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Abstract 

Facial expression recognition systems have 

attracted much research interest within the field of 

artificial intel-ligence. Face Recognition can be 

applied for many security issues as a prompt 

solution. Old facial expression recognition (FER) 

systems apply standard machine learning to ex-

tracted image features like geometric features and 

these methods generalize poorly to previously 

recorded database. This work introduces some re-

cent research to classify images of human faces into 

dis-crete emotion categories using convolutional 

neural net-works (CNNs). We experimented with 

different architec-tures and methods such as 

fractional max-pooling and fine-tuning, ultimately 

achieving an accuracy of 0.48 in a seven-class 

classification task. 

The objective of this project is to classify images of 

hu-man faces into discrete emotion categories. Most of 

the established facial expression recognition (FER) 

systems use standard machine learning and extracted 

features, which do not have significant performance 

when applied to previously recorded database [1]. 

Within the past few months a few papers have been 

published that use deep learning for FER [2] [13] which 

have been successful at achieving about .60 accuracy on 

the EmotiW and other publicly available data sets. Not-

ing the success of CNNs in this domain, our objective is 

to experiment with both new and existing network 

architec-tures to achieve similar results on a new data 

set. 

1. Introduction 
 

Artificial intelligence systems to recognize human 

emo-tion have attracted much research interest, and 

potential applications of such systems abound, spanning 

domains such as customer-attentive marketing, health 

monitoring, and emotionally intelligent robotic 

interfaces. In light of the important role that facial 

expression plays in communicating emotion in humans, 

there has been substantial re-search interest in computer 

vision systems to recognize hu-man emotion. 

Certain facial expressions have universal meaning. 

In a 1971 paper titled ”Constants Across Cultures in the 

Face and Emotion”, Ekman et al. identified six facial 

expres-sions that are universal across all cultures: 

anger, disgust, fear, happiness, sadness, and surprise 

[4]. These are the same emotions that modern facial 

expression researchers aim to identify using computer 

vision. These emotions, along with the addition of a 

seventh, neutral emotion, is taken for classification.  
The recent success of convolutional neural networks 

(CNNs) in tasks such as object classification extends to 

the problem of facial expression recognition. In the 

following sections, we will present an overview of our 

problem and literature frame work. 

 

2. Related Work 
 

Yu and Zhang achieved state-of-the-art results in 

EmotiW in 2015 using CNNs to perform FER. They 

used an ensemble of CNNs with five convolutional 

layers each [14]. Among the insights from their paper 

was that ran-domly perturbing the input images yielded 

a 2-3% boost in accuracy. Specifically, Yu and Zhang 

applied transforma-tions to the input images at train 

time. At test time, their model generated predictions for 

multiple perturbations of each test example and voted 

on the class label to produce a final answer. Also 

interesting is that they used stochastic pooling rather 

than max pooling because of its good perfor-mance on 

limited training data.  
Kim et al. achieved a test accuracy of .61 in 

EmotiW2015 by using an ensemble based method with 

varying network architectures and parameters [2]. They 

used a hierarchical decision tree and an exponential rule 

to combine decisions of different networks rather than 

simply using a simply weighted average, and this 

improved their results. They initialized weights by 

training networks on other FER data sets and using 

these weights for fine-tuning. 
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Mollahosseini et al. have also achieved state of the 

art results in FER [1]. Their network consisted of two 

convolu-tional layers, max-pooling, and 4 Inception 

layers as intro-duced by GoogLeNet. The proposed 

architecture was tested on many publically available 

data sets. It received a lower test accuracy of 0.47 on 

the EmotiW data  

Figure 1. A sample of images from the data set, 

labeled with their corresponding emotions. 

 

 
 

the-art test accuracies on other data sets (i.e. 0.93 on 

CK+). When compared to an AlexNet architecture, 

their proposed architecture improved results by 1-3 

percent on most data sets.  
In [5], Graham proposes a specific type of stochastic 

pooling, called fractional max-pooling, that achieves 

the regularization effect of standard max-pooling 

without dis-carding as much spatial information at each 

pooling step. As this method is most suited for data sets 

with small im-ages, we experimented with it on our 

data set.  
Instead of reimplementing published networks, we 

de-cided to take the key insights from these papers and 

experiment with different networks. All of the proposed 

papers used a network about 5 - 7 layers deep and 

image perturbation. 

 
3. Data 

 
We trained and tested our models on the data set 

from the Kaggle Facial Expression Recognition 

Challenge, which comprises 48-by-48-pixel grayscale 

images of human faces, each labeled with one of 7 

emotion categories: anger, dis-gust, fear, happiness, 

sadness, surprise, and neutral. We used a training set of 

28,709 examples, a validation set of 3,589 examples, 

and a test set of 3,589 examples. 
 

As illustrated in Figure 1, the data set’s images vary 

con-siderably in scale, viewpoint, and illumination.  
We note that that all of the images are preprocessed 

so they form a bounding box around the face region. 

However, there are differences in angle, lighting, and 

objects – for example, some faces are adorned with 

glasses or covered by long hair. 

 
4. Technical Work 
 

We implemented three different classifiers from 

scratch:  
(1) a baseline classifier with one convolutional layer, 

(2) a CNN with a fixed size of five convolutional 

layers, and a (3) deeper convolutional layer with 

parameterized depth and filtered features. Filters are 

used to remove noise and extract features. The above 

CNN architectures are experimented and compared 

with AlexNet architecture.  
A deeper CNN with a paramaterizable number of con-

olutional layers, filter dimensions, and number of 

filters. For each of these models, we tuned parameters 

including learning rate, regularization, and dropout. We 

also exper-imented with using batch normalization [6] 

and fractional max-pooling [5].  
Finally, we implemented multiple classifiers using 

fine-tuning with variations on the number of layers 

retained, the number of layers backpropagated through, 

and the initial network used. We experimented with 

fine-tuning using two existing models: (1) VGG16, the 

model from Caffe’s Model Zoo which was trained on 

ImageNet, and (2) VGGFace, a network trained on a 

facial recognition data set. 

 

 
 
4.1. Baseline classifier 
 

We implemented a baseline softmax classifier using 

fea-tures from a single convolutional layer. The 

architecture was one convolutional layer, followed by 
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one fully con-nected layer, and a final softmax layer. 

The initial baseline did not use any regularization, 

dropout, or batch normaliza-tion. 
 
4.2. Five-layer CNN 
 

We implemented a first-pass CNN with a fixed 

depth of five convolutional layers. The model was 

trained using the architecture outlined in Table 1 and 

was trained using the following characteristics. 

 
Parametrized dropout rate, learning rate, and l2 

regu-larization  
Batch normalization (optional) after each 

layer Adam update rule  
Weight initialization for using ReLU nonlinearities 
as presented by He et al.  
3x3 convolutional filters with stride 1 and zero-

padding to preserve spatial size  
    2x2 max pools with a stride of 2 

Using this model, we also experimented with both 

traditional max-pooling and fractional max-pooling 

(described below). 

 

4.3. Deeper CNN 
 

The architecture of our deeper CNN is outlined in 

Ta-ble 2. We use the same network characteristics as 

the five-layer CNN with additional network structure 

parame-ters. With parameterizable layer depths and 

filter sizes, this model has a greater possible capacity 

than the five-layer 

 

4.4. Fractional max pooling 
 

Traditional max-pooling is often applied using 2x2 

re-gions with stride 2. This configuration discards 75% 

of the data, and such drastic reduction in spatial size 

can be unde-sirable, particularly in data sets with small 

images such as ours.  
Fractional max-pooling (FMP) is “gentler” in that it 

al-lows for a reduction of the spatial size of a layer by 

any arbitrary fraction. When the fraction is between 1 

and 2, pooling regions of size 1x1, 1x2, 2x1, and 2x2 

are stochas-tically shuffled to achieve the desired 

output size.  
More specifically, FMP is divides a matrix into 

either disjoint or overlapping pooling regions as 

follows, and as described in more detail in [5].  
P = [ai 1; ai 1] x [bj 1; bj 1] or Pi;j = 
[ai 1; ai] x [bj 1; bj]. 

 

We obtain the these sequences by taking a random 

permu-tation of an appropriate number of ones and 

twos which de-note the types of pooling regions, and 

then pooling within these stochastically determined 

regions.  
We expected FMP to be useful since our data sets 

im-ages are small. Using FMP would allow us to form 

deeper networks without as rapid data loss, at the 

expense of more computation. We experimented with 

random, overlapping fractional max-pooling as 

described in [5]. 
 
4.5. Fine tuning 
 

We fine-tuned using the model VGG16 as listed in 

Caffe’s Model Zoo and described in [7]. VGG16 was 

trained on ImageNET [11], which has data that is quite 

different than ours in content. VGG16 was trained to 

per-form object detection and localization on images of 

various objects (not faces). Since the objective was 

different from ours but the subset of the ImageNET 

data set it was trained on was in the same order of 

magnitude as the size of our data set, we tried the 

following two configurations of fine-tuning: (1) using 

the lower few layers of the VGG16-trained network, 

and (2) using the entire VGG16-trained network. With 

both of these configurations, we trained two fully con-

nected layers at the end (on top) of the network.  
In addition, we found a network trained on face 

images  
– VGGFace – available from the Visual Geometry 

Group at the University of Oxford [12]. This network 

was trained on a very large-scale data set (2.6M images, 

2.6k people) for the task of face recognition. Since the 

data set was trained for a similar application but on a 

much larger data set than ours, we tried fine-tuning with 

the following configuration: 

Five-layer CNN  
INPUT (48x48x1)  

CONV3-64  
BATCHNORM  

RELU  
CONV3-64  

BATCHNORM  
RELU  

CONV3-64  
BATCHNORM  

RELU  
MAX-POOL  
DROPOUT  
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CONV3-128  
BATCHNORM  

RELU  
CONV3-128  

BATCHNORM  
RELU  

MAX-POOL  
DROPOUT  

FC-512  
BATCHNORM  

RELU DROPOUT SOFTMAX  
Table 1. The architecture of the five-layer 

CNN. 

using the full VGGFace-trained network without the 

final fully connected layers. We then trained two fully 

connected layers at the end of this network. 
 
4.6. Implementation details 
 

All of our classifiers were implemented in Keras [3] 

and trained on Stanford FarmShare computers using 

CPUs. This configuration allowed us to experiment 

with many different model configurations many runs in 

parallel, dis-tributed to multiple cluster machines; 

however, computation speed was constrained since we 

were using shared machines and were not using GPUs. 

We experimented with GPU-optimized code on AWS, 

but the speed gains were not sig-nificant enough to 

make running 20 jobs in sequence faster than running 

20 jobs in parallel on different machines. 
 

With each of our models, we performed feature-wise 

mean subtraction and normalization of the input data. 

We also performed data augmentation in the form of 

random horizontal shifts, random vertical shifts, and 

random hori-zontal flips.  
We trained for 10 epochs on each run, saving full 

run his-tory and saving the model’s best weights in 

HDF5 format. Initially, we were tuning parameters on 

10% of the data. However, we realized that these 

parameters were not gener- 

Deeper CNN  
INPUT (48x48x1)  

CONVn-FILT1  
BATCHNORM  

RELU  
n times  

CONVn-FILT1  
BATCHNORM  

RELU  
CONVn-FILT1  
BATCHNORM  

RELU  
(FRACTIONAL) MAX-POOL  

DROPOUT  
m times CONVn-

FILT2  
BATCHNORM  

RELU  
CONVn-FILT2  
BATCHNORM  

RELU  
(FRACTIONAL) MAX-POOL  

DROPOUT  
FC-512  

BATCHNORM  
RELU  

DROPOUT  
FC-256  

BATCHNORM  
RELU  

DROPOUT  
FC-128  

BATCHNORM  
RELU  

DROPOUT  
SOFTMAX  

Table 2. The architecture of the deeper CNN, with 

parameterized depths and filter sizes, and optional use 

of fractional or traditional max-pooling alizing well to 

the full data set, possibly because it was not well 

shuffled, so the last half of our parameter tuning was 

done on the full data set. 
 

For fractional max pooling, we adapted code for a 

frac-tional max pooling layer implementation in 

Lasange to Keras [10]. 
 

For fine-tuning with VGG16 we loaded in the 

weights from a .hdf5 weight file and replicated the 

network in Keras using a prototxt file as reference. For 

fine-tuning with VG-GFace, we used Caffe [8] to load 

in model weights and replicated the network in Keras 

using the prototxt file [9].  

Model train acc val acc test acc     
Baseline 0.25 0.25 0.24 
Five-layer CNN 0.46 0.37 0.39 

Deeper CNN 0.60 0.47 0.48 

VGG16 fine-tuned CNN - 0.29 - 

VGGFace fine-tuned CNN 0.37 0.38 -  
Table 3. A comparison of the training, validation, 

and test accu-racies of our different models when 

using the best parameters we found. Due to time 

constraints. We omitted some fine-tuning re-sults 

that we were not able to run due to time constraints. 
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5. Results 
 
5.1. Comparison of accuracies 
 

We evaluated results against Kaggle’s validation 

and test sets. A comparison of the accuracy results 

from each model is shown in Table 3. 

Given 7 emotion categories, random classification 

would give an accuracy of 0.14. All our models 

outperformed ran-dom, and our deeper CNN achieved 

the best accuracy of 0.48 on the test set.The state of the 

art test accuracy for 7 emotion categories using deep 

networks is .61, and the top Kaggle implemen-tation 

received an accuracy of .71. We hoped to reach an 

accuracy that approached the state of the art 

implementa-tion but fell short of this benchmark by 

about 0.13. Our fine-tuned models did not perform as 

well as our deeper CNN. Of the two fine-tuned models 

we experi-mented with, the model fine-tuned on 

VGGFace performed better, with a validation accuracy 

of 0.38. This follows intu-ition, since VGGFace was 

trained on input data more simi-lar to our data set. 

5.2. Qualitative results 

Figure 2 below shows a sample of images 

misclassified by our highest performing deeper CNN 

model. We were surprised that even we were unable to 

correctly classify some of the images, and the emotions 

on some of the faces seem ambiguous. For example, 

we made the same misclassification as our model, 

classifying the surprised face as a happy face in the 

leftmost column in Figure 2. Perhaps our human error 

speaks to the inherent difficulty of recognizing 

complex facial expressions as discrete emotions, 

especially when different people (and actors, in the 

case of our data set) perform emotions in visually 

different ways.Apart from expressional ambiguity, 

these misclassified images have other characteristics 

that may make them dif-ficult to classify. For example, 

occlusion: the image in the center of the top row only 

shows part of a face; lighting: the image on the bottom 

right occurs in much lower lighting than the other 

images; and viewpoint variation: the image in the 

center column of the third row shows a profile, 

whereas most other images show frontal views of 

faces. 

 

 
 

Figure 2. A sample of misclassified images with their 

predicted and actual labels. 

 

6. Discussion 

6.1. Baseline classifier 
 

Our baseline classifier achieved the lowest accuracy 

of all our models, as expected. 

 

6.2. Five-layer and deeper CNN 

Since the five-layer CNN is a specific instance of the 

pa-rameterizable deeper CNN, we will discuss both 

together. 

6.2.1 Parameter experimentation 

During the experimentation process, we tuned a large 

num-ber of parameters including the following: 

Learning rate and regularization Dropout rateWith vs 

without batch normalization Number of convolutional 

layers Number of fully connected layers Number of 

filters at each layer fractional max-pooling vs normal 

max-pooling  From our incremental results, we came to 

the following conclusions.  
Using fractional max-pooling instead of standard 

max pooling does not substantially affect the highest 

accuracy on this data set, and it increases the amount of 

time it takes to train a network (with identical 

architecture and parameters) by a factor of 1.5 due to a 

higher computational cost at each iteration. Also, 

increasing the number of fractional max-pooling layers 

significantly reduces the optimal L2 regu-larization 

parameter. This makes sense, because fractional max-

pooling has a regularizing affect due to its stochas-

ticity. Our optimal dropout parameters even with 

standard max-pooling were very low, so fractional-max 

pooling did not affect this parameter significantly. 

Figure 3 gives a direct comparison between the optimal 

L2 regularization weights with traditional and fractional 

max-pooling. 
 

Increasing the number of fully connected layers from 

1 to 4 increased our validation set accuracy by about 5 
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per-cent, from 0.42 to 0.47, indicating that we had been 

under-fitting.  
Increasing dropout decreases overfitting and 

increases the amount of training time to achieve 

accuracies achiev-able without dropout. This dynamic 

is illustrated in Figure 4. 

Having a larger number of filters in the deeper layers 

of the network led to higher accuracies. To reduce the 

number of tunable variables, we separated the number 

of filters into two parameters such that we could specify 

a different num-ber of filters for the first repeated block 

in Table 2 than the second repeated block, while 

maintaining the same number of filters for all 

convolutional layers within the same block. We found, 

for example, that using 32 filters in the first part of the 

network 64 filters in the second led to higher accu-

racies than if all convolutional layers used 32 filters. 

We also found that increasing the number of filters at 

the first layers of the network increased computation 

time (as ex-pected) without significantly increasing 

accuracy. For ex-ample in our initial random sweep of 

parameters, we found that using 77 filters in the first 

layers did not improve accu-racy as compared to using 

32 filters in the first layers. This structure of using more 

filters in later convolutional layers is consistent with the 

structure of the VGG16 network. 

 

 

 

 

 

 

 

 

 

 

                             

 

 

 

 
 

 

Figure-3 

 

6.2.2 Interpretation 

Our CNN models underperformed compared to state-

of-the-art. One weakness in our models is that they 

overfit the training data, as shown in Table 3 by the 

high training set accuracies compared to lower 

validation and test set ac-curacies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The upper two graphs represent the training 

and valida-tion accuracy for the the five-layer CNN 

during learning rate and regularization tuning. The 

accuracies are shown by the color scale depicted to the 

right. The lower two graphs represent the five-layer 

CNN with fractional max-pooling. As depicted, the 



International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 167 

optimal L2 regularization weights with fractional max 

pooling are lower than those for max-pooling.  

Figure 4. Higher dropout results in less overfitting but a 

longer time to reach accuracies achieved using the same 

parameters and lower dropout. 

                                  Figure-4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as random image rotations and more aggressive 

horizontal and vertical shifts.  
Although our highest-accuracy model underperforms 

compared to the state-of-the-art, it achieves accuracies 

much higher than random and is training in a 

meaningful way. Figure 5 shows visualizations of filters 

from the con-volutional layers in our best model. The 

filters show clear patterns in all layers. As a comparison 

point, Figure 6 shows visualizations from the 

convolutional layers of the VGG16 network we used 

for fine-tuning, at the same layer depths. 
 
6.3. Fine-tuned CNNs 
 

In fine-tuning using VGG16, we tried both (1) 

keeping only the bottom layers and training two fully 

connected lay-ers on top of that and (2) keeping the 

whole network except for the final classification and 

training two fully connected layers on top of that. The 

first method gave a validation ac-curacy of 0.249 while 

the second gave a validation accuracy of 0.290. It was 

surprising that keeping the full network gave a higher 

accuracy than keeping just the lower layers, because we 

would expect the lower layers to generalize bet-ter to 

very different data sets. It is possible that we retained 

too few layers from VGG16. However, since the 

validation accuracies were much lower than the 

networks trained from scratch, we decided not 

experiment much further with fine-tuning on VGG16.  
For fine-tuning with VGGFace we kept the full 

network except for the final layer and added two fully 

connected layers that we trained on top of that. Fine- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tuning on VG-GFace worked comparatively well, 

yielding a validation ac-curacy of 0.38. However, this 

accuracy is still than our deeper CNN’s accuracy of 

0.47 on the validation set, and fine-tuning VGGFace 

took about 3 times as long to train.  

Figure 5. Visualizations of filters from the deeper CNN 

model. The visualizations represent filters from the first 

(top left), third (top right), fifth (bottom left), and 

seventh (bottom right) convolu-tional layers. These 

visualizations were generated by performing gradient 

ascent to generate an image that maximizes the activa-

tions at various layers in the network. figure 6. 

Visualizations of filters from VGG16. The visualiza-

tions represent filters from the first (top left), third (top 

right), fifth (bottom left), and seventh (bottom right) 

convolutional lay-ers. These visualizations were 

generated by performing gradient ascent to generate an 

image that maximizes the activations at var-ious layers 

in the network.  
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As a result, we decided not to continue experimenting 

with VGGFace, but using it in combination with other 

methods could be promising as future work.  
It makes sense that fine-tuning with VGGFace 

performed much better in our FER task than fine-tuning 

with VGG16, because the network was trained on more 

similar images and for a more related objective.  
Overall, however, training a model from scratch out-

performed fine-tuning. This trend differs from what we 

have seen with other applications, but is understandable 

given that there has been relatively less work on face 

data sets compared to general image classification data 

sets, and given that state-of-the-art networks are less 

polished in this more specific task of FER. In addition, 

our application (FER) is not a sub-problem of the 

problem the network was trained to solve (e.g. 

classifying dog breeds vs. classifying animals); rather, 

FER is tangentially related to facial recog-nition, the 

task for which VGG Face was trained. 

 
7. Conclusion 
 

In this project, we addressed the task of facial 

expression recognition and aimed to classify images of 

faces into any of seven discrete emotion categories that 

represent univer-sal human emotions. We experimented 

with various tech-niques, such as fine-tuning and 

fractional max-pooling, and  

achieved our highest accuracy (0.48) on a CNN trained 

from scratch with seven convolutional layers. Given 

more time, we would have liked to combat overfitting 

and approach state-of-the-art accuracies of around 0.61. 
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