

Keeping the in-memory hash bucket of R in the

workspace allows all tuples that map into that bucket

to be joined during the partitioning phase. There is a

trade-off between assigning a larger versus smaller

workspace. A larger workspace allows more tuples

to be joined in the partitioning phase and thus

reduces the number of IO spent writing during the
partitioning phase and loading the disk resident hash

buckets during the join phase. However a larger

workspace also reduces the size of the input and

output buffers, thus making IO less sequential.There

has been research [20] into determining the optimal

allocation of the RAM space to the various

buffers.This approach effectively assumes that the

data distribution of R and S is uniform and therefore

cannottakeadvantage of possible skew in the

distribution of S values. For example we can take

advantage of the skew in the distribution of S values

by keeping ranges in WS that correspond to a larger
fraction of S tuples.

The hybrid hash join writes into a disk resident

hash bucket any tuples that map into that bucket, this
includes tuples that do not find a matching pair in

the opposing relation. However, if we can somehow

use a small part of WS to store information on the

missing values of each relation, then we can use it to

filter out the tuples during the partitioning phase that

will definitely not find a match during the join phase.

V. FILTERED HASH JOIN (FH-JOIN)

In this section we present our FH-join algorithm

that improves over the hybrid hash join by making

much more effective use of the workspace WS to

filter out a larger fraction of R and S by taking
advantage of skewed data distributions and missing

join attribute values. The aim of FH-join is therefore

to maximize the following objective:

 TUPLES OF R 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑜𝑢𝑡 + |TUPLES OF S FILTERED OUT |

|WS |
 (1)

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 10

The above objective effectively says design an

algorithm that filters out the most amounts of R and

S per byte of WS available. We meet the above

objective using two types of filters. The first is a

range filter which selectively keeps attribute ranges

in WS which filters out the largest fraction of S
tuples. The second is a bloom filter that filters out

tuples of R and S which do not have a matching pair

in the opposing relation.

Figure 2 shows how the filters are used in the

partitioning phase of FH-join to filter out tuples from

the join phase.

Fig.2 Partitioning phase of FH-join for both R and S

relations

Figure 5(a) shows how the tuples of R are filtered

out. The tuples of R are loaded into the RAM via the

input buffer. They are then compared against the

bloom filter of relation S. This filtered out tuples of

R with join attribute values that are determined to be

missing by the bloom filter of S. The surviving non-

filtered tuples are then stored in the in-memory hash

table if they fall within the selected ranges of the

range filter. Any tuples that pass through both of

these filters are then placed into a disk resident hash

bucket. Figure 5(b) shows the similar process for

filteringS tuples. The difference is any tuples of S
that fall within the selected ranges of the range filter

are joined with the in-memory R tuples.

 Algorithm 1 shows the high level algorithm of

FH-join. The algorithm describes the pseudo code

corresponding to the diagram in Figure 2. The

algorithm uses histograms of R and S relations for

creating the range filter. The histograms capture the

frequency distribution of values within R and S. This

is then used to select the value ranges of R which

maps to a larger number of S tuples. The detailed

algorithm for selecting ranges is described in Section

5.1. Algorithm 1 assumes the histograms and bloom

filter of R and S have been pre-built. In Sections 5.4

and 5.6 we describe the cost of keeping the
histograms and bloom filters up-to-date, respectively.

Algorithm1HighlevelalgorithmofFH-join

1:

constructrangefilterbasedonhistogramsofRandSrelations(Se

esection5.1formoredetails)

2:usehistogramsofRandStoselectrangesforrangefilter

3:whilemore tuples in R need to be processeddo

4: Fillinput bufferwithtuplesofRloadedfromdisk

5:foreach tuple rs of R inside the input buffer do
6: if the bloomfilter of Sdetermines thatthe

valueofrdoesnotexistinSthen

7: discardr

8: elseifrangefilterjudgerisinselectedrangethen

9: insertr intoanin-memoryhashtable

10: else

11: writer intooutputbufferofhashbucket ofR

12: ifoutputbufferbecomesfullthen

13: write

outpu tbuffer toco rrespond ingdisk -basedhashbucket

14: end if
15: end if

16: endfor

17: endwhile

18: while more tuples in S need to be processed do

19: FillinputbufferwithtuplesofSloadedfromdisk

20: for eachtuplesofSinsidetheinputbufferdo

21: ifthe bloom filterof Rdetermines that thevalue

ofSdoesnotexistinRthen

22: discards

23: elseif ranges filterjudgesisinselectedrangethen

24: join s with Rtuples in the in-memory hash table

25: else
26: writesintooutputbufferofhashbucketofs

27: ifoutputbufferbecomesfullthen

28: write

outpu tbuffer toco rrespond ingdisk -basedhashbucket

29: end if

30: end if

31: endfor

32: endwhile

FH-join only changes the partition phase of the

hash join. Therefore the join phase is the same as

GRACE and hybrid hash joins. Hence we focus our

discussion in this section on the partitioning phase of

the FH-join.

A. Range filter

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 11

The aim of the range filter is to make the best use

of RAM by selecting the attribute ranges that cover

the largest number of S tuples whilst making sure

the R tuples that map into the selected ranges fit

within a memory limit LRF. Given this aim it is best

to select ranges where R is sparsely populated and S
is densely populated. Figure 3 shows an example

comparing two different attribute ranges, range A

and rangeB. Each dot in the top row represents an R

tuple and each dot in the bottom row represents an S

tuple. In the example it is better to select rangeA

than rangeB because rangeA filters out 12 S tuples

whereas rangeB filters only 2 S tuples and both

ranges consume the same amount of RAM space

because they both contain the same number of R

tuples. One reason for the success of rangeA is that

it is sparsely populated in terms of R tuples, thereby

allowing it to stretch over a longer interval of join
attribute values. Therefore when selecting attribute

ranges we need to consider the distribution of both R

and S join attribute values.

We use histograms to capture the frequency

distribution of join attribute values for both R and S.

Any type of histogramcan be used. We will consider

two popular histogram types: equi-width and equi-

depth.

Fig.3 comparing two example ranges.

B. Equi-width Histogram
The length of the value range of an equi-width

histogram is the same for all of its buckets. When

using the equi-width histogram, we assign the same

histogram bucket boundaries for all relations that

may join with each other. We then select a subset of

the histogram buckets that fits within LRF (R tuples

of selected buckets fit within LRF), which also
filters out the most number of S tuples.

No missing values and no duplicate values in R. If

there is one tuple for each distinct value in R then

finding the optimal set of histogram buckets is trivial

since it just involves selecting the histogram buckets

with the largest number of S tuples which also fits in

LRF. This is because in this case each histogram

bucket holds the same number of tuples. This trivial

situation is quite common since the join attribute on

R is often the primary key which often does not have

anymissing or duplicate values.

R contains missing values and/or duplicate values.

If there are missing and/or duplicate values in the

joinattribute values of R then the problem becomes

the NPcomplete knapsack problem. In the knapsack

problem weare given a set of items I numbered 1 to

n. Each item i ∈ Ihas an integer size, si and has a

value of vi. The aim is tofind the subset T ⊆ I, such

that Si ≤𝑖∈𝑇 Land Vi𝑖∈𝑇 viis maximized, where L
is a limit on the total size of itemsthat can fit within

the knapsack. Mapping the knapsackproblem to our

problem is trivial. The items map into thehistogram

buckets, the size of each item maps to the numberof

R tuples within the histogram bucket. This is

becausethe R tuples are the ones that we are put into
the RAM andthe RAM corresponds to the knapsack.

The value of anitem maps into the number of S

tuples within the histogrambucket. This is because

we want to maximize the number ofS in the selected

ranges (selected histogram buckets). Thesize limit L

maps into our RAM limit LRF.

Having established that finding the optimal set of

histograms is NP complete in the case of missing

and/or duplicate join attribute values for R, we turn

to the well-known greedy heuristic for solving the

knapsack problem. In the greedy solution we first

sort all the histogram buckets in terms of the profit
(|SBi |/|RBi | ratio), where |SBi | and |RBi | are the

number of tuples of S and R that map into bucket Bi,

respectively. Then we try to fit as many buckets of R

tuples as possible into RAM in descending order of

profit. Algorithm 2 shows the pseudo code for the

algorithm.

Algorithm 2 Greedy algorithms for selecting R join

attribute ranges for the range filter when the equi-

width histogram is used.

Input: ewHistR: equi-width histogram of relation

R, ewHistS: equi-width histogram of relation S,

LRF:

RAM limit for storing R tuples of selected

ranges

Output: selected Ranges: selected ranges of R

1: Initialize selected Ranges to empty fjSBi j and

jRBi j are the number of tuples of S and R that

map into bucket Biof ewHistR and ewHistS,

respectively

2: Sort histogram buckets of ewHistR in terms of

profit (jSBi j=jRBi j ratio) and place in sorted bucket

Array

3: for each bucket b within sorted bucket Array

in descending order profit do

4: if (total size of tuples within selected Ranges +

total size of R tuples in b) < LRF then

5: Place value range of b into selected Ranges

6: end if

7:end for

C. Equi-depth Histogram

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 12

The equi-depth histogram has variable bucket

boundaries but fixed histogram height (the number

of items that map into the same bucket). Therefore

each bucket contains the same number of items. One

of the major benefits of the equi-depth histogram is

that it is much more sensitive to the value
distribution. Therefore there will be more buckets in

value ranges that have higher number of tuples.

Like for the equi-width histogram case here we

also aim to select the subset of histogram buckets

that fits within LRF, and filters out the most number

of S tuples. We again first consider the case of no

missing or duplicate R join attribute values.

No missing values and no duplicate values in R.

In the case of no missing and/or duplicate R join

attribute values the solution is trivial. We just select

the set of S histogram buckets which have the

smallest width and which also fit within LRF. This is
because each bucket has the same number of S

tuples but the smaller width buckets covers a smaller

number of R tuples. Therefore if we select the

smaller width buckets we can fit more buckets

within LRF.

R contains missing values not due to prior

selection and/or contains duplication. This case is

less trivial, since the equi-depth histogram buckets

of R and S would not be aligned and therefore we

need to interpolate the number of tuples in one of the

histogram buckets in order to effectively align the
buckets. We cannot select a subset of S histogram

buckets like the previous two cases because we

would then need to interpolate the R histogram

buckets to approximate the number of R tuples that

would fall into the selected S tuples. This

approximation would mean we cannot guarantee to

stay within the memory limit of LRF. Hence we

select a subset of the R histogram buckets such that

selected buckets stay within the memory limit and

the interpolated number of tuples in the

corresponding S histogram buckets is the largest.

The reason this is not an NP complete problem like
the corresponding equi-width histogram case is that

all the R buckets have the same number of tuples.

Therefore it is not the Knapsack problems because it

effectively means each item has the same weight.

For a given join attribute value range v we can

compute the number of tuples in the corresponding

range of S by interpolating the values of the S

histogram buckets, NTS (v) as follows:

𝑁𝑇𝑠 𝑣 =
𝑂𝑉𝐸𝑅𝐿𝐴𝑃 𝐿𝑒𝑛𝑔𝑡 𝑏 ,𝑣

𝑙𝑒𝑛𝑔𝑡 𝑏
 𝑁𝑇(𝑏)

𝑏∈𝑂𝑉𝐸𝑅𝐿𝐴𝑃𝐵𝑠 (𝑣)
(2)

Where OVERLAPBS (v) is the set of S

histogrambuckets that overlap v, OVERLAP Length

(b; v) is thelength of the overlap between the value

range of bucket band v, length (b) is the length of

value range of bucket b,and NT(b) is the number of

tuples in bucket b.Using Equation 2 we can compute

the number of tuples ofS that fall within the value

range of a R histogram bucket.

D. Equi-width versus equi-depth histograms
In this section we compare the equi-width and equi-

depth histograms in terms of update cost, quality of

selected ranges and run-time complexity.Where

quality of a selected range is measured in terms of a

higher fraction of R and S tuples filtered out per byte

of workspace WS (Equation 1).

Update costs. The main benefit of using an equi-

width histogram is that updating the histogram is

trivial and cheap. This is because its bucket
boundaries do not change with respect to updates.

Inserting a tuple simply requires incrementing the

corresponding bucket count and deleting a tuple

simply requires decrementing the corresponding

bucket count. However, incrementally updating an

equi-depth histogram is very difficult since updates

result in changes to multiple bucket boundaries. This

may not be a big problem for applications that are

mostly read-only such as data warehouses.

Quality of selected ranges. For the case that R

contains no missing values and no duplicated values
the equi-depth histogram will provide higher quality

selected ranges because it is much more sensitive to

skew in the number of tuples in both R and S. As

mentioned before the equi-depth histogram would

have more histogram buckets in ranges that have

higher number of tuples. For the case that R contain

no duplicate values but contain missing values due

to prior selection, again the equi-depth histogram

will produce higher quality selected ranges. This is

for the same reason as the first case. However, for

the last case where R contains missing values not
due to prior selection and/or contains duplication, it

is less clear the equi-depth histogram is better than

the equi-width histogram. The reason for this is the

selection of value ranges is based on the bucket

boundaries of R instead of bucket ranges of S.

Therefore we cannot take advantage of finer grained

ranges in regions that have more S values. Selecting

based on the attribute boundaries of S is more

important than R since S is the inner relation and

therefore should be larger in size. The other thing to

consider for this third case is that both equi-width

and equi-depth histogram solutions are approximate
solutions. For the equi-width histogram it is a greedy

heuristic solution to the knapsack problem and

forthe equi-depth histogram interpolation is used to

approximate the number of tuples S tuples within

each range of R.

Run-timecomplexity.All the proposed algorithms

for both types of histograms have run-time

complexity of O(nlog(n)), where n is the number of

histogram buckets in either R or S depending on the

algorithm. This is because they all involve first

sorting the ranges corresponding to R or S histogram
buckets and then selecting the subset of ranges based

on sorted order. Although when the equi-width

(2)

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 13

histogram is used for the case that R contain missing

values and/or duplicate values is an NP complete

problem, we proposed the use of the greedy algo-

rithm which again has a run-time complexity of

O(nlog(n)).

Recommendation. Based on the
aboveanalysiswemakethefollowingrecommendations

.Use the equi-width histogram whenever the data is

expected to be updated fairly frequently due to the

high cost of updating equi-depth histograms.

However, if the data is mostly read-only then the

equi-depth histogram should be used except the third

case where R contains missing values not due to

prior selection and/or contains duplication. In this

third case there is no clear winner between equi-

width and equi-depth histograms. These

recommendations are summarized in Table 1.

TABLE I

Recommendations on when the equi-width versus equi-depth

histogram should be used

E. BLOOM FILTER

If we know which join attribute values do not

exist for the opposing relation then we can directly

discard any tuples that map to a join attribute value

that does not exist in the opposing relation. One

naive way to store which join attribute values exist

within a relation is to use 1 bit per join attribute

value. However, this approach would consume a lot

of RAM space since the join attribute values may

span a large domain. In this paper we use a bloom

filter [4] as effectively a lossy compression method

to store and index which join attribute values that
exist within a relation. The bloom filter can be set to

any size and has the desirable property that it will

never produce any false negatives. That is if a join

attribute value is found to not exist in the bloom

filter then it is guaranteed to not exist in the relation.

However, a false positive is possible, that is, a join

attribute value that exists within the bloom filter may

not actually exist in the relation. False positives do

not result in missing join results but just means that

the false positive tuple cannot be filtered out by the

bloom filter.
The bloom filter works by first hashing the join

attribute values of one relation and then using the

hash value as an index into a bit array. Next, the cell

within the bit array that corresponds to the hash code

is set to 1 indicating the existence of at least one

tuple whose join attribute value hashes to that

location. The filter can then be probed by hashing

join attribute values of the opposing relation and

then using the hash value to index into the

corresponding cell of the bit array. If the indexed

cell is zero then it means there is no tuple with that

join attribute value in the opposing relation. Hence
the tuple can be safely filtered out.

Figure 4 shows an example of using the bloom

filter to store the existence of S tuples. In the

example the set of S join attribute values 20, 4, 22, 1,

18 are inserted into the bit array of the bloom filter

by using their corresponding hash values 1, 2, 4, 9
and 4. The bit array positions 1, 2, 4 and 9 are set to

1 accordingly. Next the R join attribute value 5 is

used to probe the bloom filter by computing the hash

value of 5, which is 8 in this case. The eighth

position in the bit array is inspected. A bit value of 0

is found at that location, indicating the join attribute

value of 5 does not exist in R. Therefore the tuple of

R with join attribute value of 5 can be safely filtered

out. In contrast the join attribute value of 66 when

used to probe the bit array results in a false positive

since the hash value of 66 is 9 which maps into a

location of the bit array which has 1 a bit set. This is
a false positive since the set of S values does not

contain 66. The 9th element of the bit array was set

to 1 since the value 1 also has a hash value of 9.

Fig 4. Example of the use of the bloom filter

Reducing false positives. As mentioned earlier

false positives does not produce incorrect join results

since it just means the bloom filter cannot filter out

the false positive tuples. However, false positives are

undesirable since they reduce the number of tuples

of S that can be filtered out during the partitioning

phase. There are two approaches for reducing the

frequency of false positives. First, the bit array can

be enlarged. This results in less hash collisions. The

second approach is to use multiple hash functions. In

the case multiple hash functions are used, a false
positive only occurs when a value results in a hash

collision for all hash functions used. The first

Missingand/orduplicate

valuesinR

Mostlyread

-only

Equi-

width

Equi-

depth
Nomissingandnoduplicate Yes √
Nomissingandnoduplicate No √
Onlymissingduetopriorselection Yes √
Onlymissingduetopriorselection No √

Missingnotduetopriorselectionand/o

rduplicate

Yes √ √
Missingnotduetopriorselectionand/o

rduplicate

No √

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 14

approach of enlarging the bit array reduces false

positives by using more RAM space, whereas the

second approach of using multiple hash functions

reduces false positives by using more computation.

Selection prior to join. In the situation there is a
selection prior to a join; a bloom filter can be built

on-the-fly for the selected tuples during the selection

operation.

F. Keeping bloom filters up-to-date

When tuples are deleted we cannot simply reset its
corresponding entry in the bit array to 0 since

multiple values can hash to the same location in the

bit array. However, doing nothing when a tuple is

deleted does not produce an incorrect join result

since it just generates a false positive. Therefore we

do not update the bloom filter when tuples are

deleted, but instead rebuild the entire bloom filter

after a threshold number of tuples have been deleted.

Insertion into the bloom filter is cheap and straight

forward as described throughout this section. It is

also important to note that there are a lot of

applications which are mostly append only like most
datawarehouses. For these applications keeping the

bloom filter up-to-date will not be a problem since

no deletions are needed.

VI. EXPERIMENTAL SETUP

The experiments were conducted using a 500GB
Seagate ST3500418AS 3.5 inch SATA Hard Drive.

The processor we employed in the experiments is an

Intel(R) Core(TM) i7 CPU 860. The machine had 4

GB of RAM. However, we further restricted the

amount of RAM available to the tested algorithms.

The experiments were conducted on the Linux

operating system. Linux automatically caches all IO

requests. This would invalidate our experiment

results since it would mean pages loaded during the

partitioning phase will be available for reuse in the

join phase without the need to reload from the hard
disk. Therefore, we disabled the operating system’s

caching functionality.

A. Algorithms tested

HH-Join. This is the traditional hybrid hash join.

We set the size of the input buffer, output buffer,
working space and the number of disk resident hash

buckets using the formulas developed by Hass et al.

[20] (as explained in Section 4). The universal fudge

factor was set to the recommended 1.2.

FH-join. For the FH-join, we set the size of the

input and all the output buffers to 700 pages (2.8

MB) each and the number of disk resident hash

buckets to 50. These parameters were determined
based on experimental tuning. We leave the work of

finding optimal allocation of buffer sizes for FH-join

as an area of future work. We set the size of the

bloom filter to 164 KB. We set the memory limit for

the range filterLRF to equal the size of the work

space minus the size of bloom filter. In the

experiments we used an equal-depth histogram.

B. Data sets

In our experiments the size of the tuples of R and

S relations were modelled using the ORDERS and

LINEITEMS tables of the TPC-H benchmark. We

also modelled the join attribute as a 32-bit integer
representing the ORDERKEY. We varied the ratio

of R relation size versus S relation size instead of

just using the one defined by TPC-H. This is because

our algorithms are highly sensitive to this ratio and it

is important to test a range of ratios. We also did not

use the exact data distribution specified by the TPC-

H benchmark since we wanted to test a range of join

attribute value distributions.

We generated three data sets. The three data sets

are described as follows. Complete-uniform, where

the join attribute of R have no missing values and no

duplicates. The join attribute values of S are
generated using the uniform random distribution.

Complete-Gaussian, where the join attribute of R

have no missing values and no duplicates. The join

attribute values of S are generated using the

Gaussian random distribution. We use complete-

Gaussian as the default data distribution because this

is a common scenario. In this common scenario the

join attribute of R is a primary key and the join

attribute of S is a foreign key. The primary key

cannot have any duplicate values and often has the

complete set of values. The join attribute of the
foreign key can often be skewed. Gaussian-Gaussian,

where both the join attributes of both R and S

datasets are generated using the Gaussian random

distribution. Table 2 shows the default settings used

in our experiments.

TABLE III

Default parameter setting used in our experiments

VII. EXPERIMENTAL RESULTS

We have conducted six experiments. In the first

experiment, we have varied the RAM size. In the

second experiment, we have varied the percentage of

values missing from R. In the third experiment, we

have varied the level of skew in S. In the fourth

experiment, we varied the size of S. In the fifth

experiment, we reported the breakdown of execution

 Defaultsetting
RAMsize(pages) 80000

PercentageofRvaluesmissing 0
σofGaussiandistribution 0.5
SizeofSrelation(pages) 2857369
SizeofRrelation(pages) 245964

TuplesizeofS(bytes) 112
TuplesizeofR(bytes) 104
Datadistribution Complete-Gaussian

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 15

time for three different RAM sizes. Finally, we

varied the data distribution of both R and S.

A. Vary RAM size results

In this experiment, we compare the performance

of the FH-join and HH-join with varying RAM sizes
and the rest of the parameters set using the default

parameters.

Figure 5(a) shows the total execution time result

when the RAM size is varied. Figure 5(b) and Figure

5(c) shows the read and write IO results,

respectively. Figure 5(d) shows the percentage of S

tuples filtered out during the partition phase of the

two competing hash join algorithms.
Figure 5(a) shows that the FH-join algorithm

significantly outperforms the HH-join algorithm for

total execution time and the percentage difference

between the algorithms increase as the RAM size
increases. This is because the FH-join algorithm

makes more effective use of RAM by analysing the

skewed distribution of S and then retaining the

ranges of R which filters out the highest percentage

of S tuples. This can be seen from Figure 5(d). The

main effect of filtering out more tuples is the

dramatically smaller number of write IOs of the FH-

join compared to the HH-join as shown on Figure

5(c).

(a) Total execution time

(b) Number of read IO

(c) Number of Write IO

(d) Filtered Percentage

Fig 5. Results of the varying RAM size experiment.

B. Vary percentage of missing R values

In this experiment we compare the performance of

FH-join and HH-join when the percentage of R

tuples missing is varied. We randomly (using
uniform random distribution) remove between 0%

and 50% of the values of relation R. We left the

other parameters the same as the default settings.

Figure 6(a) shows the total execution time

performance of the FH-join compared to the HH-

join. The results indicate that the FH-join

outperforms HH-join for the whole range of

percentage of missing R tuples varied. In particular

FH-join outperforms HH-Join by a factor of 3 for

total execution time and a factor of 5 for write IO

when 50% of the R tuples are missing.
It can be clearly seen from the graph that the FH-

join outperforms the HH-join by a larger margin as

the percentage of R tuples missing increases. This is

because the FH-join uses a bloom filter to filter out

tuples of S which map to the missing R values,

whereas the HH-join does not keep track of which R

values are missing and therefore cannotfilter out the

corresponding S tuples. Figure 6(d) clearly shows

the effectiveness of the bloom filter at filtering out S

tuples, when the percentage of R tuples removed is

50% the two filters of the FH-join combine to

remove 80% of the tuples of S. In contrast the

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 16

percentage of tuples filtered out by the hybrid hash

join stays constant since it does not know which R

tuples are missing.

(a) Total execution time

(b) Number of read IO

(c) Number of Write IO

(d) Filtered Percentage

Fig 6. Results of percentage of missing R tuples

C. Vary degree of skew in S

In this section, we compare the performance of

the two algorithms when the skew in the values of S
is varied by varying the sigma value of the Gaussian

distribution from 0.1 to 1.0. A larger sigma value

means smaller skew. Therefore the graphs show the

results from higher skew to lower skew.

Figure 7 shows, that the FH-join outperforms HH-

join algorithm on both the total execution time and

the total IO cost in all tested scenarios by up a factor

of 4 for total execution time and by up to an order of

magnitude for write IO when the data is highly

skewed (sigma equal to 0.1). This is because the

range filter of FH-join is more effective (prunes a
larger percentage of S tuples) when the data

distribution of S is more skewed.

The results show FH-join gets closer to the

performance of the HH-join as the degree of skew

reduces. This is because as the degree of skew

decreases FH-join loses more of its advantage of

exploiting skew to filter out more S tuples. Hence it

performs more similar to HH-join as the degree of

skew decreases. This is supported by the results of

Figure 7(d) which shows the percentage of tuples

filtered out by the FH-join is about the same as HH-

join when sigma is at 1.0 (lowest skew).
The results show that although FH-join filters out

around the same percentage of tuples at sigma of 1.0

(shown in Figure 7(d)) as the HH-join FH-join

however outperforms HH-join for total time by a

noticeable margin (Figure 7(a)). This is because our

FH-join implementation makes very efficient use of

the CPU when matching tuples in the partitioning

phase by using knowledge that the R relation does

not have any missing values and it is ordered in

RAM.

(a) Total execution time

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 17

(b) Number of read IO

(c) Number of write IO

(d) Filtered Percentage

Fig 7. Results of varying skew in S.

D. Vary size of S

In this experiment, we compare the performance

of the FH-join and the HH-join with varying sizes of

S. The size of relation S is labelled in terms of the
number of factors by which the S relation is larger

than the R relation. We left other parameters to

default settings.

The results in Figure 8 show that the FH-join

outperforms HH-join by a larger amount as the size

of relation S grows. The reason is again due to the

fact that the FH-join uses RAM more efficiently

during the partitioning phase. Each good decision of

which ranges of relation R to keep in RAM is

magnified as the size of S grows, hence increasing

the gap between the two algorithms as the size of S

grows.

(a) Total execution time

(b) Number of read IO

(c) Number of write IO

(d) Filtered Percentage

Fig 8. Results of varying the size of S.

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 18

E. Breakdown of total execution time as RAM size

is varied.

In this section we measure the execution time of

the two join algorithms by breaking down the total

execution time into two categories. Firstly, the

execution time is divided into two parts, the
partitioning phase, and the join phase. Secondly, the

execution time is divided into three parts, the write

IO time, the read IO time, and the CPU time. For

each breakdown graph we report the results for three

different RAM sizes.

The partitioning and join phase breakdown results

are reported in Figure 9(a). As can be seen from the

graph the partitioning phase consumes a much

higher percentage of the total time compared to the

join phase. This is because both algorithms are able

to complete the join of a high percentage of tuples

during the partition phase and therefore leaving few
tuples left to join during the join phase. Also the

non-filtered out tuples are written out during the

partition phase which contributes to a significant

amount of execution time during the partitioning

phase (see Figure 9(b)).

The results of the breakdown between read IO

time, write IO time and CPU time for the

partitioning phase is shown in Figure 9(b). The

results show as the RAM size grows both algorithms

spend less time performing write IO. This is because

as the RAM size grows a larger amount of relation R
can be fit in memory for both algorithms and can

therefore be used to filter out a larger amount of S

tuples which in turn reduces the need to write out

tuples for the join phase. The results of the

breakdown between read IO time and CPU time for

the join phase is shown in Figure 9(c). We do not

report write IO times for the join phase since the join

phase does not need to perform any write IO. The

results show CPU time is a larger portion of total

execution time than read IO time for the join phase.

The reason for this is the join phase is CPU intensive

due to the large number of comparisons it needs to
perform and also the large number of random RAM

accesses during hash table creation and probing.

(a) Total execution time

(b) Partition phase

(c) Join phase

Fig 9. Results of breakdown of total execution time as RAM

size is varied

F．Vary data distributions of R and S

So far, in previous experiments, we used the

Complete-Gaussian data distribution data set. In this

section, we report results for data distributions of

Complete-Uniform, Complete-Gaussian and

Gaussian-Gaussian (see Figure 6.2 for a description).
The other parameters were left at their default values.

Figure 10 shows the results for this experiment.

As shown in the results, the FH-join outperforms the

HH-join for all of the three vary distribution dataset

groups for total execution time. Among these three

tested data distribution groups, FH-join gives the

best performance in Complete-Gaussian distribution.

This is because FH-join can take advantage of the

skew in the S relation to filter out more tuples during

the partitioning phase. In addition it also uses the

knowledge that R has no missing tuples and is
ordered in terms of join attribute values to join

tuples faster during the join phase.

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 19

(a) Total execution time

(b) Number of read IO

(c) Number of write IO

(d) Filtered percentage

Fig 10. Results of varying data distribution of R

and S

VIII. CONCLUSION

In this paper, we proposed a new approach for

speeding up the partitioning phase of the external

hash join algorithm, by reducing the total read and

write IO costs. The approach is designed to make the

best use of the limited RAM space available during

the partitioning phase to filter out as many tuples

both relations as possible from entering the join

phase. The approach is called FH-join. The FH-join

uses a range filter and a bloom filter to prune the

number of tuples entering the join phase.

A detailed experimental study was conducted into
the effectiveness of the FH-join against the hybrid

hash join algorithm. The results show that the FH-

join algorithm outperforms the hybrid hash join

algorithm in terms of both total execution time and

total IO cost in almost all scenarios tested. The FH-

join algorithm outperforms the hybrid hash join by a

larger margin as any one of the following happens:

RAM size increases; degree of skew in the attribute

value of the outer relation increases; the percentage

ofmissing values increases;and as the size of the

inner relation increases. The results also showed that
the FH-join gets most of its performance advantage

against hybrid hash join from reducing write IO

during the partitioning phase of the join.

In the future, we plan to propose more effective

methods for selecting the best ranges during the

partitioning phase and further optimize the CPU

performance of the FH-join algorithm. We also plan

to explore the performance implications of using the

FH-join in a multi-threaded environment.

REFERENCES

[1] Hayes, T., Palomar, O., Unsal, O., Cristal, A., and Valero,

M. (2012) Vector Extensions for Decision Support DBMS

Acceleration. The 45th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO45), pp. 166–

176.

[2] DeWitt, D. J., Katz, R. H., Olken, F., Shapiro, L. D.,

Stonebraker, M. R., and Wood, D. A. (1984)

Implementation techniques for main memory database

systems. Proceedings ACM SIGMOD ’84, pp. 1–8.

[3] Do, J. and Patel, J. M. (2009) Join processing for flash ssds:

remembering past lessons. DaMoN, pp. 1–8.

[4] Mullin, J. K. (1983) A second look at bloom filters.

Communications of the ACM, 26, 570–571.

[5] Mishra, P. and Eich, M. H. (1992). Join processing in

relational databases. ACM Computing Survey, 24, 63–113.

[6] Nooshin S, Mirzadeh, Kockerber, O, Falsafi B, and Grot B.

(2015) Sort vs. Hash join revisited for near-memory

execution, pp. 1-6

[7] Balkesen C, Teubner J, Alonso G, et al. (2015). Main-

Memory Hash Joins on Modern Processor Architectures [J].

IEEE Transactions on Knowledge and Data Engineering, ,

27(7): 1754-1766.

[8] Kim, C., Kaldewey, T., Lee, V. W., Sedlar, E., Nguyen, A.

D., Satish, N., Chhugani, J., Di Blas, A., and Dubey, P.

(2009) Sort vs. hash revisited: fast join implementation on

modern multi-core cpus. Proceedings of the VLDB, 2,

1378–1389.

[9] Blanas, S., Li, Y., and Patel, J. M. (2011) Design and

evaluation of main memory hash join algorithms for

multicore cpus. SIGMOD Conference, pp. 37–48.

International Journal of Computer Trends and Technology (IJCTT) – Volume 56 Number 1- February 2018

ISSN: 2231-2803 http://www.ijcttjournal.org Page 20

[10] Chen, S., Ailamaki, A., Gibbons, P. B., and Mowry, T. C

(2004) Improving hash join performance through

prefetching. Proceedings of the 20th International

Conference on Data Engineering ICDE ’04, pp. 116–127.

[11] Manegold, S., Boncz, P. A., and Kersten, M. L. (2000)

What happens during a join? Dissecting CPU and memory

optimization effects. Proceedings of the VLDB, pp. 339–

350.

[12] Chen, S., Ailamaki, A., Gibbons, P. B., and Mowry, T. C.

(2005) Inspector joins. Proceedings of VLDB, pp. 817–828.

[13] Manegold, S., Boncz, P., and Kersten, M. (2002)

Optimizing main-memory join on modern hardware. IEEE

Transactions on Knowledge and Data Engineering, 14,

709–730.

[14] Zeller, H. and Gray, J. (1990) An adaptive hash join

algorithm for multiuser environments. In McLeod, D.,

Sacks-Davis, R., and Schek, H.-J. (eds.), Proceedings of

VLDB, pp. 186–197.

[15] Martin, P., Larson, P.-A°., and Deshpande, V. (1994)

Paralle hash-based join algorithms for a shared-everything.

IEEE Trans. Knowl. Data Eng., 6, 750–763.

[16] Kitsuregawa, M., Nakayama, M., and Takagi, M. (1989)

The effect of bucket size tuning in the dynamic hybrid

grace hashjoin method. VLDB, pp. 257–266.

[17] Kitsuregawa M, Ogawa Y. Bucket spreading parallel hash:

a new, robust, parallel hash join method for data skew in

the super database computer (SDC)[J]. Very large data

bases, 1990: 210-221.

[18] Kitsuregawa, M., ichiro Tsudaka, S., and Nakano, M.

(1992) Parallel grace hash join on shared-everything

multiprocessor:Implementation and performance

evaluation on symmetry s81. Proceedings of ICDE.

[19] DeWitt, D. J., Naughton, J. F., Schneider, D. A., and

Seshadri, S. (1992) Practical skew handling in parallel

joins. Proceedings of VLDB, pp. 27–40.

[20] Haas, L. M., Carey, M. J., Livny, M., and Shukla, A. (1997)

Seeking the truth about ad hoc join costs. The VLDB

Journal, 6, 241–256

