
International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 10

Multiple-Objective Particle Swarm

Optimization Algorithm for Independent Task

Scheduling in Distributed Heterogeneous

Computing Systems

Amit Prakash*, Karamjit Bhatia**, Raj Kumar***

*Research Scholar, Department of Computer Science, Gurukula Kangri Vishwavidyalaya, Haridwar, India

**Professor, Department of Computer Science, Gurukula Kangri Vishwavidyalaya, Haridwar, India

***Assistant Professor, Department of Computer Science, Gurukula Kangri Vishwavidyalaya, Haridwar, India

Abstract- Task scheduling is a crucial issue in

distributed (disbursed) heterogeneous processing

environment and significantly influence the

performance of the system. The task scheduling

problem has been identified to be NP-complete in its

universal frame. In this paper the task scheduling

problem is investigated using multiple-objective

particle (molecule) swarm optimization algorithm

with crowded displacement operator (MOPSO-CD).

Particle swarm optimization is a populace based

meta-heuristic which mimics the convivial conduct of

feathered creatures running. In this algorithm

particles move in the problem's search space to

achieve near optimal solutions. The performance of

this algorithm is compared with non-domination

sorting genetic algorithm II (NSGA-II). The proposed

scheduling algorithm intends to find the near optimal

solution with aim to minimize the make-span and flow

time. The exploratory results demonstrate that the

proposed multi-objective PSO algorithm is more

productive and gives better outcomes when contrasted

with those of NSGA-II.

Keywords- Task scheduling, Independent tasks,

Meta heuristic, Particle swarm intelligence, Non-

domination sorting genetic algorithm, Make-span,

Flow-time.

I. INTRODUCTION

A heterogeneous computing (HC)

environment makes utilization of available group of

processors associated with fast systems to undertake

applications having changed computational

necessities. Heterogeneous computing environment

extends from various components inside a solitary PC,

to a group of PCs, to a more progressed geologically

circulated machine, with shifted models. To viably

and effectively use the computing capacities of such

frameworks, scheduling is a key issue that must be

properly addressed. The scheduling method involves

the ordering of task execution and its mapping onto

processors so as to minimize certain objective.

In optimum scheduling process we map a

pool of tasks to a set of resources to harness the

computing abilities of such diverse systems so that

some measure of effectiveness is optimized. Optimal

mapping of a set of tasks to available processing

elements in a HC framework is found to be a NP-

complete problem. In view of the kind of tasks to be

scheduled, scheduling issue might be classified into

two categories - Scheduling tasks (meta-tasks)

independently, and scheduling coordinated directed

non-cyclic graphs comprising of communicating tasks

having priority (precedence) relation. The present

work is confined to task scheduling belonging to first

category only i. e. tasks submitted by various users

independently to various assets of a HC suite. Several

criterions might be utilized for assessing the

proficiency of a scheduling algorithm, the most vital

of which are make-span and flow-time [11]. Make-

span is the completion time of the last task, while

flow-time is the time that gives aggregate of

processing times of all tasks. In present work an

attempt is made to obtain an optimum schedule that

minimizes both make-span and flow time.

Particle Swarm Optimization (PSO)

algorithm comes under the category of swarm

intelligence and is a population based optimization

technique [27]. Its fruitful application incorporates

standard function optimization [22], solving

permutation complications [23], and training

multilayer neural systems [24]. PSO algorithm

consists of a swarm of particles in which every

particle (molecule) points to a potential solution to the

problem. In contrast with evolutionary algorithmic

approaches a swarm is like a populace, and a molecule

is like a distinguishable entity (chromosome) [13].

The particles move through a multidimensional search

space where the position of every molecule is attuned

by its own experience and the experience of its

neighbors.

The present work explores the use of multi-

objective particle swarm optimization technique for

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 11

attaining optimal schedule of a task set consisting of

autonomous non-dependent tasks (having no

precedence relationship) on to an available pool of

processing elements of varying capabilities in a

distributed computing environment with aim to

minimize both make-span and flow time. The

performance of the proposed technique is evaluated by

executing several data sets and comparing the results

with those obtained for genetic algorithm (NSGA-II).

The exploratory outcomes demonstrate that the

proposed strategy is more productive and is relevant to

HC frameworks scheduling.

The rest of the paper is structured in the

following fashion. Related work is presented in

section II, section III presents problem definition,

section IV represents modeling heterogeneity and

consistency of computing; Non-dominated Sorting

Genetic Algorithm (NSGA) and NSGA-II are

discussed in section V, VI represents a general

principle of particle swarm optimization and section

VII shows multiple objective particle swarm algorithm

with crowding distance operator, section VIII presents

simulation test results and section IX gives the

conclusion.

II. RELATED WORK

Several heuristics strategies have been

reported in literature for scheduling non-dependent

tasks in distributed computing environment. These

include min–max [1], Sufferage [2], min–min, max–

min [3], LJFR-SJFR [4], Work-Queue [39] to name a

few. The evolvement of meta heuristic has presented

new avenues for problem solving and as a result of

advancements in meta-heuristic optimization

strategies such algorithms are observed to be efficient

in taking care of schedulability related issues. The

most efficient and well known among them being

genetic algorithms [5], simulated annealing [6], ant

searching techniques [7] and molecule swarm

optimization (Salman et al) [8]. Braun et al [9]

portrayed eleven heuristics and analyzed them on

various sorts of heterogeneous computing

environments representing the execution of GA

scheduler in evaluation with others. All the above

stated heuristics and meta-heuristics aimed at

optimizing a single criteria i. e. minimizing the make-

span of the schedule.

 Some cases demonstrate the endeavors made

in optimizing multiple goals while scheduling non-

dependent tasks on heterogeneous situations. Liu et al

[10] made an attempt to attain minimum make-span

and flow time. Izakian et al [11] investigated five

heuristics for limiting make-span and flow-time on

heterogeneous conditions with different qualities of

both machines and tasks. However, they evaluated

both objectives independently. In [12], authors

demonstrated the utilization of a few nature inspired

meta-heuristics (SA, GA, PSO, and ACO) for

scheduling tasks in matrices utilizing uni-objective

and multi-objective optimization approaches.

Variations of fuzzy molecule swarm algorithm for

limiting make-span and flow-time are presented by

Liu [10] and Izakian [13]. GA-based schedulers are

proposed in [14] [15]. In [16] authors presented a

Genetic Algorithm based schedule with an insight to

balance load dynamically in distributed systems.

Christos Gogos, Christos Valouxis et al. utilize

Penalty Based (PB) computation [18] [19] and

mathematical programming based approach of

Column Pricing [18] to take care of such issue. In this

work two new heuristics named as list suffrage

algorithm and Tenacious Penalty based algorithm are

proposed. These techniques merge multiple goals into

a scalar cost function, thus transforming the multi-

objective issue to single-objective issue before

performing optimization. G. Subashini and M. C.

Bhuvaneswari [20] made an endeavor by identifying

the task scheduling problem as a true multi-objective

optimization problem. They applied Non-dominated

Sorting Genetic Algorithm-II, and Non-dominated

Sorting Particle Swarm Optimization algorithms to

address the problem. However, in this study multi-

objective particle swarm optimization algorithm did

not employ the crowded distance comparison operator

as proposed in [21].

Multiple objective molecule swarm

improvement has been proposed by a few researchers

[25] [26] [30]. This approach has shown to produce

better results when contrasted with other evolutionary

strategies for multiple objective optimizations [38].

NSGA-II has been effectively implemented in a few

applications [35] [36] [37]. Multi-objective particle

swarm optimization has been applied in several

standard function optimization problems [21] [25].

The proposed work is an attempt to explore the utility

of multiple objective swarm improvement algorithm

propelled by [21] [30] to tackle non-dependent task

scheduling problem in heterogeneous distributed

computing environment.

III. PROBLEM DEFINITION

Computing resources like a solitary PC, a

group of PCs, or a supercomputer makes up a HC

environment. Let τ = { , , …, } signifies the set

of tasks submitted to the resources in a particular time

interval. The tasks are assumed to be non-dependent

and autonomous (having no inter task dependencies)

and in between acquisition of the resources is not

permitted. It is also assumed that tasks are not allowed

to change the resources they have been assigned to.

Let PE = { , …, } denotes the set of

processing elements (machines) in a HC environment

where the tasks are supposed to be executed. Every

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 12

machine utilizes the First Come First Served approach

for executing the tasks. Each machine in HC suite

knows about the expected execution time of each task.

A k × p, Estimated Execution Time (EET) matrix

model, where k and p represent the number of tasks

and processing elements in distributed computing

system, is utilized to represent the time of executing a

particular task on a particular processing element.

Each row of the EET matrix includes the assessed

execution time for a given task on every processing

element and each column of the EET matrix

comprises of the evaluated execution time of a given

processing element for each task. Thus, for an

arbitrary task and an arbitrary processing

element , EET(,) is the estimated execution

time of on In EET matrix model the standard

presumption is made that the processing limit of every

task, an estimation or forecast of the computational

requirements of each task and the machine

accessibility time (prepared time) of every resource is

known a priori. The principal goal of the scheduler is

to limit make-span and flow time.

 The specification of the make-span may be

effectively expressed by utilizing the use of the EET

matrix adaptation. Here, make-span can be

represented by means of the completion times of the

tasks on processing elements. Let completion [I] =

[CT[1] , CT[2] , …, CT[p]] be a vector of completion

times of all machines accessible for a given clump of

tasks. The completion time of machine I, indicated by

completion[i] or CT[i], depicts an aggregate time

needed for reloading the machine I after finalizing the

previously assigned task(s) and completing the newly

assigned task(s) on it. Thus

CT[i] = or +

(1)

where, is the machine availability time of

processing element i or is the ready time of

processing element i.

(i) is the group of tasks assigned to processing

element i.

The make-span is the maximal finish

(completion) time and can be expressed as

Make-span =

(2)

and the flow-time is defined as the sum of the

completion times of all the tasks in the batch of tasks.

Flow-time =

(3)

Flow-time is generally regarded as a service

optimizing criteria as it articulates the response time to

the submitted task execution requests submitted by the

HC users. In terms of EET matrix model the flow-time

can be measured as a workflow of a sequence of tasks

submitted to a given machine i. It is given as

Flow-time [i] = +

(4)

where, is the group of tasks assigned to the

machine sorted in ascending order by the

corresponding EET values.

IV. MODELING HETEROGENEITY AND

CONSISTENCY IN DCE

The distributed computing model can depict

distinctive degrees of heterogeneity in disbursed

figuring condition through consistency of computing.

Consistency of computing alludes to the intelligence

among execution times got by a machine with those

acquired by whatever remains of machines for an

arrangement of tasks. In this way three sorts of

consistency of computing in HC condition can be

characterized utilizing properties of EET matrices:

consistent, inconsistent, semi-consistent [9]. Matrices

are said to be consistent if at whatever point a machine

executes any assignment quicker than

machine , then machine of type executes all

tasks speedier than machine . consistent matrices

were produced by sorting each row of the EET matrix

independently, with machine continually being the

speediest and machine the slowest.

 Interestingly inconsistent or unreliable

matrices portray the circumstance where machine

might be speedier than the machine for a few jobs

and slower for others. These matrices are left in an

unordered, arbitrary state in which they were created

(i.e. no consistency is upheld).

Semi-consistent, mostly consistent matrices, are

inconsistent

matrices that incorporate a consistent sub-matrix. For

semi-consistent matrices, the row components in

column position{0, 2, 4, …..} of row i are extracted,

sorted and supplanted all together, while the row

components in column

positions {1, 3, 5, …..} remain unordered (i.e. the

even columns are consistent and odd columns are all

in all inconsistent).

V. NON-DOMINATED SORTING GENETIC

ALGORITHM (NSGA)

Non-dominated Sorting Genetic Procedure

[30] motivated GA in light of the idea of Non-

dominated sorting of populace into Pareto ideal fronts.

It is utilized as a part of multi-goal improvement

issues and is an example of developmental algorithms.

NSGAs basic goal is to enhance the versatile fitness of

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 13

a populace of competitor answers for the

problem by sorting it into Pareto ideal fronts.

The calculation is roused by a transformative

procedure and utilizations developmental genetic

administrators of crowded tournament selection,

crossover, and mutation. In this calculation the

populace is sorted in view of the request

of Pareto predominance. Every subgroup part is

subjected to a likeness testing inside a Pareto front.

The resultant gatherings and further comparability

measures are utilized to advance assorted diversity of

arrangements among various fronts. Established

NSGA and the upgraded and adjusted NSGA-II [17]

are two sorts of NSGA. Established NSGA has

been for the most part scrutinized for its high

computational complexity, absence of elitism and

utilization of a predefined ideal parameter for sharing

fitness σ share. The following paragraphs give the

description of NSGA-II [17] [31] [33].

A. NSGA – II

An altered and redesigned adaptation of

NSGA is called NSGA-II. It utilizes a superior and

quick non-domination sorting, consolidates idea of

elitism, and the populace fitness, require not to be

shared utilizing a sharing fitness parameter. The

elitism instrument of the algorithm advances that best

non-dominated arrangements of the parent and child

populace are proliferated to the people to come. Amid

elitism great arrangements discovered early are never

lost unless a superior arrangement is found to supplant

them. The close Pareto ideal arrangement of the last

front gives diverse answers for the scheduling issue.

1) Quick Non-dominated Sorting

 For the most part non-domination sorting

technique is the primary segment of a multi-objective

evolutionary algorithm. It yields high computational

complexity. So the utilization of a quick and

computationally proficient non-domination sorting

method is exceptionally significant to the

accomplishment of Multi Objective Evolutionary

Algorithm (MOEA). NSGA-II utilizes a quick and

computationally viable non-dominated sorting

strategy. In non-dominated sorting approach, utilized

as a part of NSGA-II, the populace is sorted in light of

non-dominance. The populace is initialized and sorted

in view of non-domination to be classified in various

Pareto ideal fronts. The main front being totally

dominated in the present populace, the people of the

second front are just dominated by the people of the

principal front and the people in the third front are

being overwhelmed by those of the first and second

front and the sorting into fronts goes on. The populace

in each front is positioned utilizing fitness values.

Individuals from the principal front are appointed rank

1. What's more, the individuals from the second and

consequent fronts are doled out the rank 2, 3 and the

positioning proceeds.

A second parameter known as crowded

displacement measurement is assessed for every

person of the front. Crowded displacement estimation

indicates how closely related an individual is to its

neighbors. Crowded displacement estimation are

utilized to keep up the better differences (diversity) in

the populace.

The non-domination sorting methodology

utilized as a part of NSGA-II is quick when contrasted

with different MOEAs. NSGA-II has been tuned in a

manner that it is computationally effective and the

non-dominated sorting method is fast.

For a populace of size T and the quantity of

target objectives D, the quick non-dominated sorting

methodology is characterized as described here. For

every part t of the populace, two qualities are figured.

a. Domination count , i.e. the number of

members (solutions) which dominate the

individual t, and

b. The set which provides solutions which

the distinct t dominates.

All member solutions in the first front will

get , then for every member q in ,

we reduce the domination count by one.

Continuing in this way if for every member

solution the domination count becomes zero,

then we place it into a separate list and the

second front is discovered. The process is

continued until all fronts are discovered.

The final complexity of the fast non-

domination procedure is O(DT2), whereas the

complexity of normal non-dominated sorting used in

classical NSGA is O(DT3).

2) Fitness Assignment and Positioning Strategy

 Every part arrangement of the populace is

allocated a rank in view of fitness incentive in non-

domination sorting methodology. For individuals from

a similar front crowded displacement measurement is

also assessed.

3) Diversity Preserving Mechanism

 The NSGA-II converges the arrangement into

Pareto ideal front. Other than convergence, differences

of populace in the front should be kept up. Differing

qualities in the front demonstrates a decent spread of

arrangements along the Pareto ideal front. The

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 14

traditional NSGA utilized a sharing parameter (niched

parameter) which keeps up the craved differences of

part arrangements, yet the utilization of sharing

parameter makes the calculation awkward and

furthermore builds the reliance of the calculation on

the estimation of the sharing (niching) parameter

picked. In NSGA-II the utilization of crowded

displacement separation calculation dispenses with the

above issues to some degree.

4) Density Estimation - Crowding Displacement

Assignment

Figure the normal separation of two focuses

on either side of the point along each of the objective

in order to get a gauge of the thickness of

arrangements encompassing a specific arrangement in

the populace. Crowded displacement is allotted front

savvy and contrasting the crowded measurement

between two people in various fronts is good for

nothing. Crowded displacement measurement helps in

acquiring uniform dissemination.

The fundamental thought behind the crowded

displacement calculation is finding the Euclidean

separation between individual in a front in light of

their objective function values in the m dimensional

hyperspace. The people in the limit are constantly

chosen since they have unbounded crowded

displacement value.

5) Crowded Displacement Based Sorting

Crowded displacement based comparison is

utilized to control the procedure of choice at the

different phases of the algorithm towards a

consistently spread-out Pareto optimum front. Expect

that each individual i in the populace has two

properties:

• Non-domination rank (i rank)

• Crowded Distance (i distance)

Between two people i and j, the person with lower

rank will be selected (i.e. irank < jrank) or if both

individual has a place with a similar front then their

crowded distance is looked at, and individual with

more prominent crowded distance i.e. an individual

situated in a lesser crowded district is chosen.

6) Elitist Method

The most influential part of NSGA-II is its

elitist method where the best non-dominated solutions

of the parent and child population are moved through

to the next generation.

VI. PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization (PSO) is a

stochastic populace based inquiry strategy enlivened

by the social conduct of creatures [27] [28] [41] , for

example, winged creatures and fish. This algorithm

was initially presented by James Kennedy and Russell

Eberhart [27] in 1995. In PSO, every particle, called a

molecule, flies through the multidimensional search

space and alters its position as per its own

involvement and the experience of its neighbors. A

molecule can fly either quick and a long way from the

best positions to investigate obscure zones (global

inquiry), or gradually and near a specific position (fine

tune) to discover

better outcomes. PSO is very easy to execute and has

few control parameters. Equations 5 and 6 are the two

essential redesign guidelines of standard PSO

←w + (−)+ (−)

(5)

← + ,

(6)

where, and are velocity and position vectors of

particle k, respectively, is the best local position

found by particle , and is the best global position

found in the whole population. The two parameters

and are positive constants, called learning factors;

presents how much a particle is attracted to its best

position, and is the same for the global position.

Values of these two parameters vary depending on the

nature of the problem but they are usually considered

to be equal to 2.0. w is the inertia weight and controls

the amount of freedom of the particles to explore.

It has been shown, e.g. in [32], that PSO performs

better when w decays from 0.9 to 0.4 over time. and

 are uniform random variables providing the

stochastic aspect of the algorithm [41].

 Algorithm 1 : Pseudo Code for Particle Swarm

Optimization (Continuous Numbers)

Initialize population (position and velocity of

particles)

repeat

calculate all particles

for all particle do

if current position of particle , , produces the best

fitness in

its history then

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 15

←

If fitness of is the best fitness in global then

←

end if

end if

end for

update velocity and position of particles according to

the

Equations 5 and 6

until termination criteria are met

 In this manner in a PSO strategy, all particles

are started haphazardly and assessed to register the

fitness together with finding the individual best

(estimation of every molecule) and the worldwide best

(estimation of molecule in the whole swarm) after that

a loop begins to locate an ideal arrangement. In the

loop, first the particles' speed is overhauled by the

individual and worldwide bests and every molecule's

position is upgraded by the present speed.

Essentially two models of PSO calculations, to be

specific the Global Best (gbest) and Local (Nearby)

Best (lbest) PSO, have been created which vary in the

span of their neighborhoods [40]. The worldwide best

PSO (or gbest PSO) is a strategy where the position of

every molecule is impacted by the best fit molecule in

the whole swarm. It utilizes a star social topology

where the social data acquired from all particles in the

whole swarm is utilized.

 The nearby best PSO (or lbest PSO)

approach allows each molecule to be affected by the

best fit molecule surfed in its neighborhood, and it

reflects a ring social topology [40]. Here this social

data traded with in the neighborhood of the molecule,

indicating adjacent learning of the environment. These

two models of PSO calculation are generally relevant

in the vast majority of the streamlining issues. The

gbest PSO specifically have been connected in

clustering issue, job-shop scheduling issue, and single

machine aggregate weighted lateness issue.

 PSO can take care of assortment of

optimization problems, particularly in the field of

multi-dimensional persistent space improvement

problem. Communicating the particle’s position is

difficult, thus it is limited in the utilization of

Combinatorial Optimization Problems [COP].

Numerous current investigates are for the most part in

the utilization of PSO to COP. The primary COPs

tended to by PSO are: scheduling issues, for example,

job shop planning and flow shop scheduling and

routing problems, for example, Traveling Salesman

issue and Vehicle Routing issue

 Scheduling: PSO in hybridization with Hill

Climbing (HC) calculation as a local search technique

has been connected for comprehending assignment of

task in dispersed frameworks [42]. PSO is likewise

connected for taking care of task assignment issue by

Salman et al (2002) [8]. A few creators have likewise

executed the flow shop scheduling with restricted

supports. They proposed a hybrid PSO for

illuminating the flow shop planning, where

permutation encoding is utilized for representing the

particles.

 In the present work this method is used due

to its suitability for solving scheduling problem as it

has fewer control parameters, better convergence rate,

and significant improved computational efficiency.

These factors have motivated the researchers to apply

multiple objective particle swarm optimization in

independent task scheduling problem [20]. Above

factors have also motivated us to use the global best

model of multiple objective particle swarm

optimization with crowded displacement operator to

solve independent task scheduling in heterogeneous

computing environment.

A. Particle’s Encoding

Following scheme of particle’s encoding has

been proposed in [20]. A particle tells about a

conceivable arrangement in the populace and

dimensionality n represents n tasks The Smallest

Position Value (SPV) control is utilized first to

discover a change in comparing to the persistent

(continuous) position . For the n tasks and m

processors scheduling issue, every particle represents

a probable solution. The position vector = [,

, ...,] has a continuous set of values. In light of the

SPV run, the persistent position vector can be changed

to an arrangement of discrete permutations = [,

 , ...,]. Thus, the operation vector =[, , ...,

] is shown by the following rule: = mod m,

where m is used to represents the number of

processors. This sequence represents the computing

processor number for n tasks.

VII. MULTIPLE-OBJECTIVE PARTICLE

SWARM OPTIMIZATION WITH

CROWDING DISTANCE OPERATOR

(MOPSO-CD)

In the present work, an approach is proposed

that develops the Particle Swarm Optimization (PSO)

calculation to handle with multi-goal optimization

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 16

issues by consolidating the system of crowded

displacement separation procedure into the calculation

of PSO, particularly on global best selection and in the

erasure technique for an outside archive (chronicle) of

non-dominated arrangements. The crowded

displacement separation instrument together with a

mutation administrator keeps up the assorted qualities

of non-dominated arrangements in the outer archive.

The algorithm suggested in [21] [29] is rephrased for

Multiple Objective Particle Swarm Optimization with

Crowded Displacement Operator and presented

below:

Algorithm 2: MOPSO-CD Algorithm

1. A loop is started for 1 up to the size of the

population Q.

a. Initially POP[i] is generated arbitrarily (POP

is the population of particles).

b. Velocity is set to zero, Vel[i] =0.

c. Based on above initialization POP[i] is

calculated.

d. Again personal best position of every particle

is initialized and set to POP[i], PERbests[i]

= POP[i].

e. Update the global best position (GLbest) with

the best particle’s position found in POP[i].

2. End of loop.

3. An iterative count t=0 is initialized.

4. Non-domination oriented solutions that are found

in population POP are stored in outer archive A.

(A is the external archive set that stores non-

dominated solutions found in population POP).

5. A repetitive loop is started to do the following :

a. Calculate the crowded displacement values of

every non-dominated member solution in

archive set A using algorithm 2.1.

b. The non-dominated solutions of set A are

stored in decreasing crowded displacement

values.

c. A loop is started for 1 up to the size of

population, Q.

i. Arbitrarily choose the global best

instructor for POP[i] from predefined

top portion (e.g. top 10%) of sorted

archive A, thereafter store its position

to GLbest.

ii. Velocity is updated according to the

following.

Vel[i] = ω x Vel[i] + x

(PERbests[i] - POP[i]) + x

(A[GLbest] - POP[i])

(ω is the inertia weight = 0.4)

(and are random numbers in the

range [0,1])

(PERbests[i] is the personal best

position that the particle i has reached)

(A[GLbest] is the global best guide

for each non-dominated solution)

iii. Calculate the new position of POP[i] :

POP[i] = POP[i] + Vel[i]

iv. On the off chance that POP[i] goes

past the limits, then it is reintegrated

by having the choice variable take

the estimation of its

relating lower or upper limit and its

speed is decreased by - 1 with the goal

that it looks the other way.

v. On the off chance that (t < (MAXT *

PMUT), then perform change

(mutation) on POP[i] . (MAXT is the

maximum number of iterations)

(PMUT is the probability of mutation)

vi. Calculate POP[i]

d. End of loop.

e. Embed all new non-dominated arrangement

in P into A on the off chance that they are

not commanded (dominated) by any of the

put away arrangements. Every single

dominated arrangement in the archive set A

by the new arrangements is expelled from the

chronicle (archive). On the off chance that

the archive is full, the answer for be

supplanted is controlled by the

accompanying strides:

i. Compute the crowded displacement

estimations of each non-dominated

arrangement in the chronicle (external

archive) A,

ii. Sort the non - dominated arrangements

in A in descending crowded

displacement separation values,

iii. Randomly select a molecule from a

predefined base segment (e.g. bring

down 10%) which include the most

crowded particles in the archive then

supplant it with the new arrangement.

f. Update the individual best arrangement of

every molecule in POP. On the off chance

that the current PERbests dominates the

position of molecule in memory, the particles

(molecules) position is upgraded utilizing

PERbests[i] = POP[i]

g. Increment iteration counter t

6. Until most extreme number of iterations is come

to.

A. Crowding Displacement Based Operator:

 Crowded displacement is ascertained by first

sorting the set of solutions in climbing objective

function values. The crowded displacement separation

estimation of a specific (member solution)

arrangement is the average displacement separation of

its two neighboring arrangements. The limiting

arrangements which have the most reduced and most

noteworthy objective function values are given an

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 17

interminable crowded displacement values with the

goal that they are constantly chosen. This procedure is

accomplished for every objective value. The last

crowded displacement separation estimation of an

answer is registered by adding the whole individual

crowded displacement values in every objective

function.

The crowded displacement operator is used

mainly to maintain the diversity of solutions in each

of the resolved Pareto optimal fronts. Its main

advantage is that it can locate the optimum solution

with in each front very quickly.

Algorithm 2.1: Crowded Displacement (distance)

Operator

1. Get the number of non-monopolized results

in the outer repository (archive)

 a. n = | Sol |

2. Initialize displacement

 a. FOR k=0 TO MAX

 b. Sol[k].distance = 0

3. Calculate the crowded displacement value of

every solution

a. For each objective m

b. Sort using each objective value

 Sol = sort(Sol, m)

c. For k=1 to (n-1)

d. Sol[k].distance = Sol[k].distance +

(Sol[k+1] .m –Sol[k-1].m)

e. The maximum distance to the

boundary points so that they are always

selected

Sol [0].distance = Sol[n].distance =

maximum distance

VIII. SIMULATION TEST RESULTS

Simulation test runs were carried out for

performance evaluation of the proposed method. In

EET matrix framework, the measure of difference

amongst the execution times of tasks for a given

machine is characterized as task heterogeneity.

Machine heterogeneity reflects the variety that is

conceivable among the execution times for a given

task over every one of the machines. Simulation study

is based on the simulation test runs carried out several

times utilizing the benchmark problem instance of the

undertaken problem as given in [9]. Instance

consisted of 512 tasks and 16 machines and is labeled

as uf-xo-yy-zz as follows:

 uf depicts uniform distribution used in

generating the matrices.

 xo depicts the type of inconsistency; co

represents consistent, in represents

inconsistent, and p represents partially-

consistent or semi-consistent.

 yy signifies the heterogeneity of the tasks; hi

represents high and lo represents low.

 zz signifies the heterogeneity of the

machines; where hi represents high and lo

represents low.

 Simulation run was also carried out several

times for problem instance of 64 tasks to be assigned

on 8 machines. In our test based on benchmark

problem instance, the underlying populace for the

looked at techniques is produced utilizing two

scenarios – (a) arbitrarily created particles from a

uniform appropriation, and (b) one molecule utilizing

the min-min heuristic (that can accomplish a decent

lessening in make-span) and the others are arbitrary

arrangements. NSGA-II and MOPSO-CD parameters

were tuned to obtain scenario for fair study. List of

parameters, used in simulation study, along with their

values/ range are given in Table 1.

Table 1: Parameters for Simulation Study

 Standard Deviation of the proposed method

along with NSGA-II is shown in Figure 1 which

is obtained by running 10 independent runs of

each algorithm on benchmark problem instance. The

simulation for this is carried out in MATLAB R2012

environment using benchmark problem instance of

EET matrix of size 512 x 16. Table 2 and

Table 3 show the make-span and flow-time

values of EET matrices of size 512 x 16, respectively.

The study in which NSGA-II suggested in [20] is

compared with the proposed method shows that the

proposed method MOPSO-CD is viable and effective

in all 12 instances of the problem.

Table 2: Make-span Values of EET Matrix

Instance NSGA-II MOPSO-CD

uf-co-hi-hi 7.8921E+06 7.8678E+06

uf-co-hi-lo 1.6163E+05 1.5143E+05

uf-co-lo-hi 2.7648E+05 2.6463E+05

uf-co-lo-lo 5.297 E+03 5.194E+03

uf-in-hi-hi 3.4962E+06 3.4605E+06

uf-in-hi-lo 8.1715E+05 8.1615E+05

uf-in-lo-hi 1.1270E+05 1.1217E+05

uf-in-lo-lo 2.636E+03 2.423E+03

uf-pa-hi-hi 4.5713E+06 4.4806E+06

uf-pa-hi-lo 1.0485E+05 1.0478E+05

uf-pa-lo-hi 1.5397E+05 1.5393E+05

uf-pa-lo-lo 3.449E+03 3.423E+03

Parameters Values

Population size 100

Maximum iteration 40

Inertia Weight (W) 0.4

Acceleration Coefficient (C1) 2

Acceleration Coefficient (C2) 2

Maximum Velocity (Vmax) [10, 90]

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 18

Table 3: Flow-time Values of EET Matrix

Instance NSGA-II MOPSO-CD

uf-co-hi-hi 105123172 104322164

uf-co-hi-lo 2372403 2278675

uf-co-lo-hi 3612434 3576535

uf-co-lo-lo 78945 78168

uf-in-hi-hi 43655443 43415667

uf-in-hi-lo 11131834 11024564

uf-in-lo-hi 1478862 1446619

uf-in-lo-lo 37608 36981

uf-pa-hi-hi 62435712 62234510

uf-pa-hi-lo 1453702 1383892

uf-pa-lo-hi 1985104 1945102

uf-pa-lo-lo 49789 49562

IX. CONCLUSION

 Statically timetabling of autonomous jobs in

heterogeneous processing condition discovers value in

numerous applications. In the proposed paper, the

scheduling problem of independent tasks in

heterogeneous computing environment is investigated

using Multiple-Objective Particle Swarm

Optimization with Crowded Displacement operator

(MOPSO-CD) in order to limit both make-span and

flow-time. The performance of the proposed method is

contrasted with Multiple-Objective Non-dominated

Sorting Genetic Algorithm-II. The trial comes about

uncover the nature of schedules nearly for all

benchmark issue examples. Subsequently, MOPSO-

CD can be utilized to discover better schedules

fulfilling various goals and it appears to be

encouraging way to deal with planning autonomous

assignments in HC condition. Additionally,

methodologies might be connected for considering

different types of HC scheduling, for example,

scheduling jobs with priority limitations or inside

element condition. Commonly used search algorithms

for example ‘Hill climbing’ and ‘Simulated

Annealing’ continuously move towards the solutions

that have an improved fitness function value and they

search the problem space in an arbitrarily manner.

Likewise, MOPSO move towards stochastic search in

the problems space to find improved solutions

thus generating an ideal Pareto optimal front.

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 19

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

1 2 3 4 5 6 7 8 9 10 11 12

NSGA-II

MOPSO_CD

Fig. 1: Standard Deviation (Y-axis) of Two Methods for 12 Instances (X-axis)

REFERENCES

[1] Munir E U, Li J-Z, Shi S-F and Rasool Q Performance

Analysis of Task Scheduling Heuristics in Grid, In:

ICMLC’07: Proceedings of the International Conference on

Machine Learning and Cybernetics,6: 3093–3098, 2007.

[2] Maheswaran M, Ali S, Siegel H J, Hensgen D and Freund R F,

Dynamic mapping of a class of independent tasks onto

heterogeneous computing systems, J. Parallel and Distributed

Computing 59: 107–131, 1999.

[3] Freund R F, Gherrity M, Ambrosius S, Campbell M,

Halderman M, Hensgen D, Keith D E, Kidd T, Kussow M,

Lima J D, Mirabile F, Moore L, Rust B and Siegel H J,

Scheduling resources in multiuser, heterogeneous, computing

environments with SmartNet, In: 7th IEEE Heterogeneous

Computing Workshop, 184–199, 1998.

[4] Abraham A, Buyya R and Nath B, Nature’s heuristics for

scheduling jobs on computational grids, The 8th IEEE

International Conference on Advanced Computing and

Communications (ADCOM 2000), India, 2000.

[5] Page A and Naughton J, Framework for task scheduling in

heterogeneous distributed computing using genetic algorithms,

Artificial Intelligence Rev. 24: 415–429, 2005.

[6] Yarkhan A and Dongarra J, Experiments with scheduling

using simulated annealing in a grid environment, In:

Proceedings of the 3rd International Workshop on Grid

Computing (GRID2002), 232–242, 2002.

[7] Ritchie G and Levine L , A hybrid ant algorithm for

scheduling independent jobs in heterogeneous computing

environments, In: 23rd Workshop of the UK Planning and

Scheduling Special Interest Group, PLANSIG, 2004.

[8] Salman A, Ahmad I and Al-Madani S, Particle swarm

optimization for task assignment problem, Microprocessors

and Microsystems 26(8): 363–371, 2002.

[9] Braun T D, Siegel H J, Beck N, Boloni L L, Maheswaran M,

Reuther A I, Robertson J P, Theys M D and Yao B, A

comparison of eleven static heuristics for mapping a class of

independent tasks onto heterogeneous distributed computing

systems, J. Parallel and Distributed Computing 61: 810–837,

2001.

[10] Liu H, Abraham A and Hassanien A, Scheduling jobs on

computational grids using a fuzzy particle swarm optimization

algorithm, Future Generation Computer Systems 26 (8) :

1336–1343, 2010.

[11] Izakian H, Abraham A and Snasel V, Comparison of

heuristics for scheduling independent tasks on heterogeneous

distributed environments, IEEE Control Systems Magazine 1:

8–12, 2009.

[12] Abraham A, Liu H, Grosan C and Xhafa F, Nature inspired

meta-heuristics for grid scheduling: single and multi-objective

optimization approaches. Studies in computational

intelligence, Berlin Heidelberg: Springer Verlag, 247–272,

2008.

[13] Izakian H, Tork Ladani B, Zamanifar K and Abraham A, A

novel particle swarm optimization approach for grid job

scheduling, In: Proceedings of the Third International

Conference on Information Systems, Technology and

Management, 100–110, 2009.

[14] Xhafa F, Carretero J and Abraham A, Genetic algorithm based

schedulers for grid computing systems, Int. J. Innovative

Computing, Information and Control 3: 1053–1071, 2007.

[15] V. Di Martino and M. Mililotti. Sub optimal scheduling in a

grid using genetic algorithms. Parallel Computing, 30:553–

565, 2004.

[16] A.Y. Zomaya and Y.H. Teh. Observations on using genetic

algorithms for dynamic load-balancing. IEEE Transactions On

Parallel and Distributed Systems, 12(9):899–911, 2001.

[17] Deb K, Pratap A, Agarwal S. and Meyarivan T, A Fast Elitist

Multiobjective Genetic Algorithm: NSGA-II, Kanpur Genetic

Algorithms Laboratory Report No-200001 , Indian Institute of

Technology, Kanpur, 2000.

[18] Christos Gogos, Christos Valouxis, Panayiotis Alefragis,

George Goulas, Nikolaos Voros, Efthymios Housos,

Scheduling independent tasks on heterogeneous processors

using heuristics and Column Pricing, Future Generation

Computer Systems 60, 48–66, 2016.

[19] A.K. Chaturvedi, R. Sahu, New heuristic for scheduling of

independent tasks in computational grid, Int. J. Grid

Distributed Computing. 4 (3), 25–36, 2011.

[20] G Subashini and M C Bhuvaneswari, Comparison of multi-

objective evolutionary approaches for task scheduling in

International Journal of Computer Trends and Technology (IJCTT) – Volume 45 Issue 1- March 2017

ISSN: 2231-2803 http://www.ijcttjournal.org Page 20

distributed computing systems, Sadhana, Vol. 37, Part 6, pp.

675–694. Indian Academy of Sciences, December 2012.

[21] Carlo R. Raquel, Prospero C. Naval, Jr., An Effective Use of

Crowding Distance in Multiobjective Particle Swarm

Optimization, ACM, GECCO’ 05, June 25-29, 2005.

[22] Angeline, P.J. Evolutionary optimization versus particle

swarm optimization: philosophy and performance differences.

In Proceedings of the Seventh Annual Conference on

Evolutionary Programming, San Diego, pp. 601–610, 1998.

[23] Salerno, J. Using the particle swarm optimization technique to

train a recurrent neural model. In Proceedings of the IEEE

International Conference on Tools with Artificial Intelligence,

Newport Beach, CA, USA, pp. 45–49, November 3-8, 1997.

[24] Eberhart, R.C.; Shi, Y. Evolving artificial neural networks. In

Proceedings of the International Conference on Neural

Networks and Brain, Beijing, P.R. China, pp. 5–13, October

27-30, 1998.

[25] Coello Coello, C. A. and Salazar Lechuga, M., MOPSO: A

Proposal for Multiple Objective Particle Swarm Optimization.

In Proceedings of the Congress on Evolutionay Computation

(CEC’02), volume 1, pages 1051–1056, Honolulu, HI. IEEE

Press, 2002.

[26] Coello Coello, C. A., Toscano Pulido, G., and Salazar

Lechuga, M. Handling Multiple Objectives With Particle

Swarm Optimization. IEEE Transactions on Evolutionary

Computation, 8(3):256–279, 2004.

[27] Kennedy, J. and Eberhart, R. C. Particle Swarm Optimization.

In Proceedings of the IEEE International Conference on

Neural Networks, pages 1942–1948, Piscataway, New Jersey.

IEEE Service Center, 1995.

[28] Kennedy, J. and Eberhart, R. C. Swarm Intelligence. Morgan

Kaufmann, San Francisco, California, 2001.

[29] C. Tsou, S. Chang, and P. Lai., Using Crowding Distance to

Improve Multi-Objective PSO with Local Search, Swarm

Intelligence , Focus on Ant and Particle Swarm Optimization,

Edited by Felix T.S. Chan and Manoj Kumar Tiwari, 2007.

[30] K. Deb and N. Srinivas, Multi-objective optimization using

non-dominated sorting in genetic algorithms. Evolutionary

Computation, pages 221–248, 1994.

[31] Shreeram Kushwaha, Multiobjective optimization of cluster

measures in Microarray Cancer data using Genetic Algorithm

Based Fuzzy Clustering, Bachelor of Technology in Computer

Science & Engineering Thesis, National Institute of

Technology Rourkela, 2012-13.

[32] Y. Shi and R. Eberhart, Empirical study of particle swarm

optimization. In Proceedings of the 1999 Congress on

Evolutionary Computation (CEC 1999), pages 1945–1950,

1999.

[33] Seshadri, A., A Fast Elitist Multiobjective Genetic Algorithm:

NSGA-II (1st ed.). New Jersey: New Jersey Institute of

Technology. Retrieved from

https://web.njit.edu/~horacio/Math451H/download/Seshadri_

NSGA-II.pdf, 2006.

[34] M. T. Jensen., Reducing the run-time complexity of

multiobjective eas: The nsga-ii and other algorithms. Trans.

Evol. Comp, 7(5) : 503 -515. ISSN 1089 - 778X. doi: 10.1109/

TEVC. 2003. 817234. URL http://dx/doi.org/10.1109/

TEVC.2003.817234, October 2003.

[35] Hossein Ghiasi, Damiano Pasini and Larry Lessard, A non-

dominated sorting hybrid algorithm for multi-objective

optimization of engineering problems, Vol. 43, No. 1, 39–59,

Engineering Optimization, January 2011.

[36] Zengqiang Jiang, Le Zuo, Mingcheng E, Study on Multi-

objective Flexible Job-shop Scheduling Problem considering

Energy Consumption, 7(3), 589-604, Journal of Industrial

Engineering and Management, 2014.

[37] Kalyanmoy Deb, Udaya Bhaskara Rao N., and S. Karthik,

Dynamic Multi-Objective Optimization and Decision-Making

Using Modified NSGA-II: A Case Study on Hydro-Thermal

Power Scheduling, Kanpur Genetic Algorithms Laboratory

(KanGAL) Report Number 2006008, Indian Institute of

Technology Kanpur, 2005.

[38] Adriana Cortes Godınez, Luis Ernesto Mancilla Espinosa,

EfrenMezura Montes, An Experimental Comparison of Multi-

Objective Algorithms: NSGA-II and OMOPSO, Electronics,

Robotics and Automotive Mechanics Conference (CERMA),

2010, Oct. 2010,.

[39] Hagerup T., Allocating Independent Tasks to Parallel

Processors: An Experimental Study. Journal of Parallel and

Distributed Computing, 47, pp. 185-197, 1997.

[40] Satyobroto Talukder, Mathematical Modeling and

Applications of Particle Swarm Optimization, Master of

Science Thesis, School of Engineering, Blekinge Institute of

Technology, Sweden, February 2011.

[41] Mahmood Rahmani, Particle swarm optimization of artificial

neural networks for autonomous robots, Master of Science in

Complex Adaptive Systems Thesis, Department of Applied

Physics, Chalmers University of Technology, Sweden, 2008.

 [42] Peng-Yeng Yin, Shiuh-Sheng Yu, Pei-Pei Wang, Yi-Te Wang,
A hybrid particle swarm optimization algorithm for optimal

task assignment in distributed systems, Computer Standards &

Interfaces , Vol.28, pp. 441-450, 2006.

