
International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 161

A Face Recognition System using Convolutional Neural

Network and Generalized with Facial Expression
C.R Vimalchand

#1
, Dr. G.P Ramesh Kumar

#2

#1research Scholar, Associate Professor, Computer Science Department, Sri Ramakrishna College of Arts And

Science(Formerly S.N.R Sons College),Coimbatore, Tamilnadu, India
#2government Arts College, Kulithalai, Tamilnadu, India

Abstract

Facial expression recognition systems have

attracted much research interest within the field of

artificial intel-ligence. Face Recognition can be

applied for many security issues as a prompt

solution. Old facial expression recognition (FER)

systems apply standard machine learning to ex-

tracted image features like geometric features and

these methods generalize poorly to previously

recorded database. This work introduces some re-

cent research to classify images of human faces into

dis-crete emotion categories using convolutional

neural net-works (CNNs). We experimented with

different architec-tures and methods such as

fractional max-pooling and fine-tuning, ultimately

achieving an accuracy of 0.48 in a seven-class

classification task.

The objective of this project is to classify images of

hu-man faces into discrete emotion categories. Most of

the established facial expression recognition (FER)

systems use standard machine learning and extracted

features, which do not have significant performance

when applied to previously recorded database [1].

Within the past few months a few papers have been

published that use deep learning for FER [2] [13] which

have been successful at achieving about .60 accuracy on

the EmotiW and other publicly available data sets. Not-

ing the success of CNNs in this domain, our objective is

to experiment with both new and existing network

architec-tures to achieve similar results on a new data

set.

1. Introduction

Artificial intelligence systems to recognize human

emo-tion have attracted much research interest, and

potential applications of such systems abound, spanning

domains such as customer-attentive marketing, health

monitoring, and emotionally intelligent robotic

interfaces. In light of the important role that facial

expression plays in communicating emotion in humans,

there has been substantial re-search interest in computer

vision systems to recognize hu-man emotion.

Certain facial expressions have universal meaning.

In a 1971 paper titled ”Constants Across Cultures in the

Face and Emotion”, Ekman et al. identified six facial

expres-sions that are universal across all cultures:

anger, disgust, fear, happiness, sadness, and surprise

[4]. These are the same emotions that modern facial

expression researchers aim to identify using computer

vision. These emotions, along with the addition of a

seventh, neutral emotion, is taken for classification.
The recent success of convolutional neural networks

(CNNs) in tasks such as object classification extends to

the problem of facial expression recognition. In the

following sections, we will present an overview of our

problem and literature frame work.

2. Related Work

Yu and Zhang achieved state-of-the-art results in

EmotiW in 2015 using CNNs to perform FER. They

used an ensemble of CNNs with five convolutional

layers each [14]. Among the insights from their paper

was that ran-domly perturbing the input images yielded

a 2-3% boost in accuracy. Specifically, Yu and Zhang

applied transforma-tions to the input images at train

time. At test time, their model generated predictions for

multiple perturbations of each test example and voted

on the class label to produce a final answer. Also

interesting is that they used stochastic pooling rather

than max pooling because of its good perfor-mance on

limited training data.
Kim et al. achieved a test accuracy of .61 in

EmotiW2015 by using an ensemble based method with

varying network architectures and parameters [2]. They

used a hierarchical decision tree and an exponential rule

to combine decisions of different networks rather than

simply using a simply weighted average, and this

improved their results. They initialized weights by

training networks on other FER data sets and using

these weights for fine-tuning.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 162

Mollahosseini et al. have also achieved state of the

art results in FER [1]. Their network consisted of two

convolu-tional layers, max-pooling, and 4 Inception

layers as intro-duced by GoogLeNet. The proposed

architecture was tested on many publically available

data sets. It received a lower test accuracy of 0.47 on

the EmotiW data

Figure 1. A sample of images from the data set,

labeled with their corresponding emotions.

the-art test accuracies on other data sets (i.e. 0.93 on

CK+). When compared to an AlexNet architecture,

their proposed architecture improved results by 1-3

percent on most data sets.
In [5], Graham proposes a specific type of stochastic

pooling, called fractional max-pooling, that achieves

the regularization effect of standard max-pooling

without dis-carding as much spatial information at each

pooling step. As this method is most suited for data sets

with small im-ages, we experimented with it on our

data set.
Instead of reimplementing published networks, we

de-cided to take the key insights from these papers and

experiment with different networks. All of the proposed

papers used a network about 5 - 7 layers deep and

image perturbation.

3. Data

We trained and tested our models on the data set

from the Kaggle Facial Expression Recognition

Challenge, which comprises 48-by-48-pixel grayscale

images of human faces, each labeled with one of 7

emotion categories: anger, dis-gust, fear, happiness,

sadness, surprise, and neutral. We used a training set of

28,709 examples, a validation set of 3,589 examples,

and a test set of 3,589 examples.

As illustrated in Figure 1, the data set’s images vary

con-siderably in scale, viewpoint, and illumination.
We note that that all of the images are preprocessed

so they form a bounding box around the face region.

However, there are differences in angle, lighting, and

objects – for example, some faces are adorned with

glasses or covered by long hair.

4. Technical Work

We implemented three different classifiers from

scratch:
(1) a baseline classifier with one convolutional layer,

(2) a CNN with a fixed size of five convolutional

layers, and a (3) deeper convolutional layer with

parameterized depth and filtered features. Filters are

used to remove noise and extract features. The above

CNN architectures are experimented and compared

with AlexNet architecture.
A deeper CNN with a paramaterizable number of con-

olutional layers, filter dimensions, and number of

filters. For each of these models, we tuned parameters

including learning rate, regularization, and dropout. We

also exper-imented with using batch normalization [6]

and fractional max-pooling [5].
Finally, we implemented multiple classifiers using

fine-tuning with variations on the number of layers

retained, the number of layers backpropagated through,

and the initial network used. We experimented with

fine-tuning using two existing models: (1) VGG16, the

model from Caffe’s Model Zoo which was trained on

ImageNet, and (2) VGGFace, a network trained on a

facial recognition data set.

4.1. Baseline classifier

We implemented a baseline softmax classifier using

fea-tures from a single convolutional layer. The

architecture was one convolutional layer, followed by

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 163

one fully con-nected layer, and a final softmax layer.

The initial baseline did not use any regularization,

dropout, or batch normaliza-tion.

4.2. Five-layer CNN

We implemented a first-pass CNN with a fixed

depth of five convolutional layers. The model was

trained using the architecture outlined in Table 1 and

was trained using the following characteristics.

Parametrized dropout rate, learning rate, and l2

regu-larization
Batch normalization (optional) after each

layer Adam update rule
Weight initialization for using ReLU nonlinearities
as presented by He et al.
3x3 convolutional filters with stride 1 and zero-

padding to preserve spatial size
 2x2 max pools with a stride of 2

Using this model, we also experimented with both

traditional max-pooling and fractional max-pooling

(described below).

4.3. Deeper CNN

The architecture of our deeper CNN is outlined in

Ta-ble 2. We use the same network characteristics as

the five-layer CNN with additional network structure

parame-ters. With parameterizable layer depths and

filter sizes, this model has a greater possible capacity

than the five-layer

4.4. Fractional max pooling

Traditional max-pooling is often applied using 2x2

re-gions with stride 2. This configuration discards 75%

of the data, and such drastic reduction in spatial size

can be unde-sirable, particularly in data sets with small

images such as ours.
Fractional max-pooling (FMP) is “gentler” in that it

al-lows for a reduction of the spatial size of a layer by

any arbitrary fraction. When the fraction is between 1

and 2, pooling regions of size 1x1, 1x2, 2x1, and 2x2

are stochas-tically shuffled to achieve the desired

output size.
More specifically, FMP is divides a matrix into

either disjoint or overlapping pooling regions as

follows, and as described in more detail in [5].
P = [ai 1; ai 1] x [bj 1; bj 1] or Pi;j =
[ai 1; ai] x [bj 1; bj].

We obtain the these sequences by taking a random

permu-tation of an appropriate number of ones and

twos which de-note the types of pooling regions, and

then pooling within these stochastically determined

regions.
We expected FMP to be useful since our data sets

im-ages are small. Using FMP would allow us to form

deeper networks without as rapid data loss, at the

expense of more computation. We experimented with

random, overlapping fractional max-pooling as

described in [5].

4.5. Fine tuning

We fine-tuned using the model VGG16 as listed in

Caffe’s Model Zoo and described in [7]. VGG16 was

trained on ImageNET [11], which has data that is quite

different than ours in content. VGG16 was trained to

per-form object detection and localization on images of

various objects (not faces). Since the objective was

different from ours but the subset of the ImageNET

data set it was trained on was in the same order of

magnitude as the size of our data set, we tried the

following two configurations of fine-tuning: (1) using

the lower few layers of the VGG16-trained network,

and (2) using the entire VGG16-trained network. With

both of these configurations, we trained two fully con-

nected layers at the end (on top) of the network.
In addition, we found a network trained on face

images
– VGGFace – available from the Visual Geometry

Group at the University of Oxford [12]. This network

was trained on a very large-scale data set (2.6M images,

2.6k people) for the task of face recognition. Since the

data set was trained for a similar application but on a

much larger data set than ours, we tried fine-tuning with

the following configuration:

Five-layer CNN
INPUT (48x48x1)

CONV3-64
BATCHNORM

RELU
CONV3-64

BATCHNORM
RELU

CONV3-64
BATCHNORM

RELU
MAX-POOL
DROPOUT

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 164

CONV3-128
BATCHNORM

RELU
CONV3-128

BATCHNORM
RELU

MAX-POOL
DROPOUT

FC-512
BATCHNORM

RELU DROPOUT SOFTMAX
Table 1. The architecture of the five-layer

CNN.

using the full VGGFace-trained network without the

final fully connected layers. We then trained two fully

connected layers at the end of this network.

4.6. Implementation details

All of our classifiers were implemented in Keras [3]

and trained on Stanford FarmShare computers using

CPUs. This configuration allowed us to experiment

with many different model configurations many runs in

parallel, dis-tributed to multiple cluster machines;

however, computation speed was constrained since we

were using shared machines and were not using GPUs.

We experimented with GPU-optimized code on AWS,

but the speed gains were not sig-nificant enough to

make running 20 jobs in sequence faster than running

20 jobs in parallel on different machines.

With each of our models, we performed feature-wise

mean subtraction and normalization of the input data.

We also performed data augmentation in the form of

random horizontal shifts, random vertical shifts, and

random hori-zontal flips.
We trained for 10 epochs on each run, saving full

run his-tory and saving the model’s best weights in

HDF5 format. Initially, we were tuning parameters on

10% of the data. However, we realized that these

parameters were not gener-

Deeper CNN
INPUT (48x48x1)

CONVn-FILT1
BATCHNORM

RELU
n times

CONVn-FILT1
BATCHNORM

RELU
CONVn-FILT1
BATCHNORM

RELU
(FRACTIONAL) MAX-POOL

DROPOUT
m times CONVn-

FILT2
BATCHNORM

RELU
CONVn-FILT2
BATCHNORM

RELU
(FRACTIONAL) MAX-POOL

DROPOUT
FC-512

BATCHNORM
RELU

DROPOUT
FC-256

BATCHNORM
RELU

DROPOUT
FC-128

BATCHNORM
RELU

DROPOUT
SOFTMAX

Table 2. The architecture of the deeper CNN, with

parameterized depths and filter sizes, and optional use

of fractional or traditional max-pooling alizing well to

the full data set, possibly because it was not well

shuffled, so the last half of our parameter tuning was

done on the full data set.

For fractional max pooling, we adapted code for a

frac-tional max pooling layer implementation in

Lasange to Keras [10].

For fine-tuning with VGG16 we loaded in the

weights from a .hdf5 weight file and replicated the

network in Keras using a prototxt file as reference. For

fine-tuning with VG-GFace, we used Caffe [8] to load

in model weights and replicated the network in Keras

using the prototxt file [9].

Model train acc val acc test acc
Baseline 0.25 0.25 0.24
Five-layer CNN 0.46 0.37 0.39

Deeper CNN 0.60 0.47 0.48

VGG16 fine-tuned CNN - 0.29 -

VGGFace fine-tuned CNN 0.37 0.38 -
Table 3. A comparison of the training, validation,

and test accu-racies of our different models when

using the best parameters we found. Due to time

constraints. We omitted some fine-tuning re-sults

that we were not able to run due to time constraints.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 165

5. Results

5.1. Comparison of accuracies

We evaluated results against Kaggle’s validation

and test sets. A comparison of the accuracy results

from each model is shown in Table 3.

Given 7 emotion categories, random classification

would give an accuracy of 0.14. All our models

outperformed ran-dom, and our deeper CNN achieved

the best accuracy of 0.48 on the test set.The state of the

art test accuracy for 7 emotion categories using deep

networks is .61, and the top Kaggle implemen-tation

received an accuracy of .71. We hoped to reach an

accuracy that approached the state of the art

implementa-tion but fell short of this benchmark by

about 0.13. Our fine-tuned models did not perform as

well as our deeper CNN. Of the two fine-tuned models

we experi-mented with, the model fine-tuned on

VGGFace performed better, with a validation accuracy

of 0.38. This follows intu-ition, since VGGFace was

trained on input data more simi-lar to our data set.

5.2. Qualitative results

Figure 2 below shows a sample of images

misclassified by our highest performing deeper CNN

model. We were surprised that even we were unable to

correctly classify some of the images, and the emotions

on some of the faces seem ambiguous. For example,

we made the same misclassification as our model,

classifying the surprised face as a happy face in the

leftmost column in Figure 2. Perhaps our human error

speaks to the inherent difficulty of recognizing

complex facial expressions as discrete emotions,

especially when different people (and actors, in the

case of our data set) perform emotions in visually

different ways.Apart from expressional ambiguity,

these misclassified images have other characteristics

that may make them dif-ficult to classify. For example,

occlusion: the image in the center of the top row only

shows part of a face; lighting: the image on the bottom

right occurs in much lower lighting than the other

images; and viewpoint variation: the image in the

center column of the third row shows a profile,

whereas most other images show frontal views of

faces.

Figure 2. A sample of misclassified images with their

predicted and actual labels.

6. Discussion

6.1. Baseline classifier

Our baseline classifier achieved the lowest accuracy

of all our models, as expected.

6.2. Five-layer and deeper CNN

Since the five-layer CNN is a specific instance of the

pa-rameterizable deeper CNN, we will discuss both

together.

6.2.1 Parameter experimentation

During the experimentation process, we tuned a large

num-ber of parameters including the following:

Learning rate and regularization Dropout rateWith vs

without batch normalization Number of convolutional

layers Number of fully connected layers Number of

filters at each layer fractional max-pooling vs normal

max-pooling From our incremental results, we came to

the following conclusions.
Using fractional max-pooling instead of standard

max pooling does not substantially affect the highest

accuracy on this data set, and it increases the amount of

time it takes to train a network (with identical

architecture and parameters) by a factor of 1.5 due to a

higher computational cost at each iteration. Also,

increasing the number of fractional max-pooling layers

significantly reduces the optimal L2 regu-larization

parameter. This makes sense, because fractional max-

pooling has a regularizing affect due to its stochas-

ticity. Our optimal dropout parameters even with

standard max-pooling were very low, so fractional-max

pooling did not affect this parameter significantly.

Figure 3 gives a direct comparison between the optimal

L2 regularization weights with traditional and fractional

max-pooling.

Increasing the number of fully connected layers from

1 to 4 increased our validation set accuracy by about 5

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 166

per-cent, from 0.42 to 0.47, indicating that we had been

under-fitting.
Increasing dropout decreases overfitting and

increases the amount of training time to achieve

accuracies achiev-able without dropout. This dynamic

is illustrated in Figure 4.

Having a larger number of filters in the deeper layers

of the network led to higher accuracies. To reduce the

number of tunable variables, we separated the number

of filters into two parameters such that we could specify

a different num-ber of filters for the first repeated block

in Table 2 than the second repeated block, while

maintaining the same number of filters for all

convolutional layers within the same block. We found,

for example, that using 32 filters in the first part of the

network 64 filters in the second led to higher accu-

racies than if all convolutional layers used 32 filters.

We also found that increasing the number of filters at

the first layers of the network increased computation

time (as ex-pected) without significantly increasing

accuracy. For ex-ample in our initial random sweep of

parameters, we found that using 77 filters in the first

layers did not improve accu-racy as compared to using

32 filters in the first layers. This structure of using more

filters in later convolutional layers is consistent with the

structure of the VGG16 network.

Figure-3

6.2.2 Interpretation

Our CNN models underperformed compared to state-

of-the-art. One weakness in our models is that they

overfit the training data, as shown in Table 3 by the

high training set accuracies compared to lower

validation and test set ac-curacies.

Figure 3. The upper two graphs represent the training

and valida-tion accuracy for the the five-layer CNN

during learning rate and regularization tuning. The

accuracies are shown by the color scale depicted to the

right. The lower two graphs represent the five-layer

CNN with fractional max-pooling. As depicted, the

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 167

optimal L2 regularization weights with fractional max

pooling are lower than those for max-pooling.

Figure 4. Higher dropout results in less overfitting but a

longer time to reach accuracies achieved using the same

parameters and lower dropout.

 Figure-4

as random image rotations and more aggressive

horizontal and vertical shifts.
Although our highest-accuracy model underperforms

compared to the state-of-the-art, it achieves accuracies

much higher than random and is training in a

meaningful way. Figure 5 shows visualizations of filters

from the con-volutional layers in our best model. The

filters show clear patterns in all layers. As a comparison

point, Figure 6 shows visualizations from the

convolutional layers of the VGG16 network we used

for fine-tuning, at the same layer depths.

6.3. Fine-tuned CNNs

In fine-tuning using VGG16, we tried both (1)

keeping only the bottom layers and training two fully

connected lay-ers on top of that and (2) keeping the

whole network except for the final classification and

training two fully connected layers on top of that. The

first method gave a validation ac-curacy of 0.249 while

the second gave a validation accuracy of 0.290. It was

surprising that keeping the full network gave a higher

accuracy than keeping just the lower layers, because we

would expect the lower layers to generalize bet-ter to

very different data sets. It is possible that we retained

too few layers from VGG16. However, since the

validation accuracies were much lower than the

networks trained from scratch, we decided not

experiment much further with fine-tuning on VGG16.
For fine-tuning with VGGFace we kept the full

network except for the final layer and added two fully

connected layers that we trained on top of that. Fine-

tuning on VG-GFace worked comparatively well,

yielding a validation ac-curacy of 0.38. However, this

accuracy is still than our deeper CNN’s accuracy of

0.47 on the validation set, and fine-tuning VGGFace

took about 3 times as long to train.

Figure 5. Visualizations of filters from the deeper CNN

model. The visualizations represent filters from the first

(top left), third (top right), fifth (bottom left), and

seventh (bottom right) convolu-tional layers. These

visualizations were generated by performing gradient

ascent to generate an image that maximizes the activa-

tions at various layers in the network. figure 6.

Visualizations of filters from VGG16. The visualiza-

tions represent filters from the first (top left), third (top

right), fifth (bottom left), and seventh (bottom right)

convolutional lay-ers. These visualizations were

generated by performing gradient ascent to generate an

image that maximizes the activations at var-ious layers

in the network.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 168

As a result, we decided not to continue experimenting

with VGGFace, but using it in combination with other

methods could be promising as future work.
It makes sense that fine-tuning with VGGFace

performed much better in our FER task than fine-tuning

with VGG16, because the network was trained on more

similar images and for a more related objective.
Overall, however, training a model from scratch out-

performed fine-tuning. This trend differs from what we

have seen with other applications, but is understandable

given that there has been relatively less work on face

data sets compared to general image classification data

sets, and given that state-of-the-art networks are less

polished in this more specific task of FER. In addition,

our application (FER) is not a sub-problem of the

problem the network was trained to solve (e.g.

classifying dog breeds vs. classifying animals); rather,

FER is tangentially related to facial recog-nition, the

task for which VGG Face was trained.

7. Conclusion

In this project, we addressed the task of facial

expression recognition and aimed to classify images of

faces into any of seven discrete emotion categories that

represent univer-sal human emotions. We experimented

with various tech-niques, such as fine-tuning and

fractional max-pooling, and

achieved our highest accuracy (0.48) on a CNN trained

from scratch with seven convolutional layers. Given

more time, we would have liked to combat overfitting

and approach state-of-the-art accuracies of around 0.61.

8. Acknowledgments

We thank the teaching team of CS231n for

equipping us with a practical understanding of CNNs.

We are also grate-ful to the developers of Theano and

Keras and the creators of VGG16 and VGGFace for

sharing their work with the community.

References

[1] Ekman and W. V. Friesen. Emotional facial action coding

system. Unpublished manuscript, University of California at

San Francisco, 1983.

[2] B. Graham. Fractional max-pooling. 2015.

[3] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

JMLR Proceedings, 2015.

[4] M. S.-S. S. M. B. Z. L. X. S. B. P. J. Zhang, S. Ma and

Mech. Salient object subitizing. IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015.

[5] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-tional

architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014.

[6] Lab41. Misc, caffekeras util.

https://github.com/Lab41/Misc/blob/master/blog/kerasvgg/

caffekeras_util.py, 2015.

[7] Lasange. Lasange, fractional pooling layer pull re-quest.

https://github.com/Lasagne/Lasagne/ pull/171, 2015.

O. H. S.-J. K. S. S. S. M. Z. H. A. K. A. K. M. B. A. C.

B.Russakovsky, J. Deng and L. Fei-Fei. Imagenet large scale

visual recognition challenge. IJCV, 2015.

[8] A. V. Omkar M. Parkhi and A. Zisserman. Deep face recog-

nition. 2015.

[9] C. W. Pablo Barros and S. Wermter. Emotional expression

recognition with a cross-channel convolutional neural net-work

for human-robot interaction. IEEE 15th International

Conference on Humanoid Robots, 2015.

[10] Z. Yu and C. Zhang. Image based static facial expression

recognition with multiple deep network learning. ICMI Pro-

ceedings.

[12] D. C. Ali Mollahosseini and M. H. Mahoor. Going deeper in

facial expression recognition using deep neural networks.

[13] IEEE Winter Conference on Applications of Computer Vi-sion,

2016.

[14] S.-Y. D. Bo-Kyeong Kim, Jihyeon Roh and S.-Y. Lee. Hi-

erarchical committee of deep convolutional neural networks for

robust facial expression recognition. Journal on Multi-modal

User Interfaces, pages 1–17, 2015.

https://github.com/Lab41/Misc/blob/master/blog/kerasvgg/caffekeras_util.py
https://github.com/Lab41/Misc/blob/master/blog/kerasvgg/caffekeras_util.py
https://github.com/Lab41/Misc/blob/master/blog/kerasvgg/caffekeras_util.py
https://github.com/Lasagne/Lasagne/pull/171
https://github.com/Lasagne/Lasagne/pull/171

