
International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 143

Dictionary Based Text Filter for Lossless Text

Compression
 Rexline S. J

#1
, Robert L

*2
, Trujilla Lobo.F

#3

#Department of Computer Science, Loyola College, Chennai, India
*Department of Computer Science Government Arts College,Coimbatore,India

#Department of Computer Science, Loyola College, Chennai, India

Abstract —This paper presents a new text

transformation technique called Dictionary Based

Text Filter for Lossless Text Compression. A text

transformation technique should preserve the data

during the encoding and decoding process. In the

proposed approach, words in the source file are

replaced with shorter codewords, whenever they are

present in an external static dictionary. The rapid

advantage of text transformation is that codewords

are shorter than actual words and, thus, the same
amount of text will require less space. As we are

aware, 16% of the characters in the text files are

spaces on average and hence to achieve better

improvement of the compression rates for text files,

the space between words can be removed from the

source files. The unused ASCII characters from 128

to 255 are used to generate the codewords. This

codeword combination chosen helps us to remove

the space between the words in the encoded file. The

proposed algorithm has been implemented and

tested using standard Corpuses and compresses the
files up to 85% reduction of its source file. We

recommend the use of this proposed technique to

compress the large text files in the field of the

digitalization of library.

Keywords — Decoder, Encoder, text

transformation, preprocessing, Text Filter.

I. INTRODUCTION

Text compression is a process which reduces the

size of the original file without any loss of

information in which it saves storage space and
reduces the communication costs and also it reduces

the time taken to search the pattern or portion of a

file through the compressed file [18]. Therefore, text

compression is considered to be an important

research area to improve its algorithms and

compressing technologies. Lossless data

compression techniques are often partitioned into

statistical based compression techniques and

dictionary based compression techniques. Statistical

compression algorithm is based on the probability

that certain character will occur. Huffman Coding
[14] and Arithmetic Coding [24] are the kind of

statistical coders.

Dictionary based compression method exploits

repetitions in the data. This coding scheme makes

use of the fact that certain groups of consecutive

characters occur more than once and assign a

codeword to that certain occurrences. Most of the

dictionary coders are based on LZ77 and LZ78 and

are widely employed to compress the data. The

LZW is also one of the dictionary based

compression algorithm in which the dictionary is

created dynamically and index values are used to

represent the repeated dictionary words [18]. The

advantage of LZW over the LZ77-based algorithms
is its speed because of the limited numbers of string

comparisons is enough to perform [23].

Transformation is another one methodology used

to improve the compression performance in lossless

text compression area [1, 10]. Researchers have

proved that word based transformation method saves

the run time memory, attaining good compression

rates and also speeds up the transmission time [22].

Though there exists different word based

preprocessing methods, there is a possibility for a

better word based Preprocessor as the days and
technologies progress [10]. There are major methods

available for text preprocessing algorithm like Star

Encoding, Length-Preserving Transform (LPT),

Reverse Length-Preserving Transform (RLPT),

Shortened – Context Length-Preserving Transform

(SCLPT) [10], and Length Index Preserving

Transform (LIPT) [4]. Text preprocessing method

consists of taking a sequence of characters or

alphanumeric strings [13] and transforming them

into codewords. For effective compression, the

resultant sequences of codewords will be smaller

than the original sequence of characters. It is enough
to use maximum of three bytes as codeword for

entire words in the file [12]. The transformation is

reversible such that the original sequence of

characters can be recovered with no loss of

information.

 A text preprocessing technique, which goes well

with the help of existing compressors like bzip2

contribute better compression ratio [10, 17]. But this

method needs an external dictionary to store the

words and also the order in which words appear in

the dictionary has an impact in compression [22]. So
that we need to be aware of high runtime memory

requirement and more time consuming which are

essential to care for this method in a healthy way.

The paper is organized as follows: Section II

presents the existing text transformation techniques;

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 144

Section III proposes our new approach. Section IV

substantiates the achievability and competence of the

proposed method and finally Section V contains the

conclusions.

II. RELATED WORKS

As we are aware, the text transformation
techniques boost the compression rates up to few

percent. The text transformation is a process, which

reversibly transforms a data into some intermediate

form. This transformed data then can be compressed

with most of existing lossless data compression

algorithms, like bzip2, gzip with better compression

efficiency than achieved using an untransformed

data. The reverse process is that decompression

using given compressor like bzip2, gzip and a

reverse preprocessing transformation.

The Burrows–Wheeler Transform (BWT) [5,8] is

one of the best transformation methods in lossless
text compression research area. BWT is a reversible

transform that transfers the data into intermediate

format that is generally more compressible. The

Burrows - Wheeler Transform (BWT) encodes a

block of data separately as a single unit. Even

though, BWT constructs the transformed data larger

than its original form, but the transformed data is

more compressible than the untransformed data.

This algorithm was developed by David J. Wheeler

in 1983. It was on hand widely by Michael Burrows

and David J. Wheeler in 1994 as a part of block-
sorting compression algorithm. Bzip2 compressing

algorithm compresses files using the Burrows-

Wheeler block sorting text compression

algorithm, and Huffman coding. Bzip2 compresses

large files in blocks. The block size affects both the

compression ratio attained and the amount of

memory needed for compression and decompression.

The internal algorithms used in BWT like Move-To-

Front, arithmetic coder are modified to improve the

performance of BWT [8]. Chapin [6,7] describes the

method of reordering the alphabets instead of using

lexicographic sorting in BWT which gives better
improvements in BWT Algorithm. Recently,BWT

has initiated many applications to bioinformatics

field too.

 R. Franceschini and A. Mukherjee proposed the

Star Encoding [10] algorithm to transform the data

into some intermediate form, which can be

compressed with better efficiency. The star encoding

makes use of * called signature of the character to

substitute certain characters in a word and maintain

few characters so that the word is still reversible.

This star Encoding method attained better gain in
compression rates. And also different preprocessing

Schemes like Length-Preserving Transform (LPT) in

which words of length more than four are encoded,

Reverse Length-Preserving Transform (RLPT))

which is a revision of LPT, Shortened –Context

Length-Preserving Transform (SCLPT) are designed

to get better compression ratio. In which SCLPT

outperforms other transforms and achieves better

compression rates [10]. All these transformation

method uses the static dictionary both in encoding

and decoding process. Encrypted word based

dictionary is also designed and tested which

produced better results compared with un-encrypted
word based dictionary [20].

The Star Encoding is improved and proposed by

F .Awan and A. Mukherjee called as Length Index

Preserving Transform (LIPT) [4] ,in which the

codeword format is that of the symbol * followed by

the word length indicated by the alphabets[a-z , A-Z]

and then the index to the sub dictionary. The symbol

* is used to indicate the transformed word which

distinguishes the original words and the codewords.

LIPT also used the static dictionary of size 0.5 MB

in uncompressed format.

 V.K. Govindan and B.S. Shajee mohan [11]
proposed that the actual codeword consists of the

length of the code concatenated with the code and

the codewords are created using the ASCII

characters 33 to 250. ASCII characters 251 to 254

used to represent the length of the code .A flag

(ASCII 255) is used to indicate the absence of a

space. If the character is one of the ASCII characters

251-255, the character is placed twice so as to show

that it is part of the text and not a flag.

Md. Ziaul Karim Zia, Dewan Md. Fayzur

Rahman, and Chowdhury Mofizur Rahman[25]
describes a new transformation that the code words

are generated using the ASCII characters (33 -128).

Spaces between words and unused bit of ASCII

character representation from each character are

recovered to save one byte per 8 ASCII characters.

Weifeng Sun,Amar Mukherjee and Nan Zhang

suggested StarNT[22] method by introducing ternary

search tree for encoding process and hashing to

speed up the decoding process and used the

alphabets [a-z,A-Z] for codeword .Grabowski [21]

extended the StarNT transformation with several

different algorithm like Space stuffing around the
words, EOL coding, Binary filtering technique,

Capital conversion, n-gram replacement to improve

the preprocessing techniques. His preprocessing

algorithm proposed hashing method to speed up the

transformation.

Joaquin Adiego, Miguel A. Martinez-Prieto,

Pablo de la Fuente [15] proposed a semi-static word-

codeword mapping method that takes advantage of

previous knowledge of some statistical data of the

vocabulary which also retains all the desirable

features of a word-codeword mapping technique.
Miguel A. Martinez-Prieto, Joaquin Adiego, Pablo

de la Fuente [19] presented Edge-Guided (E-G), an

optimized text preprocessing technique which

transforms the original text into a word net, which

stores all relationships between adjoining words and

proved that the best results are achieved when E-G

preprocessing is coupled with high-order

compressors such as Prediction by Partial Matching

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 145

(PPM) and also they stated that the best option is to

use a word based PPM in conjunction with the

spaceless word concept[16].

Antonio Farina, Gonzalo Navarro, Jose R. Parama

[3] proposed Semistatic word-based byte-oriented

compressors with new suffix-free Dense-Code-based
compressor and proved that it achieves much better

space , time and compression performance . R. R.

Baruah, V.Deka , M. P. Bhuyan.[26] discussed about

the preprocessing method to get better compression

ratio.

III. PROPOSED TEXTFILTER

In this section, we propose our new techniques in

text preprocessing method. A static dictionary is

used to store the frequently used English words.

Short codewords are assigned to the words present in

the dictionary to do some precompression in the

preprocessing stage itself. The size of the dictionary
is limited according to the number of codeword

available. This Text Filter method takes advantage

of repetitions in the data and so it achieves better

context to the existing compressors.

Each codeword should be unique. Codewords can

be formed by two to three of the ASCII characters

from 128 to 255, since they are never used in text

files. Two length codeword cycles through the

ASCII characters [128 - 245]. Totally, 13,924 words

can be assigned two letter codeword. Three length

codewords start with the ASCII character [246-255]
and the next two characters cycles through the

ASCII characters [128 - 245]. In this way, 10 x 118

x 118 = 139,240 three letter codeword can be used in

our transformation. Totally, maximum of 153,164

codewords can be assigned for the words in the

static dictionary and the number of codewords

possible according to the above combination is more

than enough for the very often repeated words in

English language [22].

The reason why we have chosen the unused

ASCII characters to generate codeword and also the

above said combination of codeword is that this kind
of codeword combination helps us to remove the

space between the words. Removing the spaces form

the source file is a well-known transformation in

such word-based text compression that improves the

compression ratio [9]. Since we have planned to

remove the space between the words, we analyzed

the spaces between the words in the sample files

from the Calgary corpus and Canterbury Corpus.

Table I shows the space frequencies of the files as

known from Abel J and Teahan W [2]. By using this

approach, we recover 16% of space on average from
any text file.

The space frequency results, mentioned in Table I

of this paper, provided a sturdy origin to make

improvement in the text filtering method. There are

no codeword for digits, punctuation, tab and EOL.

So that the digits, punctuation and EOL are

transferred as it is. F. Awan and A. Mukherjee [4, 21]

proved that capital conversion is a recognized

preprocessing technique.

Words started with capital letter are converted to

their lowercase equivalent and full uppercase words

are also converted to its lowercase form and

indicated the changes with a flag. Those words that
are not present in the dictionary are not converted to

codeword and it is transferred as it is and indicated

with a flag ‗ASCII character 127‘. This flag is used

to recover the space between the unaltered words

present consecutively while decoding the text.

TABLE I. SPACE FREQUENCIES OF CALGARY

AND CANTERBURY CORPUS

The Text Filter algorithm we developed is a three

step process consisting of Dictionary Creation

Algorithm, Encoding Algorithm and Decoding

Algorithm. The procedure used in the proposed

method can be summarized as follows.

A. Dictionary Creation Algorithm

Using multiple source files as input, a Static

Dictionary can be created with fixed sequences of

words by extracting all words from input files,

sorting the Dictionary by frequency of occurrences

File Names
File Size

(Bytes)

Spaces

(Bytes)

Spaces

%

Bib 111261 13739 12.35

book1 768771 125551 16.33

book2 610856 556047 14.06

News 377109 54269 14.39

paper1 53161 7301 13.73

paper2 82199 12112 14.73

Progc 39611 6925 17.48

Progl 71646 12238 17.08

Progp 49379 11474 23.24

Trans 93695 9901 10.57

Bible 4047392 766111 18.93

World192 2473400 428662 17.33

Average 15.85

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 146

of the word in descending order and the lower case

versions of the words are stored in the dictionary.

Then codeword are assigned for the words in the

dictionary using the ASCII characters 128 to 255.

Two length codeword cycles through the ASCII

characters [128 - 245]. Totally, 13,924 words can be
assigned two letter codeword. Three length

codeword starts with the ASCII character [246-255]

and the next two characters cycles through the

ASCII characters [128 - 245]. In this way, 10 x 118

x 118 = 139,240 three letter codeword can be used in

our transformation. According to the mapping

mechanism, it is possible to store up to 118 x 118 +

10 x 118 x 118 = 153,164 different two and three

letter codewords in the Dictionary.

B. Encoding Algorithm

The words in the source file are searched in the

Dictionary. If the input text word is found in the

dictionary, replace the word with the codeword

assigned. If the input word is not found in dictionary,

then it is transferred as it is by placing a flag ‗ASCII

value 127‘ before the unaltered word. This flag helps

us to recover the space between the consecutive

unaltered words present in the encoded file. Words

that start with capital letter are converted to their

lowercase equivalent and to denote this change, the
‗ASCII value 12‘ is used as a flag and placed in

front of the respective codeword. Moreover it is

worth using another ‗ASCII value 11‘ as a flag to

mark a conversion of a full uppercase word to its

lowercase form to indicate that change. If all the

letters of a word are in lower case then no flag is

placed before their codeword. Space between words

is removed without transformed into the

intermediate file. If more than one space is there

between the words, except only one space, all other

spaces are encoded into the transformed file as it is.

Punctuation, EOL, and digits are not converted to
codeword and transferred as it is. If the input

character is the character used for codeword and flag,

then another flag ‗ASCII value 6‘ is placed before

that just to indicate that the character is part of the

source file and not a codeword or flag. Once all the

input text has been transformed according to the

above steps, then the transformed text is fed to the

existing backend compressors like Bzip2, PPM, gzip

etc.

C. Decoding Algorithm

The compressed text is first decompressed using

the same compressor as it was compressed at the

source end and the transformed text is recovered.

The reverse transformation is applied on this

decompressed transformed text. If the codeword

starts with the ASCII character 128 to 245, then

consider only the consecutive two characters as a

codeword and find for the matching the word in the

dictionary. If the codeword starts with the ASCII

character 246 to 255, then consider only the

consecutive three characters as a codeword and find

for the matching the word in the dictionary. The

transformed codewords are replaced with the

respective words in the dictionary. The unaltered

word can be easily recoganzied by the flag (ASCII
value 127) and transformed as it is in the decoded

file by stuffing a space in the decoded file . Between

each and every codeword, space should be inserted

to recover the source file. The change of

capitalization of the word is also performed using

the respective ASCII flag identifier.

IV. PERFORMANCE ANALYSIS

When we focus our attention to evaluate the

performance and excellence of good compression

algorithm, there are several criteria to be under

consideration such as, the compression ratio,

memory requirements and timing
performance in the case of lossless text compression.

In this section, we compare the performance of our

proposed Dictionary Based Text Filter with the

backend algorithm Bzip2. The reason to use bzip2 as

our backend compressor is that bzip2 compresses

files using the Burrows-Wheeler block sorting text

compression algorithm and Huffman coding and

also bzip2 outperforms other compression

algorithms when compared with Gzip, Gzip-9, and

DMC by giving the best compression ratios with

lowest execution time [10]. Our experiments were
carried out on an 800MHz equipped with 3.00 GB

RAM, under Windows Vista operating system.

Dictionary Based Text Filter was implemented in

VC++ (Microsoft Visual Studio 2005).

A. Compression Ratio of Dictionary Based

TextFilter

The compression ratios are expressed in terms of

average BPC (bits per characters). We compared the

compression performance of our proposed
Dictionary Based Text Filter with the results of

Bzip2 and LIPT as listed on Table II and it can be

seen that our transform algorithm outperforms

almost all the other improvements. The detailed

compression results in terms of BPC for our test

corpus are summarized as follows.

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 147

TABLE II. COMPRESSION RATIO (BPC) OF TEXTFILTER WITH BZIP2 AND LIPT WITH BZIP2

The average BPC using original Bzip2 is 2.36 and

Bzip2 with LIPT gives average BPC of 2.22,

according to experimental results based on the

Calgary Corpus. According to Canterbury files

based results, the average BPC using original Bzip2

is 2.32 and Bzip2 with LIPT gives average BPC of

2.22. According to Gutenberg files based results

taken from F. Awan and A. Mukherjee, [4] , the

average BPC using original Bzip2 is 1.95 and Bzip2

with LIPT gives average BPC of 1.86 .But based on

our method, average BPC for Calgary Corpus is 2.12,
a 10.17% improvement over bzip2 and 4.5%

improvement over LIPT and for Canterbury files is

2.15 BPC, a 7.33% improvement over bzip2 and

3.15% improvement over LIPT and average BPC for

Gutenberg files is 1.77, a 9.23% improvement over

bzip2 and 4.84% improvement over LIPT. Table III

shows the compression performance of Textfilter

over PPMd which is a representative of the PPM

family and the p7zip compressor which is a LZMA

algorithm based compressor. It shows clearly that

Textfilter combined with PPMd and 7Z outperforms

in compression ratio.

Table IV shows the compression ratios achieved

in our tests. A ―None‖ means that the existing

compressor like Bzip2, PPMd and 7Zip was applied

over plain text. We compared our results with End-

Tagged Dense Code (ETDC) and (s, c)-Dense Code

(SCDC) used as a preprocessing step with the

backend compressor taken from Antonio Farina,

Gonzalo Navarro, Jose R. Parama[3]. We used the
text files of the Calgary corpus collection: book1,

book2, bib, news, and paper1-6 for comparison.It

can be seen that dense+bzip2 improves bzip2 and

Dense+p7zip overcomes p7zip dense+PPMd works

similarly to MPPM [3].But according to the results

shown in Table IV, our proposed Textfilter

outperforms all the other methods.

File

Names

File size

Bytes

Bzip2

(BPC)

LIPT+

Bzip2

(BPC)

Bzip2+

Text

Filter

(BPC)

File

Names

File size

Bytes

Bzip2

(BPC)

LIPT+

Bzip2

(BPC)

Bzip2+

Text

Filter

(BPC)

CALGARY CORPUS CANTERBURY CORPUS

Bib 111261 1.98 1.93 1.71
Grammer.

lsp
3721 2.76 2.58 2.71

book1 768771 2.42 2.31 2.26 xargs.1 4227 3.33 3.10 2.82

book2 610856 2.06 1.99 1.93 fields.c 11150 2.18 2.14 1.92

News 377109 2.52 2.45 2.32 Cp.html 24603 2.48 2.44 2.71

paper1 53161 2.49 2.33 2.25 asyoulik 125179 2.53 2.42 2.28

paper2 82199 2.44 2.26 2.15 alice29 152089 2.27 2.13 2.05

Paper3 46526 2.72 2.45 2.35 lcet10 426754 2.02 1.91 1.78

Paper4 13286 3.12 2.74 2.6 plrabn12 481861 2.42 2.33 2.25

Paper5 11954 3.24 2.95 2.79 world192 2473400 1.58 1.52 1.37

Paper6 38105 2.58 2.40 2.3 bible 4047392 1.67 1.62 1.57

Progc 39611 2.53 2.44 2.34 Average (BPC) 2.32 2.22 2.15

Progl 71646 1.74 1.66 1.63 GUTENBERG CORPUS

Progp 49379 1.74 1.72 1.62 1musk10 1344739 2.08 1.98 1.88

Trans 93695 1.53 1.47 1.42 World95 2988578 1.54 1.49 1.40

Average

(BPC)
 2.36 2.22 2.12 Anne 586960 2.22 2.12 2.03

 Average
(BPC)

 1.95 1.86 1.77

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 148

TABLE III. COMPRESSION RATIO (BPC) OF TEXTFILTER WITH PPMD AND 7Z

B. Memory Space Complexity

In our implementation, the transform dictionary is

a static dictionary shared by both encoding process

and decoding process. The drawback of Dictionary

Based Text Filter is the requirement of maintaining
relatively a large collection of words as a static

dictionary. Such a dictionary may contain frequently

occurring words of arbitrary length, digrams or n-

grams. This kind of dictionary can easily be built

upon an existing coding such as ASCII value 128 to

255 by using previously unused codewords or

extending the length of the codewords to

accommodate the dictionary entries. Another

measure that affects the transformation is that, the

number of words in the dictionary and the

frequencies of occurrence of each word in the source
file are greatly affects the compression rates.

 In our method, we tested our dictionary by

placing the words up to 130,000. Even though, we

limited the dictionary size, it could be possible to

place up to 150,000 words based on the requirement

of the source file. A significant way to minimize the

memory usage and storage space is to reduce the

number of words in the dictionary. Moreover, the

best way of shortening the size of the dictionary is to

avoid the scarcely used words. We tested the

implementation with dictionary of size 1.67MB

uncompressed and 595KB when compressed with

Bzip2. Dictionaries would have to be transmitted

only once, and could be reused [6]. Another one

solution to handle the dictionary is that the created

dictionary could be uploaded to a public directory on

a web site.

TABLE IV. COMPARISION ON COMPRESSION

RATIO OF TEXTFILTER WITH ETDC AND SCDC

File

Names

PPMd

(Bytes)

PPMd

(BPC)

PPMd+

Text

Filter

 (Bytes)

 PPMd

+Text

Filter

 (BPC)

 7Z

(Bytes)

7Z

(BPC)

7Z

+TextFilter

(Bytes)

7Z

+TextFilter

(BPC)

Bib 25479 1.83 23392 1.68 30716 2.21 26380 1.90

book1 215845 2.25 202270 2.10 261064 2.72 231061 2.40

book2 149437 1.96 139010 1.82 169894 2.22 152923 2.00

News 109552 2.32 102001 2.16 119399 2.53 109416 2.32

paper1 14999 2.26 13835 2.08 17322 2.61 14981 2.25

paper2 22881 2.23 20803 2.02 27310 2.66 23022 2.24

Paper3 14432 2.48 13061 2.25 17097 2.94 14210 2.44

Paper4 4623 2.78 3906 2.35 5444 3.28 4273 2.57

Paper5 4298 2.88 3885 2.60 4938 3.30 4183 2.80

Paper6 11104 2.33 10160 2.13 12552 2.64 10843 2.28

Progc 11344 2.29 10624 2.15 12605 2.55 11508 2.32

Progl 14844 1.66 13751 1.54 15060 1.68 14124 1.58

Progp 10240 1.66 9406 1.52 10428 1.69 9897 1.60

Trans 17104 1.46 15146 1.29 16896 1.44 15743 1.34

Average

(BPC)
 2.17 1.98 2.46 2.15

Preprocessor PPMd 7Z Bzip2

CALGARY CORPUS

None 25.36% 29.96% 28.92%

ETDC 20.04% 29.38% 31.67%

SCDC 27.97% 29.48% 31.23%

Textfilter 25.19% 27.98% 26.87%

International Journal of Computer Trends and Technology (IJCTT) – Volume 49 Number 3 July 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 149

C. Timing Performance

In any compression process, time complexity of

the transformation method plays a vital role. In LIPT,

binary search technique is used to expedite searching

[4]. But it is proved that hashing techniques used for

searching the words in the dictionary speeds up the

encoding and decoding time taken by the

preprocessor[21,22] with less memory. We used

hashing method for dictionary mapping in our

implementation to expedite for dictionary mapping.

Moreover, as we are aware that the timing

performance of the preprocessor is machine
dependent one. Transformed text compresses with

better efficiency over existing compressors like

Bzip2, Gzip [4]. Our algorithm also gives better

improvement in transmission time over Bzip2.

V. CONCLUSIONS

Our proposed TextFilter method is admirable

extensions of the transformation mechanisms which

considerably reduces the disk space required to store

the text files experimented on various texts Corpuses.

This transformation algorithm also includes an

efficient dictionary mapping mechanism to remove
the space between the words in the source files to

recover substantial amount of memory. It is very

clear that this new transformation technique with

bzip2 could provide a better compression

performance of upto 85 % reduction in size of

source file and also it maintains an appealing

compression and decompression speed. Since the

dictionary is a static one and due to the increasing

interest in development of digital library related

technologies, we have prior knowledge about the

content of the source file, thus different dictionaries

can be created and invoked which gives the most
significant improvement in the compression

performance.

REFERENCES

[1] Abel J. ―Record preprocessing for data compression‖,

Proceedings of the 2004 IEEE Data Compression

Conference, IEEE Computer Society Press, Los Alamitos,

California, pp .521,2004.

[2] Abel,J, Teahan,W, ―Universal Text Preprocessing for Data

Compression‖,IEEE Trans.Computers,54(5)pp :497-

507,2005.

[3] Antonio Farina, Gonzalo Navarro, Jose R. Parama,

―Boosting Text Compression with Word-Based Statistical

Encoding.‖ The Computer Journal, 55(1): 111-131 (2012).

[4] F. Awan and A. Mukherjee, ―LIPT: A Lossless Text

Transform to Improve Compression,‖ Proceedings of

International Conference on Information and

Theory:Coding and Computing, IEEE Computer Society,

pp. 452-460, April 2001.

[5] M. Burrows and D.J. Wheeler, ―A Block-Sorting Lossless

Data Compression Algorithm‖, SRC Research Report 124,

Digital Systems Research Center, Palo Alto, CA, 1994.

[6] Chapin, B. ―Higher Compression from the Burrows-

Wheeler Transform with new Algorithms for the List

Update Problem‖, Ph.D. Dissertation, University of North

Texas, 2001.

[7] Chapin B, Tate SR.‖Higher Compression from the

Burrows–Wheeler Transform by Modified Sorting‖, In

Storer JA, Cohn M, editors, Proceedings of the 1998 IEEE

Data Compression Conference, IEEE Computer Society

Press, Los Alamitos, California,pp.532,1998.

[8] S.Deorowicz,‖Improvements to Burrows-Wheeler

Compression Algorithm ―, Software – Practice and

experience, pp.1465-1483, 2000.

[9] Edleno de Moura, Gonzalo Navarro, Nivio Ziviani:

―Indexing Compressed Text‖. WSP'97: 95-111.

[10] R. Franceschini, H. Kruse, N. Zhang, R. Iqbal, and A.

Mukherjee, ―Lossless, Reversible Transformations that

Improve Text Compression Ratio,‖ Project paper,

University of Central Florida, USA. 2000.

[11] V.K. Govindan, B.S. Shajee mohan, ―IDBE – An

Intelligent Dictionary Based Encoding Algorithm for Text

Data Compression for High Speed Data Transmission Over

Internet‖, Proceeding of the International Conference on

Intelligent Signal Processing and Robotics IIIT

Allahabad February 2004.

[12] H.S. Heaps. ―Information Retrieval - Computational and

Theoretical Aspects‖. Academic Press, 1978.

[13] Horspool N, Cormack G. ―Constructing Word-Based Text

Compression Algorithms‖, Proceedings of the 1992 IEEE

Data Compression Conference, IEEE Computer Society

Press, Los Alamitos, California, pp. 62–71,1992.

[14] Huffman, D.A.,‖ A method for the construction of

minimum-redundancy codes‖. Proc. Inst. Radio Eng., 40:

pp: 1098-1101.1952.

[15] Joaquin Adiego, Miguel A. Martinez-Prieto, Pablo de la

Fuente: ―High Performance Word-Codeword Mapping

Algorithm on PPM‖. DCC 2009: 23-32

[16] Joaquin Adiego, Pablo de la Fuente: ―Mapping Words into

Codewords on PPM‖. SPIRE 2006: 181-192.

[17] H. Kruse and A. Mukherjee, ―Preprocessing Text to

Improve Compression Ratios‖, Proceedings of Data

Compression Conference, IEEE Computer Society,

Snowbird Utah, pp. 556, 1998.

[18] U. Manger, ―A Text compression scheme that allows fast

searching directly in compressed file‖ , ACM Transactions

on Information Systems, Vol.52, N0.1, pp.124-136, 1997.

[19] Miguel A. Martinez-Prieto, Joaquin Adiego, Pablo de la

Fuente: ―Natural Language Compression on Edge-Guided

text preprocessing. Information Sciences‖, 181(24): 5387-

5411 (2011)

[20] Robert Franceschini, Amar Mukherjee, ― Data

Compression Using Encrypted Text ―,proceedings of the

third forum on Research and Technology, Advances on

Digital Libraries,ADL 96,pp .130-138, May 1996.

[21] P. Skibiński, Sz. Grabowski and S. Deorowicz. ―Revisiting

dictionary-based compression‖. Software–Practice and

Experience, pp.1455-1476, 2005.

[22] Sun W, Mukherjee A, Zhang N. ―A Dictionary-based

Multi-Corpora Text Compression System‖ . In Storer JA,

Cohn M, editors, Proceedings of the 2003 IEEE Data

Compression Conference, IEEE Computer Society Press,

Los Alamitos, California, pp .448 ,2003.

[23] Weiling Chang, Binxing Fang, Xiaochun Yun, Shupeng

Wang‖ The Block Lossless Data Compression Algorithm‖,

International Journal of Computer Science and Network

Security, VOL.9 No.10, October 2009.

[24] Witten, I.H., R.M. Neal and J.G. Cleary, ―Arithmetic

coding for data compression‖,. Commun.ACM, 30: pp :

520-540.,1987

[25] Md. Ziaul Karim Zia, Dewan Md. Fayzur Rahman, and

Chowdhury Mofizur Rahman, ―Two-Level Dictionary-

Based Text Compression Scheme‖, Proceedings of 11th

International Conference on Computer and Information

Technology, Khulna,Bangladesh.,pp.25-27,December-

2008.

[26] R. R. Baruah , V.Deka , M. P. Bhuyan. "Enhancing

Dictionary Based Preprocessing for Better Text

Compression ". International Journal of Computer Trends

and Technology (IJCTT) V9(1):4-9, March 2014.

