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Abstract- Task scheduling is a crucial issue in 

distributed (disbursed) heterogeneous processing 

environment and significantly influence the 

performance of the system. The task scheduling 

problem has been identified to be NP-complete in its 

universal frame. In this paper the task scheduling 

problem is investigated using multiple-objective 

particle (molecule) swarm optimization algorithm 

with crowded displacement operator (MOPSO-CD). 

Particle swarm optimization is a populace based 

meta-heuristic which mimics the convivial conduct of 

feathered creatures running. In this algorithm 

particles move in the problem's search space to 

achieve near optimal solutions. The performance of 

this algorithm is compared with non-domination 

sorting genetic algorithm II (NSGA-II). The proposed 

scheduling algorithm intends to find the near optimal 

solution with aim to minimize the make-span and flow 

time. The exploratory results demonstrate that the 

proposed multi-objective PSO algorithm is more 

productive and gives better outcomes when contrasted 

with those of NSGA-II. 
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Meta heuristic, Particle swarm intelligence, Non-
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I. INTRODUCTION 

A heterogeneous computing (HC) 

environment makes utilization of available group of 

processors associated with fast systems to undertake 

applications having changed computational 

necessities. Heterogeneous computing environment 

extends from various components inside a solitary PC, 

to a group of PCs, to a more progressed geologically 

circulated machine, with shifted models. To viably 

and effectively use the computing capacities of such 

frameworks, scheduling is a key issue that must be 

properly addressed. The scheduling method involves 

the ordering of task execution and its mapping onto 

processors so as to minimize certain objective. 

In optimum scheduling process we map a 

pool of tasks to a set of resources to harness the 

computing abilities of such diverse systems so that 

some measure of effectiveness is optimized. Optimal 

mapping of a set of tasks to available processing 

elements in a HC framework is found to be a NP-

complete problem. In view of the kind of tasks to be 

scheduled, scheduling issue might be classified into 

two categories - Scheduling tasks (meta-tasks) 

independently, and scheduling coordinated directed 

non-cyclic graphs comprising of communicating tasks 

having priority (precedence) relation. The present 

work is confined to task scheduling belonging to first 

category only  i. e. tasks submitted by various users 

independently to various assets of a HC suite. Several 

criterions might be utilized for assessing the 

proficiency of a scheduling algorithm, the most vital 

of which are make-span and flow-time [11]. Make-

span is the completion time of the last task, while 

flow-time is the time that gives aggregate of 

processing times of all tasks. In present work an 

attempt is made to obtain an optimum schedule that 

minimizes both make-span and flow time. 

Particle Swarm Optimization (PSO) 

algorithm comes under the category of swarm 

intelligence and is a population based optimization 

technique [27]. Its fruitful application incorporates 

standard function optimization [22], solving 

permutation complications [23], and training 

multilayer neural systems [24]. PSO algorithm 

consists of a swarm of particles in which every 

particle (molecule) points to a potential solution to the 

problem. In contrast with evolutionary algorithmic 

approaches a swarm is like a populace, and a molecule 

is like a distinguishable entity (chromosome) [13]. 

The particles move through a multidimensional search 

space where the position of every molecule is attuned 

by its own experience and the experience of its 

neighbors. 

The present work explores the use of multi-

objective particle swarm optimization technique for 



International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017 

ISSN: 2231-2803                    http://www.ijcttjournal.org                              Page 11 

attaining optimal schedule of a task set consisting of 

autonomous non-dependent tasks (having no 

precedence relationship) on to an available pool of 

processing elements of varying capabilities in a 

distributed computing environment with aim to 

minimize both make-span and flow time. The 

performance of the proposed technique is evaluated by 

executing several data sets and comparing the results 

with those obtained for genetic algorithm (NSGA-II). 

The exploratory outcomes demonstrate that the 

proposed strategy is more productive and is relevant to 

HC frameworks scheduling.  

The rest of the paper is structured in the 

following fashion. Related work is presented in 

section II, section III presents problem definition, 

section IV represents modeling heterogeneity and 

consistency of computing; Non-dominated Sorting 

Genetic Algorithm (NSGA) and NSGA-II are 

discussed in section V, VI represents a general 

principle of particle swarm optimization and section 

VII shows multiple objective particle swarm algorithm 

with crowding distance operator, section VIII presents 

simulation test results and section IX gives the 

conclusion. 

II. RELATED WORK 

Several heuristics strategies have been 

reported in literature for scheduling non-dependent 

tasks in distributed computing environment. These 

include min–max [1], Sufferage [2], min–min, max–

min [3], LJFR-SJFR [4], Work-Queue [39] to name a 

few. The evolvement of meta heuristic has presented 

new avenues for problem solving and as  a result of 

advancements in meta-heuristic optimization 

strategies such algorithms are observed to be efficient 

in taking care of schedulability related issues. The 

most efficient and well known among them being 

genetic algorithms [5], simulated annealing [6], ant 

searching techniques [7]  and molecule swarm 

optimization (Salman et al) [8]. Braun et al [9] 

portrayed eleven heuristics and analyzed them on 

various sorts of heterogeneous computing 

environments representing the execution of GA 

scheduler in evaluation with others. All the above 

stated heuristics and meta-heuristics aimed at 

optimizing a single criteria i. e. minimizing the make-

span of the schedule. 

 Some cases demonstrate the endeavors made 

in optimizing multiple goals while scheduling non-

dependent tasks on heterogeneous situations. Liu et al 

[10]  made an attempt to attain minimum make-span 

and flow time. Izakian et al [11]  investigated five 

heuristics for limiting make-span and flow-time on 

heterogeneous conditions with different qualities of 

both machines and tasks. However, they evaluated 

both objectives independently. In [12], authors 

demonstrated the utilization of a few nature inspired 

meta-heuristics (SA, GA, PSO, and ACO) for 

scheduling tasks in matrices utilizing uni-objective 

and multi-objective optimization approaches. 

Variations of fuzzy molecule swarm algorithm for 

limiting make-span and flow-time are presented by 

Liu [10] and Izakian [13]. GA-based schedulers are 

proposed in [14] [15]. In [16] authors presented a 

Genetic Algorithm based schedule with an insight to 

balance load dynamically in distributed systems. 

Christos Gogos, Christos Valouxis et al. utilize 

Penalty Based (PB) computation [18]  [19]  and 

mathematical programming based approach of 

Column Pricing [18]  to take care of such issue. In this 

work two new heuristics named as list suffrage 

algorithm and Tenacious Penalty based algorithm are 

proposed. These techniques merge multiple goals into 

a scalar cost function, thus transforming the multi-

objective issue to single-objective issue before 

performing optimization. G. Subashini and M. C. 

Bhuvaneswari [20] made an endeavor by identifying 

the task scheduling problem as a true multi-objective 

optimization problem. They applied Non-dominated 

Sorting Genetic Algorithm-II, and Non-dominated 

Sorting Particle Swarm Optimization algorithms to 

address the problem. However, in this study multi-

objective particle swarm optimization algorithm did 

not employ the crowded distance comparison operator 

as proposed in [21].   

Multiple objective molecule swarm 

improvement has been proposed by a few researchers 

[25] [26] [30]. This approach has shown to produce 

better results when contrasted with other evolutionary 

strategies for multiple objective optimizations [38]. 

NSGA-II has been effectively implemented in a few 

applications [35] [36] [37]. Multi-objective particle 

swarm optimization has been applied in several 

standard function optimization problems [21] [25]. 

The proposed work is an attempt to explore the utility 

of multiple objective swarm improvement algorithm 

propelled by [21] [30] to tackle non-dependent task 

scheduling problem in heterogeneous distributed 

computing environment. 

III. PROBLEM DEFINITION 

Computing resources like a solitary PC, a 

group of PCs, or a supercomputer makes up a HC 

environment. Let τ = { , , …, } signifies the set 

of tasks submitted to the resources in a particular time 

interval. The tasks are assumed to be non-dependent 

and autonomous (having no inter task dependencies) 

and in between acquisition of the resources is not 

permitted. It is also assumed that tasks are not allowed 

to change the resources they have been assigned to. 

Let PE = { , …, } denotes the set of 

processing elements (machines) in a HC environment 

where the tasks are supposed to be executed. Every 
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machine utilizes the First Come First Served approach 

for executing the tasks. Each machine in HC suite 

knows about the expected execution time of each task. 

A k × p, Estimated Execution Time (EET) matrix 

model, where k and p represent the number of tasks 

and processing elements in distributed computing 

system, is utilized to represent the time of executing a 

particular task on a particular processing element. 

Each row of the EET matrix includes the assessed 

execution time for a given task on every processing 

element and each column of the EET matrix 

comprises of the evaluated execution time of a given 

processing element for each task. Thus, for an 

arbitrary task  and an arbitrary processing 

element , EET( , ) is the estimated execution 

time of  on  In EET matrix model the standard 

presumption is made that the processing limit of every 

task, an estimation or forecast of the computational 

requirements of each task and the machine 

accessibility time (prepared time) of every resource is 

known a priori. The principal goal of the scheduler is 

to limit make-span and flow time. 

 The specification of the make-span may be 

effectively expressed by utilizing the use of the EET 

matrix adaptation. Here, make-span can be 

represented by means of the completion times of the 

tasks on processing elements. Let completion [I] = 

[CT[1] , CT[2] , …, CT[p]]  be a vector of completion 

times of all machines accessible for a given clump of 

tasks. The completion time of machine I, indicated by 

completion[i]  or CT[i],  depicts an aggregate time 

needed for reloading the machine I after finalizing the 

previously assigned task(s) and completing the newly 

assigned task(s) on it. Thus 

 

CT[i]  =  or  +           

(1)  

where,  is the machine availability time of 

processing element i or is the ready time of 

processing element i. 

(i) is the group of tasks assigned to processing 

element i. 

 

The make-span is the maximal finish 

(completion) time and can be expressed as 

Make-span =                                      

(2) 

and the flow-time is defined as the sum of the 

completion times of all the tasks in the batch of tasks. 

Flow-time =                              

(3) 

 

Flow-time is generally regarded as a service 

optimizing criteria as it articulates the response time to 

the submitted task execution requests submitted by the 

HC users. In terms of EET matrix model the flow-time 

can be measured as a workflow of a sequence of tasks 

submitted to a given machine i. It is given as 

Flow-time [i] =  +         

(4)                                   

 

where,  is the group of tasks assigned to the 

machine  sorted in ascending order by the 

corresponding EET values.  

IV. MODELING HETEROGENEITY AND 

CONSISTENCY IN DCE 

The distributed computing model can depict 

distinctive degrees of heterogeneity in disbursed 

figuring condition through consistency of computing. 

Consistency of computing alludes to the intelligence 

among execution times got by a machine with those 

acquired by whatever remains of machines for an 

arrangement of tasks. In this way three sorts of 

consistency of computing in HC condition can be 

characterized utilizing properties of EET matrices: 

consistent, inconsistent, semi-consistent [9]. Matrices 

are said to be consistent if at whatever point a machine 

executes any assignment quicker than 

machine , then machine of type  executes all 

tasks speedier than machine . consistent matrices 

were produced by sorting each row  of the EET matrix 

independently, with machine  continually being the 

speediest and machine  the slowest.  

 Interestingly inconsistent or unreliable 

matrices portray the circumstance where machine  

might be speedier than the machine  for a few jobs 

and slower for others. These matrices are left in an 

unordered, arbitrary state in which they were created 

(i.e. no consistency is upheld).                                              

Semi-consistent, mostly consistent matrices, are 

inconsistent  

matrices that incorporate a consistent sub-matrix. For 

semi-consistent matrices, the row components in 

column position{0, 2, 4, …..} of row i are extracted, 

sorted and supplanted all together, while the row 

components in column  

positions {1, 3, 5, …..} remain unordered (i.e. the 

even columns are consistent and odd columns are all 

in all inconsistent). 

V. NON-DOMINATED SORTING GENETIC 

ALGORITHM (NSGA) 

Non-dominated Sorting Genetic Procedure 

[30] motivated GA in light of the idea of Non-

dominated sorting of populace into Pareto ideal fronts. 

It is utilized as a part of multi-goal improvement 

issues and is an example of developmental algorithms. 

NSGAs basic goal is to enhance the versatile fitness of 
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a populace of competitor answers             for the 

problem by sorting it into Pareto ideal fronts.                     

The calculation is roused by a transformative 

procedure and utilizations developmental genetic 

administrators of crowded tournament selection, 

crossover, and mutation. In this calculation the 

populace is sorted in view of the                    request 

of Pareto predominance. Every subgroup part is 

subjected to a likeness testing inside a Pareto front.                       

The resultant gatherings and further comparability 

measures are utilized to advance assorted diversity of 

arrangements among various fronts. Established 

NSGA and the upgraded and adjusted  NSGA-II [17]  

are two sorts of NSGA. Established    NSGA      has 

been for the most part scrutinized for its high 

computational complexity, absence of elitism and 

utilization of a  predefined ideal parameter for sharing                  

fitness σ share. The following paragraphs give the      

description of NSGA-II [17] [31] [33].  

A. NSGA – II 

An altered and redesigned adaptation of 

NSGA is called NSGA-II. It utilizes a superior and 

quick non-domination sorting, consolidates idea of 

elitism, and the populace fitness, require not to be 

shared utilizing a sharing fitness parameter. The 

elitism instrument of the algorithm advances that best 

non-dominated arrangements of the parent and child 

populace are proliferated to the people to come. Amid 

elitism great arrangements discovered early are never 

lost unless a superior arrangement is found to supplant 

them. The close Pareto ideal arrangement of the last 

front gives diverse answers for the scheduling issue.  

1) Quick Non-dominated Sorting  

  For the most part non-domination sorting 

technique is the primary segment of a multi-objective 

evolutionary algorithm. It yields high computational 

complexity. So the utilization of a quick and 

computationally proficient non-domination sorting 

method is exceptionally significant to the 

accomplishment of Multi Objective Evolutionary 

Algorithm (MOEA). NSGA-II utilizes a quick and 

computationally viable non-dominated sorting 

strategy. In non-dominated sorting approach, utilized 

as a part of NSGA-II, the populace is sorted in light of 

non-dominance. The populace is initialized and sorted 

in view of non-domination to be classified in various 

Pareto ideal fronts. The main front being totally 

dominated in the present populace, the people of the 

second front are just dominated by the people of the 

principal front and the people in the third front are 

being overwhelmed by those of the first and second 

front and the sorting into fronts goes on. The populace 

in each front is positioned utilizing fitness values. 

Individuals from the principal front are appointed rank 

1. What's more, the individuals from the second and 

consequent fronts are doled out the rank 2, 3 and the 

positioning proceeds.  

A second parameter known as crowded 

displacement measurement is assessed for every 

person of the front. Crowded displacement estimation 

indicates how closely related an individual is to its 

neighbors. Crowded displacement estimation are 

utilized to keep up the better differences (diversity) in 

the populace.  

The non-domination sorting methodology 

utilized as a part of NSGA-II is quick when contrasted 

with different MOEAs. NSGA-II has been tuned in a 

manner that it is computationally effective and the 

non-dominated sorting method is fast.  

For a populace of size T and the quantity of 

target objectives D, the quick non-dominated sorting 

methodology is characterized as described here.  For 

every part t of the populace, two qualities are figured. 

 

a. Domination count , i.e. the number of 

members (solutions) which dominate the 

individual t, and  

 

b. The set  which provides solutions which 

the distinct t dominates. 

 

All member solutions in the first front will 

get , then for every member q in , 

we reduce the domination count by one. 

Continuing in this way if for every member 

solution the domination count becomes zero, 

then we place it into a separate list and the 

second front is discovered. The process is 

continued until all fronts are discovered. 

 

The final complexity of the fast non-

domination procedure is O(DT2), whereas the 

complexity of normal non-dominated sorting used in 

classical NSGA is O(DT3).  

2) Fitness Assignment and Positioning Strategy  

 Every part arrangement of the populace is 

allocated a rank in view of fitness incentive in non-

domination sorting methodology. For individuals from 

a similar front crowded displacement measurement is 

also assessed.  

3) Diversity Preserving Mechanism  

    The NSGA-II converges the arrangement into 

Pareto ideal front. Other than convergence, differences 

of populace in the front should be kept up. Differing 

qualities in the front demonstrates a decent spread of 

arrangements along the Pareto ideal front. The 
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traditional NSGA utilized a sharing parameter (niched 

parameter) which keeps up the craved differences of 

part arrangements, yet the utilization of sharing 

parameter makes the calculation awkward and 

furthermore builds the reliance of the calculation on 

the estimation of the sharing (niching) parameter 

picked. In NSGA-II the utilization of crowded 

displacement separation calculation dispenses with the 

above issues to some degree. 

4) Density Estimation - Crowding Displacement 

Assignment 

Figure the normal separation of two focuses 

on either side of the point along each of the objective 

in order to get a gauge of the thickness of 

arrangements encompassing a specific arrangement in 

the populace. Crowded displacement is allotted front 

savvy and contrasting the crowded measurement 

between two people in various fronts is good for 

nothing. Crowded displacement measurement helps in 

acquiring uniform dissemination.  

The fundamental thought behind the crowded 

displacement calculation is finding the Euclidean 

separation between individual in a front in light of 

their objective function values in the m dimensional 

hyperspace. The people in the limit are constantly 

chosen since they have unbounded crowded 

displacement value. 

5) Crowded Displacement Based Sorting 

Crowded displacement based comparison is 

utilized to control the procedure of choice at the 

different phases of the algorithm towards a 

consistently spread-out Pareto optimum front. Expect 

that each individual i in the populace has two 

properties: 

 

• Non-domination rank (i rank)  

• Crowded Distance (i distance)  

Between two people i and j, the person with lower 

rank will be selected (i.e. irank < jrank) or if both 

individual has a place with a similar front then their 

crowded distance is looked at, and individual with 

more prominent crowded distance i.e. an individual 

situated in a lesser crowded district is chosen. 

6) Elitist Method 

The most influential part of NSGA-II is its 

elitist method where the best non-dominated solutions 

of the parent and child population are moved through 

to the next generation. 

 

VI. PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) is a 

stochastic populace based inquiry strategy enlivened 

by the social conduct of creatures [27] [28] [41] , for 

example, winged creatures and fish. This algorithm 

was initially presented by James Kennedy and Russell 

Eberhart  [27] in 1995. In PSO, every particle, called a 

molecule, flies through the multidimensional search 

space and alters its position as per its own 

involvement and the experience of its neighbors. A 

molecule can fly either quick and a long way from the 

best positions to investigate obscure zones (global 

inquiry), or gradually and near a specific position (fine 

tune) to discover  

better outcomes. PSO is very easy to execute and has 

few control parameters. Equations 5 and 6 are the two 

essential redesign guidelines of standard PSO 

 

←w + ( − )+ ( − )                                     

(5) 

← + ,             

(6) 

 

where, and  are velocity and position vectors of 

particle k, respectively, is the best local position 

found by particle , and is the best global position 

found in the whole population. The two parameters  

and  are positive constants, called learning factors; 

presents how much a particle is attracted to its best 

position, and is the same for the global position. 

Values of these two parameters vary depending on the 

nature of the problem but they are usually considered 

to be equal to 2.0. w is the inertia weight and controls 

the amount of freedom of the particles to explore.             

It has been shown, e.g. in [32], that PSO performs 

better when w decays from 0.9 to 0.4 over time. and 

 are uniform random variables providing the 

stochastic aspect of the algorithm [41]. 

 

 Algorithm 1 :  Pseudo Code for Particle Swarm 

Optimization (Continuous Numbers) 

 

Initialize population (position and velocity of 

particles) 

 

repeat 

 

calculate all particles 

 

for all particle do 

 

if current position of particle , , produces the best 

fitness in 

 

its history then 
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←  

 

If  fitness of is the best fitness in global then 

 

←  

 

end if 

 

end if 

 

end for 

 

update velocity and position of particles according to 

the 

 

Equations 5 and 6 

 

until termination criteria are met 

 In this manner in a PSO strategy, all particles 

are started haphazardly and assessed to register the 

fitness together with finding the individual best 

(estimation of every molecule) and the worldwide best 

(estimation of molecule in the whole swarm) after that 

a loop begins to locate an ideal arrangement. In the 

loop, first the particles' speed is overhauled by the 

individual and worldwide bests and every molecule's 

position is upgraded by the present speed.          

Essentially two models of PSO calculations, to be 

specific the Global Best (gbest) and Local (Nearby) 

Best (lbest) PSO, have been created which vary in the 

span of their neighborhoods [40]. The worldwide best 

PSO (or gbest PSO) is a strategy where the position of 

every molecule is impacted by the best fit molecule in 

the whole swarm. It utilizes a star social topology 

where the social data acquired from all particles in the 

whole swarm is utilized.  

 The nearby best PSO (or lbest PSO) 

approach allows each molecule to be affected by the 

best fit molecule surfed in its neighborhood, and it 

reflects a ring social topology [40]. Here this social 

data traded with in the neighborhood of the molecule, 

indicating adjacent learning of the environment. These 

two models of PSO calculation are generally relevant 

in the vast majority of the streamlining issues. The 

gbest PSO specifically have been connected in 

clustering issue, job-shop scheduling issue, and single 

machine aggregate weighted lateness issue.  

 PSO can take care of assortment of 

optimization problems, particularly in the field of 

multi-dimensional persistent space improvement 

problem. Communicating the particle’s position is 

difficult, thus it is limited in the utilization of 

Combinatorial Optimization Problems [COP]. 

Numerous current investigates are for the most part in 

the utilization of PSO to COP. The primary COPs 

tended to by PSO are: scheduling issues, for example, 

job shop planning and flow shop scheduling and 

routing problems, for example, Traveling Salesman 

issue and Vehicle Routing issue  

 Scheduling: PSO in hybridization with Hill 

Climbing (HC) calculation as a local search technique 

has been connected for comprehending assignment of  

task in dispersed frameworks [42]. PSO is likewise 

connected for taking care of task assignment issue by 

Salman et al (2002) [8]. A few creators have likewise 

executed the flow shop scheduling with restricted 

supports. They proposed a hybrid PSO for 

illuminating the flow shop planning, where 

permutation encoding is utilized for representing the 

particles. 

 In the present work  this method is used due 

to its suitability for solving scheduling problem as it 

has fewer control parameters, better convergence rate, 

and significant improved computational efficiency. 

These factors have motivated the researchers to apply 

multiple objective particle swarm optimization in 

independent task scheduling problem [20]. Above 

factors have also motivated us to use the global best 

model of multiple objective particle swarm 

optimization with crowded displacement operator to 

solve independent task scheduling in heterogeneous 

computing environment. 

A. Particle’s Encoding 

Following scheme of particle’s encoding has 

been proposed in [20]. A particle tells about a 

conceivable arrangement in the populace and 

dimensionality n represents n tasks The Smallest 

Position Value (SPV) control is utilized first to 

discover a change in comparing to the persistent 

(continuous) position  . For the n tasks and m 

processors scheduling issue, every particle represents 

a probable solution. The position vector  = [  ,  

, ..., ]  has a continuous set of values. In light of the 

SPV run, the persistent position vector can be changed 

to an arrangement of discrete permutations  = [ , 

 , ..., ]. Thus, the operation vector  =[ , , ..., 

] is shown by the following rule:  = mod m, 

where m is used to represents the number of 

processors. This sequence represents the computing 

processor number for n tasks. 

VII.   MULTIPLE-OBJECTIVE PARTICLE 

SWARM OPTIMIZATION WITH 

CROWDING DISTANCE OPERATOR 

(MOPSO-CD) 

In the present work, an approach is proposed 

that develops the Particle Swarm Optimization (PSO) 

calculation to handle with multi-goal optimization 
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issues by consolidating the system of crowded 

displacement separation procedure into the calculation 

of PSO, particularly on global best selection and in the 

erasure technique for an outside archive (chronicle) of 

non-dominated arrangements. The crowded 

displacement separation instrument together with a 

mutation administrator keeps up the assorted qualities 

of non-dominated arrangements in the outer archive. 

The algorithm suggested in [21] [29] is rephrased for 

Multiple Objective Particle Swarm Optimization with 

Crowded Displacement Operator and presented 

below: 

Algorithm 2: MOPSO-CD Algorithm  

1. A loop is started for 1 up to the size of the  

population Q. 

a. Initially POP[i]  is generated arbitrarily (POP 

is the population of particles). 

b. Velocity is set to zero, Vel[i] =0. 

c. Based on above initialization POP[i]  is 

calculated. 

d. Again personal best position of every particle 

is initialized and set to POP[i],  PERbests[i]  

= POP[i]. 

e. Update the global best position (GLbest) with 

the best particle’s position found in POP[i]. 

2. End of loop. 

3. An iterative count t=0 is initialized. 

4. Non-domination oriented solutions that are found 

in population POP are stored in outer archive A. 

(A is the external archive set that stores non-

dominated solutions found in population POP). 

5. A repetitive loop is started to do the following :  

a. Calculate the crowded displacement values of 

every non-dominated member solution in 

archive set A using algorithm 2.1. 

b. The non-dominated solutions of set A are 

stored in decreasing crowded displacement 

values. 

c. A loop is started for 1 up to the size of 

population, Q. 

i. Arbitrarily choose the global best 

instructor for POP[i]  from predefined 

top portion (e.g. top 10%) of sorted 

archive A, thereafter store its position 

to GLbest. 

ii. Velocity is updated according to the 

following. 

Vel[i]  = ω x Vel[i] +  x 

(PERbests[i] - POP[i] ) +  x 

(A[GLbest] - POP[i]) 

(ω is the inertia weight = 0.4) 

(  and  are random numbers in the 

range [0,1] ) 

(PERbests[i] is the personal best 

position that the particle i has reached) 

(A[GLbest]  is the global best guide 

for each non-dominated solution) 

iii. Calculate the new position of POP[i] : 

POP[i] = POP[i]  + Vel[i] 

iv. On the off chance that POP[i]  goes 

past the limits, then it is reintegrated  

by having the choice  variable  take  

the  estimation  of  its  

relating lower or  upper limit and its 

speed is decreased by - 1 with the goal 

that it looks the   other way.  

v. On the off chance that (t < (MAXT * 

PMUT), then perform change 

(mutation) on POP[i] . (MAXT is the 

maximum number of iterations)  

 

(PMUT is the probability of mutation) 

vi. Calculate  POP[i] 

d. End of loop. 

e. Embed all new non-dominated arrangement 

in P into A on the off chance that  they are 

not commanded (dominated) by any of the 

put away arrangements. Every single 

dominated arrangement in the archive set A 

by the new arrangements is expelled from the 

chronicle (archive). On the off chance that 

the archive is full, the answer for be 

supplanted is controlled by the 

accompanying strides:  

i. Compute the crowded displacement 

estimations of each non-dominated 

arrangement in the chronicle (external 

archive) A, 

ii. Sort the non - dominated arrangements 

in A in descending crowded 

displacement separation values, 

iii. Randomly select a molecule from a 

predefined base segment (e.g. bring 

down 10%) which include the most 

crowded particles in the archive then 

supplant it with the new arrangement.  

f. Update the individual best arrangement of 

every molecule in POP. On the off chance 

that the current PERbests dominates the 

position of molecule in memory, the particles 

(molecules) position is upgraded utilizing 

PERbests[i]  = POP[i] 

g. Increment iteration counter t  

6. Until most extreme number of iterations is come 

to. 

A. Crowding Displacement Based Operator: 

 Crowded displacement is ascertained by first 

sorting the set of solutions in climbing objective 

function values. The crowded displacement separation 

estimation of a specific (member solution) 

arrangement is the average displacement separation of 

its two neighboring arrangements. The limiting  

arrangements which have the most reduced and most 

noteworthy objective function values are given an 
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interminable crowded displacement values with the 

goal that they are constantly chosen. This procedure is 

accomplished for every objective value. The last 

crowded displacement separation estimation of an 

answer is registered by adding the whole individual 

crowded displacement values in every objective 

function. 

The crowded displacement operator is used 

mainly  to maintain the diversity of solutions in each 

of the resolved Pareto  optimal  fronts.  Its  main   

advantage  is that  it   can locate the optimum solution 

with in each front very       quickly. 

Algorithm 2.1: Crowded Displacement (distance) 

Operator 

 

1. Get the number of non-monopolized results 

in the outer repository (archive) 

            a.     n = | Sol | 

2. Initialize displacement 

            a.     FOR k=0 TO MAX 

            b.     Sol[k].distance = 0 

3. Calculate the crowded displacement value of 

every solution 

a.     For each objective m 

b.     Sort using each objective value 

                      Sol = sort(Sol, m) 

c.      For k=1 to (n-1) 

d.      Sol[k].distance = Sol[k].distance + 

(Sol[k+1] .m –Sol[k-1].m) 

e.       The maximum distance to the 

boundary points so that they are always 

selected 

Sol [0].distance = Sol[n].distance = 

maximum distance 

VIII. SIMULATION TEST RESULTS 

Simulation test runs were carried out for 

performance evaluation of the proposed method. In 

EET matrix framework, the measure of difference 

amongst the execution times of tasks for a given 

machine is characterized as task heterogeneity. 

Machine heterogeneity reflects the variety that is 

conceivable among the execution times for a given 

task over every one of the machines. Simulation study 

is based on the simulation test runs carried out several 

times utilizing the  benchmark problem instance of the 

undertaken problem as given in [9].  Instance 

consisted of 512 tasks and 16 machines and is labeled 

as uf-xo-yy-zz as follows: 

 uf depicts uniform distribution used in 

generating the matrices. 

 xo depicts the type of inconsistency; co 

represents consistent, in represents 

inconsistent, and p represents partially-

consistent or semi-consistent. 

 yy signifies the heterogeneity of the tasks; hi 

represents high and lo represents low. 

 zz signifies the heterogeneity of the 

machines; where hi represents high and lo 

represents low. 

  

 Simulation run was also carried out several 

times for problem instance of 64 tasks to be assigned 

on 8 machines. In our test based on benchmark 

problem instance, the underlying populace for the 

looked at techniques is produced utilizing two 

scenarios – (a) arbitrarily created particles from a 

uniform appropriation, and (b) one molecule utilizing 

the min-min heuristic (that can accomplish a decent 

lessening in make-span) and the others are arbitrary 

arrangements. NSGA-II and MOPSO-CD parameters 

were tuned to obtain scenario for fair study. List of 

parameters, used in simulation study, along with their 

values/ range are given in Table 1. 

 

Table 1: Parameters for Simulation Study 

      

 Standard Deviation of the proposed method 

along          with NSGA-II is shown in Figure 1 which 

is obtained           by running 10 independent runs of 

each algorithm on benchmark problem instance. The 

simulation for this is carried out in MATLAB R2012 

environment using benchmark problem instance of 

EET matrix of size              512 x 16. Table 2 and 

Table 3 show the make-span and             flow-time 

values of EET matrices of size 512 x 16, respectively. 

The study in which NSGA-II suggested in [20] is 

compared with the proposed method shows that the 

proposed method  MOPSO-CD is viable and effective 

in all 12 instances of the problem. 

Table 2: Make-span Values of EET Matrix 

Instance NSGA-II MOPSO-CD  

uf-co-hi-hi 7.8921E+06 7.8678E+06 

uf-co-hi-lo 1.6163E+05 1.5143E+05 

uf-co-lo-hi 2.7648E+05 2.6463E+05 

uf-co-lo-lo 5.297 E+03 5.194E+03 

uf-in-hi-hi 3.4962E+06 3.4605E+06 

uf-in-hi-lo 8.1715E+05 8.1615E+05 

uf-in-lo-hi 1.1270E+05 1.1217E+05 

uf-in-lo-lo 2.636E+03 2.423E+03 

uf-pa-hi-hi 4.5713E+06 4.4806E+06 

uf-pa-hi-lo 1.0485E+05 1.0478E+05 

uf-pa-lo-hi 1.5397E+05 1.5393E+05 

uf-pa-lo-lo 3.449E+03 3.423E+03 

 

Parameters Values 

Population size 100 

Maximum iteration 40 

Inertia Weight (W) 0.4 

Acceleration Coefficient (C1) 2 

Acceleration Coefficient (C2) 2 

Maximum Velocity (Vmax) [10, 90]  
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Table 3: Flow-time Values of EET Matrix 

Instance NSGA-II  MOPSO-CD 

uf-co-hi-hi 105123172 104322164 

uf-co-hi-lo 2372403 2278675 

uf-co-lo-hi 3612434 3576535 

uf-co-lo-lo 78945 78168 

uf-in-hi-hi 43655443 43415667 

uf-in-hi-lo 11131834 11024564 

uf-in-lo-hi 1478862 1446619 

uf-in-lo-lo 37608 36981 

uf-pa-hi-hi 62435712 62234510 

uf-pa-hi-lo 1453702 1383892 

uf-pa-lo-hi 1985104 1945102 

uf-pa-lo-lo 49789 49562 

 

IX. CONCLUSION 

 Statically timetabling of autonomous jobs in 

heterogeneous processing condition discovers value in 

numerous applications. In the proposed paper, the 

scheduling problem of independent tasks in 

heterogeneous computing environment is investigated 

using Multiple-Objective   Particle Swarm 

Optimization with Crowded Displacement operator  

(MOPSO-CD) in order to limit both make-span and 

flow-time. The performance of the proposed method is 

contrasted with Multiple-Objective Non-dominated 

Sorting Genetic Algorithm-II. The trial comes about 

uncover the nature of schedules nearly for all 

benchmark issue examples. Subsequently, MOPSO-

CD can be utilized to discover better schedules 

fulfilling various goals and it appears to be 

encouraging way to deal with planning autonomous 

assignments in HC condition. Additionally, 

methodologies  might be connected for considering 

different types of          HC scheduling, for example, 

scheduling jobs with priority limitations or inside 

element condition. Commonly used search algorithms 

for example ‘Hill climbing’ and ‘Simulated 

Annealing’ continuously move towards the solutions 

that have an improved fitness function value and they 

search the problem space in an arbitrarily manner. 

Likewise, MOPSO move towards stochastic search in 

the problems space to              find improved solutions 

thus generating an ideal Pareto optimal front. 
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Fig. 1: Standard Deviation (Y-axis) of Two Methods for 12 Instances (X-axis)  
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