
International Journal of Computer Trends and Technology (IJCTT) – Volume 50 Number 3 August 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 151

A Web Crawler Design for Data Warehousing
Prof. Leena H. Patil

#1
, AnkitKhobragade

*2
, Priyakant Satpudke

#3
, Nikhil Sangani

*4

Computer Science and Engineering Department,

Priyadarshini Institute of Engineering and Technology- Nagpur, Maharashtra 441110, India

Abstract- The size of the web is becoming a focus

for research activities. The internet is the largest

collection of data today. For this computer

programs need to conduct any large scale

processing of web pages. So we need the use of web

crawler at some stage in order to fetch the pages

that should be analysed. A web crawler is a

program which browses the internet in a

methodical, automated manner. This process is

called web crawling. A search engine uses web

crawler to collect web pages from internet and the

web crawler collects it by web crawling. In this

paper we have reviewed a web crawler design for

data warehousing which allows to search in offline

mode also.

Keywords- Web crawler; Search engine; Offline

mode

I. INTRODUCTION

The size of the data is increasing on the

World Wide Web, it is becoming very important to

extract the relevant information in the limited

period of time. Many of the research is being done

to improve the accuracy of search engines by

providing crawling algorithms which could traverse

through large number of data in a limited period of

time and can return the results which are sorted

based.

So, Web crawler is software for

downloading pages from the Web automatically. It

is also called web spider or web robot. Web

crawlers can be used in various areas, the most

prominent one is to index a large set of pages and

allow other people to search this index[1]. It can be

accessed in an offline mode without internet

facility.

Search engines use various algorithms

which can sort and rank the results in the order of

priority to the user's query. Many algorithms are in

use - Breadth First Search, Best First Search, Page

Rank algorithm, Genetic algorithm to mention a

few [2].

The general process that a crawler takes is

as follows:- [1]

 It automatically downloads the page we are

viewing - the system keeps track of pages to

be downloaded in a queue.

 Extract all links from the page and add those

to the queue mentioned above to be

downloaded later.

 Extract all the words of the page & save

them to a database which is associated with

this page, and save the order of the words of

the page so that people can search for

phrases, not just keywords.

 It saves the summary of the page and update

the last processed date for the page so that

the system knows when it should re-check

the page at a later stage.

There are important characteristics of the

Web that make crawling very difficult:-

[7]

 its large volume

 its fast rate of change, and

 dynamic page generation.

The large volume implies that the crawler can only

download a fraction of the Web pages within a

given time, so it needs to prioritize its downloads.

The high rate of change which implies that the time

the crawler is downloading the last pages from a

website, it is very likely that new pages have been

added to the website, or that pages have already

been updated or it have been even deleted.[7]

II. LITERATURE SURVEY

When a data is searched, hundreds of

thousands of results appear. Users do not have the

persistence and stretch to go through each and

every page listed. So search engines have a big job

of sorting out the results, in the order of interest to

the user within the first page of appearance and a

quick summary of the information provided on a

page [2].

International Journal of Computer Trends and Technology (IJCTT) – Volume 50 Number 3 August 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 152

Fig.1 Components of Web Search System [3]

Some of the web crawling algorithms used by

crawlers that we will consider are:

 Breadth First Search

 Best First Search

 Fish Search

 A* Algorithm

These three algorithms given are some of the

most commonly used algorithms for web crawlers. A*

and Adaptive A* Search are the two new algorithms

which have been designed to handle this traversal.

A. Breadth First Search

Breadth First Search is the simplest form of crawling

algorithm. It starts with a link and keeps on traversing the

connected links without taking into consideration any

knowledge about the topic. Since it does not take into

account the relevancy of the path while traversing, it is

also known as the Blind Search Algorithm. It is

considered to give lower bound on efficiency for any

intelligent traversal algorithm [4].

Pseudo-code for Breadth First Search is

as follows:

Breadth-First-Search(Graph, root):

 create empty set S

 create empty queue Q

 add root to S

 Q.enqueue(root)

 while Q is not empty:

 current = Q.dequeue()

 if current is the goal:

 return current

 for each node n that is

adjacent to current:

 if n is not in S:

 add n to S

 Q.enqueue(n)

B. Best First Search

Best First Search is a heuristic based search

algorithm. In this approach, relevancy calculation is

done for each link and the most relevant link, such

as one with the highest relevancy value, is fetched

from the frontier [5]. Thus every time the best

available link is opened and traversed.

Pseudo-code for Best First Search is as

follows:

 functionbest_first(start, finish)

 closed = set({})

open = set({start})

 score_of = {}

 score_of[start] =

calculate_heuristics(start)

 whilenotopen.is_emptydo

 -- find node with minimum f

 current = min(open, function(node)

returnscore_of[node] end)

 if current == goal then

 --reconstruct the path to goal

 returncreate_path(current)

 end

 closed.add(current)

 open.remove(current)

 forneighborincurrent:neighbors() do

 ifnotclosed.contains(neighbor) then

 --calculate the heuristics for

neighboring node

 score_of[node] =

calculate_heuristics(neighbor)

 --add neighboring node to open set

 open.add(neighbor)

 end

 end

end

-- there is no path to the goal

end

C. Fish Search

Fish Search is a dynamic heuristic search algorithm. It

works on the intuition that relevant links have relevant

neighbours; hence it starts with a relevant link and goes

deep under that link and stops searching under the links

International Journal of Computer Trends and Technology (IJCTT) – Volume 50 Number 3 August 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 153

that are irrelevant. The key point of Fish Search

algorithm lies in the maintenance of URL order.[8]

Pseudo-code for Best First Search is as

follows:[8]

1. Initialize user parameters

2. Initialize fishes positions randomly

3. while Stopping condition is not met do

4. Calculate fitness for each fish

5. Run individual operator movement

6. Calculate fitness for each fish

7. Run feeding operator

8. Run collective-instinctive movement operator

9. Run collective-volitive movement operator

10. end while

D. A* Algorithm

A* algorithm combines all the features of uniform-cost

search and pure heuristic search to efficiently compute

optimal solutions. A* algorithm is the Best First Search

algorithm in which the cost associated with a node is f(n)

=g(n)+ h(n), where g(n) is the cost of the path from the

initial state to node n and h(n) is the heuristic estimate of

the cost of the path from node n to the goal node. Thus,

f(n) estimates the lowest total cost of any solution path

going through node n. At each point a node with lowest f

value is chosen for expansion. It ties among nodes of

equal f value should be broken which is in favour of

nodes with lower h values. The algorithm terminates

when a goal node is chosen for expansion [6].

III. PROPOSED METHODOLOGY

Breadth First Search is a blind search algorithm and

hence not a very efficient method. Best First Search and

A* Search show nearly equal search time and can be

improved using better heuristic functions. Work can be

done on improving the heuristic function in Best First

Search and A* Search so as to increase the efficiency of

the algorithms, the accuracy and timeliness of search

engines. Better A* Search will result in the improvement

of all other search, by which we can hope to make Web

crawling much faster and more accurate. Further

improvement can be made by dynamically updating the

heuristic approach based on the traversal done in

reaching the intermediate node from the initial node, thus

improving the remaining part of the journey using the

enhanced heuristic function.A* Search algorithm is one

of the best and popular technique used in path-finding

and graph traversals. It is also worth mentioning that

many games and web-based maps use this algorithm to

find the shortest path very efficiently. It is really a smart

algorithm which separates it from the other conventional

algorithms.

Pseudo-code for A* Approach is as follows:[6]

 /*Start with given Seed URLs as input*/

A_Star_Algo(Initial seed)

 /*Insert Seed URLs into the Frontier*/

Insert_Frontier (Initial seed);

/*Crawling Loop*/

 While (Frontier! = Empty)

/*Pick new link from the Frontier*/

Link: = Remove_Frontier (URL);

 Webpage: = Fetch (Link);

 Repeat For (each child_node of Webpage)

/*Calculate Relevancy Value till that

Page*/

Rel_val_gn (child_node):=

Rel_val(topic, node webpage);

 /*Calculate Relevancy Value from

that Node till the Goal Page*/

Rel_val_hn

(child_node):=Rel_val(topic, goal webpage)-

Rel_val(topic, node webpage);

/*Calculate Total Relevancy Value of

the Path to the Goal Page*/

Rel_val_fn:=

Rel_val_gn+Rel_val_hn;

/*Add new link with Maximum

Relevancy Value into Frontier*/

 Insert_Frontier (child_node_max,

Rel_val_max);

End While Loop

IV. CONCLUSION

 The paper surveys several crawling methods or

algorithms that are used for downloading the web pages

from the internet. Web crawlers are an important aspect

of all the search engines. They are the basic component

of all the web services so they need to provide high

performance. A number of crawling algorithms are used

by the search engines. A good crawling algorithm should

be implemented for better results and high performance.

In this paper we have studied different crawling

technologies where how to crawl searching a hidden web

documents with different ways. We have tried to make

our working design as simple as possible. Compared to

other crawling technology the focused and hidden web

crawling technology is designed for advanced web users

on the particular topics. Our future work will be

including a complete implementation, analysis and

evaluation of this approach. In future, work can be done

on improving the heuristic function in Best First Search

and A* Search so as to increase the efficiency of the

algorithms, the accuracy and timeliness of search

engines. Better A* Search will result in the improvement

of Adaptive A* Search, by which we can hope to make

Web crawling much faster and more accurate

International Journal of Computer Trends and Technology (IJCTT) – Volume 50 Number 3 August 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 154

V. REFERENCES

[1] Mini Singh Ahuja Dr Jatinder Singh BalVarnica,“Web

Crawler: Extracting the Web Data”, International Journal of

Computer Trends and Technology (IJCTT) – volume 13 number

3 – July 2014

[2] Pavalam, S. M., SV Kashmir Raja, Felix K. Akorli, and M.

Jawahar, “A Survey of Web Crawler Algorithms,” International

Journal of Computer Science, vol. 8, iss. 6, no 1, Nov. 2011.

[3] Component of web search system figure, Accessed July

25,2017.

https://www.google.co.in/url?sa=i&rct=j&q=&esrc=s&source=i

mages&cd=&ved=0ahUKEwionMns_aTVAhXLpo8KHaB0BP

QQjRwIBw&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki

%2FWeb_crawler&psig=AFQjCNGV10hs3Dm9EBk_yJgFmXs

kFXXq6g&ust=1501090566478463

[4]

http://www.mathcs.emory.edu/~cheung/Courses/171/Syllabus/1

1-Graph/bfs.html

 [5] https://www.researchgate.net/figure/315347498_fig1_Fig2-

Pseudocode-for-Best-First-Search-algorithm

[6] http://db.cs.duke.edu/courses/fall11/cps149s/notes/a_star.pdf

[7] Shalini Sharma,“Web Crawler”, International Journal of

Advanced Research in Computer Science and Software

Engineering- Volume 4, Issue 4, April 2014

[8] Aviral Nigam, “Web Crawling Algorithms”, International

Journal of Computer Science and Artificial Intelligence Sept.

2014, Vol. 4 Iss. 3, PP. 63-67

