
International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 4 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 213

Genetic Algorithm Approach For Test Case

Generation Randomly: A Review
Deepak kumar

1
, Manu Phogat

2
,

1Research Scholar, Dept. of computer science, GJUS&T, Hisar, India.
2Research Scholar, Dept. of computer science, GJUS&T, Hisar , India.

Abstract. The quality of software is dependent on

testing as per user specifications and requirements.

So it is quite challenging to design, prioritize and

optimize test cases to achieve quality. Different

testing tools can be used for software testing either
manually or automatically. During the recent studies

it is found that automated software testing is better

than manual testing by using heuristic search. In this

paper presents a survey on genetic algorithm

approach for random generation of test cases in

functional software testing

Keywords — put your keywords here, keywords are

separated by comma.

I. INTRODUCTION

Software testing is a process in which the runtime

quality and quantity of a software is tested to

maximum limits for a qualitative software. The
software industry suffers with a heavy loss of $500

billion due to reduction in software quality. The

software quality can be improved by performing

automated testing and delivering the fully tested

software, which can meet the user's specifications

and requirements [1].Basically testing techniques are

of two types functional testing and structural testing.

Functional requirements are needed in functional

testing, which is known as black box testing and

structural testing is based on internal coding, known

as white box testing. The combination of black box
and white box testing is known as Gray box testing

[2]. Software testing is the process of verification

and validation to make sure that the software covers

all the desired business and technical needs [3, 4].It

is found that approximately 50% of the software

Development resources are consumed during

software testing. If the testing is performed using

automated testing then it will lead to reduce in

software Development cost by a significant margin

[7, 8, 9].A test case consists of unique identifier,

requirement references from a software specification,

a series of steps, events, preconditions, input, output,
expected result and actual result, which acts as input

for the software testing [10, 11]. Over the course of

time some software techniques which are applied

successfully in the field of software testing are

Genetic algorithm, neural networks, fuzzy logic, etc.

The task of test case generation can be converted

into an optimal problem by Meta heuristic search

technique called as Genetic Algorithm [12, 13, 14].

Genetic Algorithms have been applied to many

optimization problems in the field of software

testing and this can be done by generating test plans

automatically for functionality testing, as parallelism

and search space operations are the important

characteristics [11, 15, 16].This paper presents a
survey of how GA is efficiently used to generate test

cases for software testing. Further the paper is

partitioned into 4 sections. Section 1 contains the

Introduction, section 2 is a brief introduction to a

GA, section 3 contains the related work in the field

of test case generation using Genetic Algorithm for

functional testing, and section 4, gives conclusion

and future work.

An Introduction to Genetic Algorithm

Genetic algorithm is an evolutionary algorithm,

which is developed by John Holland in 1970. It can

be used to solve many complex and real life

problems by producing high quality test data
automatically [17, 18, 19]. It has emerged as a

practical, robust optimization technique and search

method and it is inspired by the way nature evolves

species using natural selection of the fittest

individuals. It is a best way to solve a set of

problems with less information [11, 20]. The

solution to a specific problem can be solved by a

population of chromosomes, the strings of binary

digits and each digit is called a gene and the

population can be created randomly. Basically three

different types of operators are used in the process of
GA such as selection, crossover, and mutation [11,

18].

Selection: The use of selection operator is to select

the best parents for performing other GA operations.

Usually the selection is done on the basis of fitness

value of the individuals, which is obtained from the
fitness function. Fitness function can be defined as a

specific function depending upon the criteria which

returns a number indicating the acceptability of the

program. This function is used in the selection

process to determine the optimum point and the

variants survive to the next iteration [21, 22].

Likelihood, close to Boundary Value and Branch

Coverage are essential factors for a fitness function.

Selection methods are of six different types such as

roulette wheel, stochastic universal sampling, linear

rank, exponential rank, binary tournament and
truncation.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 4 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 214

Crossover or Recombination: After selection, the

crossover operation is applied to the selected

chromosomes, which swaps genes or sequence of

bits in the string between two individuals. For binary

encoding different types of crossover operators are

used like one point, two point, uniform and
arithmetic. Cross over process is repeated with

different parent individuals. Mutation is performed

after crossover if the mutation probability is true for

the given iteration.

Mutation: It is used to maintained genetic diversity

in the population by altering chromosomes to
introduce new good traits. Basically six types of

mutation operators are used in Genetic algorithm

such as Bit string, flip bit, boundary, uniform, non-

uniform and Gaussian.

II. RELATED WORK

This section provides a short description about the

different hybridized GA techniques applied for

software testing. Mark Last et al. [14], proposed a

hybrid fuzzy based GA to generate test cases for
mutation testing. In this study a very minimal set of

test cases were found. The faults in test cases are

exposed by the use of mutated versions of the

original method. The proposed method uses a Fuzzy

Logic Controller (FLC) for obtaining the probability

of crossover which differs according to the age

intervals allocated during lifetime. The age and

lifetime of chromosomes (parents) are defined by the

FLC state variables. In their work an effective set of

test cases are generated for a Boolean expression of

100 Boolean attributes by using three logical
operators AND, OR, and NOT. An external

application generates the correct expression

randomly and one simple function is evaluated for

each test case to generate an erroneous expression.

Francisca Eanuelle et al. [20], has shown the

generation of better test plans by using of GA

method, for functionality testing. The method is

applied in an unbiased manner to avoid the expert’s

interference. The fitness function used by them is

shown in equation (1).

 (1)
Where p = l1, l2,…,lk is a test plan or sequence of

operations and t is a transition function for

converting one operation li to the next operation li+1

in a sequence. The sequence is considered as better

if the value of fitness function is high. Ruilian Zhao

et al. [24], used the GA and neural network for the

functional testing of the software under test, and

they applied the improved Genetic algorithm to the

function model, created using neural network. The

following fitness function, shown in equation (2) is
used.

 (2)

Here c represents the actual output and g represents

the goal output of the software under testing. If the

fitness value of the proposed algorithm reaches or
crosses the maximum value of possible outcome,

then the algorithm terminates its execution and the

current individual is termed as the best test inputs for

the corresponding outputs. The authors found that

proposed GA can generate better test cases with high

efficiency.

Li, Zhang and Kou [25], applied the GA to get the

local optimal solution to a specific problem to

achieve improved performance They applied a new

algorithm called as Genetic-Particle Swarm Mixed

Algorithm (GPSMA) to automatically generate

software test data. The proposed technique uses the
update mode in each individual to replace the

mutation process in the algorithm which is based on

population division. The proposed algorithm can

generate and search specific test data in a domain to

satisfy the test condition.

Xuan Peng et al. [15], proposed an approach US-

RDG, for web application in terms of gray box

testing, by combining User Session data with

Request Dependence Graph (RDG) to generate test

cases automatically. Their simulated results shows
that US-RDG effects better than the traditional user

session-based testing by higher path coverage and

fault detection rate for a small size of test suite. They

used the conception as transition relation in the form

of "page → request → page". Transition relations

are used to indicate the relationship between pages

and requests from structural point transition relations

in the specific application can be extracted from

structural analysis by RDG and finally a GA

heuristic was proposed to generate test cases to

cover maximum of transition relations by mixing

different user sessions. They found the performance

of US-RDG is very well in test case generation for
web application. They used the fitness function of a

chromosome as shown in equation (3).

Fitness = (α *| CDTR | + | CLTR |) / (α *|

DTR | + | LTR|) (3)

Where |CDTR| and |CLTR| denotes the number of

data and link dependence transition relations covered

in the chromosome. The fitness value achieves 1

when a chromosome covers all the data and link

dependence in transition relations present in the

specific application. The authors introduced a

parameter α, indicating the coefficient of the data

dependence transition relation. They have taken α as

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 4 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 215

much as greater than 1 to increase the proportion of

the data dependence transition relation and assigned

1 to the coefficient of the link dependence in

transition relation. The chromosomes have a bigger

fitness which covers more data dependence

transition relations.
Ali Shahbazi et al. [5], used a multi objective

optimization in black box string test case generation

for random testing and adaptive random testing. The

authors examined many string distance functions and

hence they introduce two objectives for effective

string test cases such as the length distribution of the

string test cases and the diversity control of the test

cases within a test set. They used one diversity-

based fitness function to generate optimized test sets

to reveal faults more effectively and it is shown in

equation (4).

(4)

In the above function ti denotes the ith test case and

β is its nearest test case in the test set and the

summation is performed between the two distances

test cases. They found the higher value of the fitness

function results, the more diverse distribution of test

cases. After an extensive study of different testing

techniques, we came to learn GA parameter is
efficiently used for generating test cases in

functional software testing.

III. CONCLUSION AND FUTURE WORK

In this paper, authors studied how different types of
hybridized Genetic Algorithms are helped in

efficient software testing with increasing number of

test case generation. It provides a means of an

automatic test case generator. Genetic algorithm can

also be used with the neural networks and fuzzy

systems for performing different types of testing to

improve the performance.

In future a new hybridized algorithm can be
designed by taking a better fitness function which

will help us to evaluate the efficiency of test cases

and further to increase the efficiency of the test

result by changing the input parameters, by

increasing the number of generations and obtain

values for different number of population. It is also

planned to use hybridized GA with other soft

computing techniques such as neural network for

optimized test case generation in web-based
application software.

REFERENCES

[1] Jones,C., Bonsignour, O.: The Economics of Software

Quality, Pearson Education Inc., 2012

[2] Shivani, A., and Pandya. V., Bridge between Black Box

and White Box–Gray Box Testing Technique, International

Journal of Electronics and Computer Science Engineering

2.1 (2012): 175-185.

[3] Chauhan, N., Software Testing: Principles and Practices,

Oxford University Press, 2010.

[4] Jogersen, P. C., Software testing: A craftsman approach,

3rd edition, CRC presses, 2008.

[5] Shahbazi, A., and Miller, J., Black-Box String Test Case

Generation Through A Multi-Objective Optimization,

IEEE Transactions On Software Engineering, 42(4), 2016

[6] Michael, C.C , McGraw, G. E., Schatz, M. A. and Walton,

C.C., Genetic Algorithms for Dynamic Test Data

Generation, Proceedings of the 1997 International

Conference on Automated Software Engineering (ASE'97)

(formerly: KBSE) 1997 .

[7] Doungsaard, C., Dahal, K., Hossain, A., Suwannasart, T.,

Test data generation from UML state machine diagrams

using GAs, International Conference on Software

Engineering Advances (ICSEA 2007). IEEE, 2007.

[8] Srivastava, P.P., and Kim, T., Application of genetic

algorithm in software testing, International Journal of

software Engineering and its Applications, Vol.3, No.4,

pp.87 – 96, 2009.

[9] Berndt, D.J., and Watkins, A., High volume software

testing using genetic algorithms, Proceedings of the 38th

Annual Hawaii International Conference on System

Sciences Washington, DC, USA: IEEE Computer Society,

Vol. 9, pp. 318–326, 2005.

[10] Dixit, S., and Tomar, P., Automated test data generation

using computational intelligence, Reliability, Infocom

Technologies and Optimization (ICRITO)(Trends and

Future Directions), 4th International Conference on. IEEE,

2015.

[11] Sharma, A., Patani , R. ,and Aggarwal, A., Software

Testing using Genetic Algorithms, International Journal of

Computer Science & Engineering Survey Vol.7, No.2,

2016

[12] Moataz A. A, and Ali, F., Multiple-path testing for cross

site scripting using genetic algorithms, Journal of Systems

Architecture Vol.64, pp.50-62, 2016.

[13] Yang, S., Man, T., Xu, J., Zeng, F., Li, K., RGA: A

lightweight and effective regeneration genetic algorithm

for coverage-oriented software test data generation,

Information and Software Technology, Vol.76, pp.19-30,

2016.

[14] Last, M., Eyal, S., Effective black-box testing with genetic

algorithms, Lecture notes in computer science, Springer,pp.

134 -148, 2006.

[15] Peng, X., & Lu, L., A new approach for session-based test

case generation by GA. In Communication Software and

Networks (ICCSN),IEEE 3rd International Conference on

IEEE, pp. 91-96, 2011.

[16] Zhao, R., lv, S., Neural network based test cases

generation using genetic algorithm, 13th IEEE

international symposium on Pacific Rim dependable

computing. IEEE, pp.97 – 100, 2007.

[17] Srivastava, P.R., and Kim, T.H ., Application of genetic

algorithm in software testing, International Journal of

software Engineering and its Applications, Vol.3, No.4,

pp.87 – 96, 2009.

[18] Riberio, J.C.B., Zenha-Rela, M.A., De vega, F.F., A

strategy for evaluating feasible and unfeasible test cases for

the evolutionary testing of object oriented software”, AST’

08. ACM, 2008.

[19] Goldberg, D.E., Genetic Algorithms: In search,

optimization and machine learning, Addison Wesley, M.A,

1989.

[20] Wappler, S., Lammermann, F., Using evolutionary

algorithms for unit testing of object oriented software,

GECCO. ACM, pp.1925 – 1932, 2005.

[21] Vieria, F. E., Martins, F., Silva, R., Menezes, R., Braga.,

M., Using Genetic algorithms for test plans for functional

testing, 44th ACM SE proceeding, pp.140 – 145,2006.

[22] Mathur, A.P., Foundation of Software Testing, 1st edition

Pearson Education 2008.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 4 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 216

[23] Rauf, A., Anwar, S., Jaffer, M. A., & Shahid, A. A.,

Automated GUI test coverage analysis using GA, In

Information Technology: New Generations (ITNG),

Seventh International Conference , IEEE, pp. 1057-1062,

2010.

[24] Andalib, A., and Babamir, S.M., A New Approach for Test

Case Generation by Discrete Particle Swarm Optimization

Algorithm, The 22nd Iranian Conference on Electrical

Engineering, 2014.

[25] Zhao, R., & Lv, S., Neural-network based test cases

generation using genetic algorithm. In Dependable

Computing, 13th Pacific Rim International Symposium

IEEE, pp. 97-100, 2007

[26] Li, K., Zhang, Z., Kou, J., Breeding Software Data with

Genetic Particle Swarm Mixed Algorithm, Journal of

Computers, Vol.5, No.2,pp. 074-085, 2010.

