
International Journal of Computer Trends and Technology (IJCTT) – Volume 41 Number 1 – November 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 29

Cloud Computing: Privacy, Mobility and

Resources Utilization
Tariq Alwada’n

1
, Omar Al-Zitawi

2
, Jalal Omer Atoum 3

1
Faculty of Technology, The World Islamic Science and Education University, Jordan

2
King Hussein Faculty of Computing Sciences, Princess Symaya University for Technology, Jordan

3
College of Science and Engineering, Southern Arkansas University, USA

Abstract: The fascinating world of Cloud computing

has definitely changed the way of using computers

and the Internet. The impact it has left so far on how

IT and business services are delivered and managed

is undeniable. However, the evolutionary change

that Cloud computing has left on the IT landscape

has given rise to a range of concerns by Cloud

providers and customers. The current study

introduces and examines two major problems in

Cloud computing system. The first one is the Cloud

internal and external data security and client’s

privacy, and the tasks mobility and resources

utilization. The study also provides practical

solutions to the two aforementioned problems and a

prototype, called SPI, which has been successfully

tested. The present study suggests using SSL with

proxy server and secured access to members control

panel for Cloud external data security. As for

internal security and client’s privacy, multiple

approaches have been applied.

Keywords — Cloud computing, privacy, mobility,

IaaS, Saas, PaaS, SPI

I. INTRODUCTION

A. Cloud Computing

Cloud computing, Grid computing, and Cluster

computing are intended to permit access to huge

quantity of computing power by combining

resources and providing a solo system interface. A

significant goal of these computing technologies is

to provide utility computing. Utility computing is

described as an IT service model in which service

provider creates computing resources and delivers

them on demand [1]. Clients pay service providers

on pay-per-use billing method. It is basically similar

to public utility service provision in which the users

are charged on monthly basis as per the usage of the

given utility (gas, water, power, telephone) [2].

Cloud computing has been claimed as an umbrella

term to explain a class of complicated on demand

services provided by the business providers [3].

Organizations and individuals can access and use

applications from all around the globe on-demand

through Cloud computing as it provides a model

through which computing structure is seen as a

“cloud” [4]. The major concept of this model is

providing “storage, computing and software as a

service”.

Several professionals in the field have tried to

give a definition of Cloud computing. One of these

definitions is introduced by [4]: “Cloud is a parallel

and distributed computing system consisting of a

collection of inter-connected computers that are

dynamically provisioned and presented as one or

more unified computing resources based on SLA

(service-level agreements) established through

negotiation between the service provider and

consumers.”

B. Mobility

The capacity to move or rearrange virtual or

physical computing resources including tasks,

application software, and data between Cloud

environments traversing a wide or a local network is

termed as mobility [5].

Mobility enhances the management between

resources and services due to the heightened usage

of resources [6]. With the assist of mobility, the

services can move all over the Cloud to obtain data

from cloud nodes, implement on those nodes, and

carry the results back to their original nodes. This

can enhance the utilization and Cloud services

flexibility [7]. Mobility may be divided into

computational mobility and personal mobility.

Personal mobility means that the user of Cloud is

capable of performing the task at sites far from the

definite physical hardware which eliminates the need

to move the jobs along with the hardware. Users

have the ability to initialize a job, for instance

webmail, at a particular site and then migrate it to

another location irrespective of the machine type.

Moving an actual part of computer hardware such as

PCs notebook and Personal Digital Assistants (PDAs)

from one site to another is called as computer (or

computational) mobility [5].

This paper is interested in computational mobility

which deals with the movement of software.

Migration of data, control, object, and link can also

be called as computational mobility. Mobility can be

classified into two categories; Weak mobility and

Strong Mobility. Weak mobility allows code to

move through the networks. In some cases, the codes

have initial data assigned but without execution

states (for example, the state of the computation is

International Journal of Computer Trends and Technology (IJCTT) – Volume 41 Number 1 – November 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 30

lost at the first node). An example of a weak

mobility system is Code-on Demand (CoD) and

Remote Execution Evaluation (REE) [8, 9].

On the other hand strong mobility, which our

research builds on, is the ability of a computational

environment to mobile the code and execution state

(the context of execution) to start again at a new

resource. The execution state comprises of running

code, saved processor registers, program counter,

local variables, and return addresses. A set of

organizing execution controls operates in a process

on the user machine and then accesses the remote

resource by the in vocation of a remote process. One

of the most important features of strong mobility is

that jobs can choose to migrate between sites while

it is processing information. The reliability challenge

of partial failure is decreased because the job state is

only in one site at a time [5].

This paper is organized as follows. Section II is

the architecture structure and components. In

Section III we give an overview of the Deployment

Model. Section IV takes about Development Tools,

System Design and Workflow. Section V and VI

discuss the Implementation and Testing phase.

Section VII gives an overview about Detailed

Testing Sample Showing Policy Appliance, followed

by conclusion and references.

II. ARCHITECTURE STRUCTURE AND

COMPONENTS

The paper suggests the following requirements;

user’s mathematical problem input, user’s

specification of the problem calculation

requirements (hardware, privacy level, priority,

processing location, and encryption mechanism) and

users’ need to access their space and track their tasks

progress anywhere and at any time. The paper

attempts to manage and control the privacy for

mobility in Cloud system to reduce time, effort and

eventually save money.

The diagram for the proposed prototype is shown

in Fig. 1. The output of the suggested phase

represents a temporary design. This diagram

presents an overview of the intended system by

unfolding the objects and classes within the system.

It presents a wide-range of use cases from

representing a domain-specific design to a

comprehensive structure of the system.

In Fig 1 we introduced our proposed combined

Cloud modules which represents the systems

components and their connection together and how

they are related. It consists of two main parts: Client

side and the Virtual Cloud control system; we used

the main modules which are IaaS , SaaS and PaaS in

the back end to construct our virtual cloud.

Fig 1 Design for the study proposed prototype

The proposed system consists of components such

as (client, dispatcher and IaaS resources) and process

such as (encryption and decryption system), queuing

system, splitting, merging system and dispatching

resources. The Dispatching system is divided into

four parts:

1) Clients Side Application: Used to encrypt and

submit the needed tasks for cloud processing.

2) L1 SaaS Queuing System: Contains two queues

(Tasks Queue) and (Results Queue).

 Tasks Queue adds internal system sequence

(ID number) for each task and forwards the

Encrypted Client ID and the Internal Assigned

Sequence Number to the Results Queue

controller to be able to dispatch the task’s

result back to the client.

 Results Queue matches each received result

with the previously received client ID and

dispatches it to the decryption Agent to

process it.

3) L2 SaaS Tasks: Splitting Agent and Results’

Merging Agent.

4) IaaS Dispatching Agent: controls Task’s

Resource Allocation according to the included

parameters and returns results back from processing

resources to the result queue.

From Fig 1 the Queuing concept is designed to

handle tasks processing with adding a priority

handler to manage ordering tasks in the queues and

on the other hand to take results back and get them

ready for dispatching to the client.

III. DEVELOPMENT

The prototype proposed in the paper is called SPI.

The name is derived from the initials of the three

Cloud computing modules, namely SaaS, PaaS and

IaaS, all integrated in the proposed system. The

prototype is based on a Cloud computing

environment merged with the grid computing

through the SaaS module with the clients interface

International Journal of Computer Trends and Technology (IJCTT) – Volume 41 Number 1 – November 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 31

handling mathematical linear and polynomial

equations. The three parts coming next shed light on

the prototype incorporation with Saas, PaaS, and

IaaS providers.

A. Incorporation with SaaS provider

Incorporation of PaaS provider with Primary SaaS

(Software as a Service) model provides clients with

the ability to use value chain facilities on pay-per-

use approach. PaaS provider incorporation with

SaaS service provides consumer with the facility of

range of languages to deploy their application. In

addition, in terms of advertising they offer

magazines or forums the opportunity to publish

these services.

Organizations should mull over whether they

want to acquire a public PaaS platform or to get a

private PaaS platform. For a comparatively small or

an average business, a public PaaS is more feasible

and practicable. However, for a fairly large business,

organizations should consider private PaaS platform.

B. Incorporation with PaaS provider

PaaS is the model that shows running applications

over the Internet by renting hardware and software

infrastructures. (Fig 2) shows the key attributes that

characterize PaaS. This model provides the clients

with an opportunity to get virtualized servers and

software services on rent for maintaining and

executing current applications and developing new

ones.

The control and administration of the prime Cloud

infrastructure is not in the hands of the client. The

system control, server control, OS control, and

storage control are under the supervision of the

provider, although the consumer has access to posted

tasks control and the configuration settings specified

for the task handler in the hosting environment.

Fig 2 PaaS characteristics

C. Incorporation with IaaS provider

The incorporation between PaaS provider and

fundamental IaaS (Infrastructure as a Service)

provider offers to developers the chance to

determine the availability of hardware resources

directly without getting in touch with IaaS providers

themselves. Developers need not to worry about

hardware resources and their data. They just have to

make contact with PaaS provider and leave the rest

to it. Generally, these incorporations are carried out

through APIs (Application Programming Interfaces)

that help the IaaS model makes accessible to PaaS

provider.

D. 4. Development Tools, System Design and

Workflow

To develop such a solution, our system proposes

the usage of Microsoft based Clouds with .net

runtime, ASP.net, C#.net, and MS SQL DB Clusters.

Fig 3 shows the proposed infrastructure design of

SPI, containing the following elements:

Fig 3 SPI infrastructure design

1) The Proxy server: implements a layer of privacy

for the Cloud server. Proxy server
1
 is contacted by

the client for various tasks, such as requesting a file

or connection request to different servers. These

days most proxies provide anonymity and access to

the content on World Wide Web.

2) Indexing servers: Indexing servers are used to

map requests coming through the proxy server to a

free web server on the back for load balancing.

3) Web server cluster: Web server cluster is a

number of clustered servers configured for hosting

the web portal that serves the clients requests and

1
A proxy server is a system that operates as a mediator between

client device (which is demanding the service) and another server.

A user when demands some service (Any resource) from another

sever after joining the proxy server, the proxy server assess the
demand as a method to abridge and manage its complexity. A

user when requests an Internet service to the proxy server, it

searches it in the cache of earlier downloaded pages. If the page

exists in the history, it provides it to the requester without

requiring passing on the request to the network. In other case i.e.

if the server does not find the web page in the history, it requests
the demanded page from the Internet using one of its randomly

generated IP address and passes on that web page to the user. At

present, proxy server system is mainly used to provide access to
the Internet with secrecy.

International Journal of Computer Trends and Technology (IJCTT) – Volume 41 Number 1 – November 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 32

passes it back to the backend core Application

servers.

4) DB cluster: DB cluster is used to store all cloud

configurations and clients encrypted data.

5) IaaS Cloud: IaaS Cloud is a set of remote

machines connected and controlled by the

application servers used to serve and run clients

forwarded tasks.

IV. IMPLEMENTATION

In the prototype system proposed in the current

paper, a system that uses PaaS for Cloud computing

is created to execute specific client task such as

linear mathematical equations, defining the

processing parameters for each task submitted and

controlling its security level, priority, processing

location, and resources needed. The prototype is

developed using asp.net, c#.net, JSON and SQL

Server programming language, and VMware

environment.

Linear and polynomial equations are implemented

as they are used in many different applications. In

this prototype, tasks management, control of privacy

and tasks mobility in Cloud system prototype were

implemented. The prototype was used as method.

Since the development of this application is

specific for the mobility, a Cloud hosted web

application is used as a SaaS to be accessible from

any location and at any time. In addition, multiple

processing units in different locations are used as

IaaS. When SaaS and IaaS are combined, a virtual

PaaS emerges.

A. Solution Processing Mechanism

For each client’s task before getting in the SaaS,

tasks processing queue gets encrypted along with the

client’s ID. The following parameters have to be

sent along with each Task:

 Encryption Type (if Null a random encryption

type will be assigned)

 Client ID

 Task‘s Data (linear Equation parameters)

 Task’s Type (has to be processed in sub parts

or has to be processed as one task)

 Resources Needed and physical location of

processing resources

 Tasks priority (from client input)

Clients Application side gets the client’s ID and

the Tasks Data encrypted, using the selected

Algorithm. Then it forwards the tasks to the Queue

to start processing it in SaaS Control System after

assigning internal Task ID to match them with

results later.

IF Task type is set to (1), each Task gets dispatch

sequentially from the queue and splice into sub

tasks , otherwise it gets forwarded directly to IaaS

dispatching checker to determine which resource

will be used to process the submitted task or sub task

according to resource parameters sent with each task.

Once processing is done, the result gets back into the

IaaS dispatching agent to send it back to the result

queue and the client. IaaS dispatcher controls IaaS

resources utilization to make sure resources are

wasted.

B. Prototype Mobility

The main idea of Cloud system is the mobility

and the accessibility of information from any device

anywhere in the world at any time. The mobility is

to the same extent as the web-based system as it can

be accessed using any Internet connected device.

1) Tasks and Resource Migration

The prototype proposed in the current paper is

based on a task and data mobility using priority and

resource parameters which direct mobility to move

the tasks from one IaaS resource to another

according to three conditions: (1) task priority, (2)

tasks completion percentage, and (3) task resources

specifications.

According to the IaaS Dispatcher’s policy, once a

task arrives to the IaaS dispatcher, it gets into a

number of filters, namely task resources parameters

filter and task priority filter. Once the task gets

through the resource filter and gets assigned to an

IaaS resource, which may have other tasks in

process, the incoming task gets into the second filter

which compares the task’s priority for the incoming

task with the priority of the task under process. If the

priority of the incoming is less than the one of the

current running task, the task gets into the waiting

queue until the current task finishes processing and

gets dispatched out of the resource. However, if it is

higher, the current processing task gets into a third

filter which checks the current processing percentage.

If it is below 50%, then the current process gets

terminated, the new task with the higher priority gets

into its place, and the IaaS dispatcher checks if any

other resource has similar resource requirement to

send the old process to it for processing. Otherwise it

gets into the waiting queue for the original IaaS

resource. See Fig 4 and Fig 5.

2) Data/Application Software Migration

The prototype is controlled by a SaaS application

which is a web portal that can be moved and hosted

on any server anytime and anywhere, as long as it

maintains the same domain name. All PaaS

resources connect to each other, using a

configuration files hosted in the PaaS core server,

which contains all information such as: IP addresses,

IaaS details and aspects and clients DB.

This information is stored in a secured SQL

server DB, so basically for moving the SaaS web

application, one has to host in a new server, publish

it and update the SaaS records and the DNS

information to point to the new SaaS server. This

update should be within interval rate of 5 second on

the IaaS clients Agent and the dispatchers’ queues.

International Journal of Computer Trends and Technology (IJCTT) – Volume 41 Number 1 – November 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 33

Fig 4 Tasks mobility for two tasks from the same

client

Fig 5 Tasks mobility for two tasks from the two

different clients

C. Prototype User Privacy and Security

The system applies an automatic random

encryption (or a specific encryption algorithm if

specified by the client while submitting the task) on

the tasks client ID. This encryption key is applied

before the tasks get posted to IaaS tasks queue,

which prevents the clients’ identity from being

revealed within the PaaS system. Moreover, the

application is secured with SSL certificate with 256

bit RSA, to secure packets transmitting through the

network. In the prototype, Data Protection

application programming interface (DPAPI) and key

relationship management is used.

D. Prototype Screen Shots and Description

This section shows the screen shots of the SPI

prototype and its features and services given to SPI

admins and clients.

The client will be introduced to the Dashboard

that contain regional state, feeds, client task process,

and IaaS subtask process as shown in Fig 6. While

the admin has a full informative and statistical

dashboard which can be used to monitor the overall

system status, IaaS utilization and resources, load

and control IaaS Processing Agent as in Fig 7.

Fig 6 Client dashboard

Fig 7 Administration main dashboard

V. TESTING PHASE

To test and evaluate the proposed system

prototype, the researcher has formed 30 different test

cases. Table I shows the first tenth testing cases.

Also Fig 8 shows the comparing results between

numbers of clients to the overall processing time in

associated to the number of equations. These testing

cases include various numbers of clients, various

numbers of equations (linear, polynomial, and linear

polynomial), various complications of equations,

and various client policies.

The testing environment consists of five VMware

virtual machines installed on a testing laptop with

the following aspects:

International Journal of Computer Trends and Technology (IJCTT) – Volume 41 Number 1 – November 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 34

Table I General Testing Results

 2 TB Sata Hard desks

 16 GB RAM

 Intel Core i7 2.60 GHz

 64 bit windows 8.1

 Each VM Machine has 100 GB HD, 2 GB

RAM, shared host processor, and virtual IP

Address visible for the current LAN.

Fig 8 The Processing Time Resulted from

comparing the numbers of clients associated to the

number of equations (measured in minutes).

In addition to the five VMs which are used as

IaaS resources, the testing environment includes:

 1 VM which is used to host the SaaS Web

Application,

 2 VM which is used to test the client side

connection to the PaaS, and

 2 IPhone and 3 Android devices which are

used as clients.

The following parameters are used to evaluate the

proposed SPI prototype as shown in Table I:

 Number of clients: specifies the number of

clients connected to the SPI prototype.

 Number of equations: how many equations

submitted by each client.

 Equation type: what type of equation

submitted by clients (Linear, polynomial and

linear polynomial).

 Equations complexity: for linear equation the

complexity specifies the number of unknowns

in each equation while for polynomial

equations; complexity specifies the maximum

power of the unknown.

Formally, the following measures are used to

evaluate these cases:

 CPU utilization: the maximum utilization of

the IaaS CPU throughout the test.

 Processing percentage: the percentage of tasks

processed by each IaaS from the total number

submitted by clients calculated using this

formula – Percentage = (number of processed

tasks by the IaaS/the total number of tasks

submitted by all clients during the test) x

100%.

 Processing time: the duration of processing all

tasks during the each test measured in minutes.

Based on the results of evaluating each test case,

the following is concluded:

 When IaaS resources CPU utilization reaches

100% and gets fully utilized; “tasks queue”

starts filling up especially when clients start

specifying a dedicated resource specification.

This will prevent the task from being

processed by any other available IaaS and also

that means the SPI didn’t drop any job and

keep it in “Task Queue”.

 Giving the client the ability to choose the IaaS

specifications decrease the overall cloud

system utilization. Also it increases the load

on specific IaaS resources while leaving the

others unutilized or partially utilized and in

the same time helps the client to decide which

place can run his job.

 The best scenario for SPI is working with full

efficiency on linear equations up to 20

equations and complexity up to 25 while it

starts to reach high utilization levels when it

exceeds those limits.

 The best scenario for SPI is working with full

efficiency on polynomial equations up to 18

equations and complexity up to 30 while it

International Journal of Computer Trends and Technology (IJCTT) – Volume 41 Number 1 – November 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 35

starts to reach high utilization levels when it

exceeds those limits.

 Security levels in our prototype all data and

client information are very high; secured from

being breached by internal or external users.

VI. DETAILED TESTING SAMPLE SHOWING POLICY

APPLIANCE

Two clients connected to the same LAN (using

Samsung Note device), One from VM1 and the

second connecting from a mobile device. Each of the

clients logs in and submits 3 equations 2 polynomial

and 1 linear with complexity level 15 (15 unknown

parameters for the linear equations and a maximum

power equal to 15 for the unknown parameter of the

polynomial equation shows in Table II). The

complexity level 15 is chosen for its ability to record

the execution time and to record the mobility action.

The processing steps include:

Client one submits his/her first task with the

following parameters: Virtual machine 2; priority is

not specified. Since the client has not specified a

priority level, the SaaS adds default priority (0) to

the task once it reaches the Tasks Queue. When it is

its turn, the SaaS controller dispatches the first task

from client 1 to the IaaS dispatcher to specify its

processing IaaS. The dispatcher moves the task to

VM no. 2 as it is free, and VM no. 2 is specified

with the task’s parameters. IaaS 2 starts processing

the task.

In the meanwhile, client no. 2 submits his/her first

task with the following parameters: VM no. 1;

priority level 1. The task then is forwarded by the

Task Queue to IaaS dispatcher which moves it to

VM number 1 (IaaS 1). IaaS 1 starts processing the

first task submitted by the second client.

Client no. 1 submits his/her second task with the

following parameters: VM no. 2; priority level 2.

Once the task reaches IaaS dispatcher, it gets into the

task resources filter. As IaaS no. 2 is specified and is

not free, the dispatcher compares client 1’s first task

(which is under process) with client 1’s second

incoming task. The dispatcher finds that the priority

of task 2 is higher than the priority of task 1.

Accordingly, another check is made to examine the

processing percentage of task 1. If the processing

percentage is less than 50%, the dispatcher takes

task 1 and return it back to task queue (processes it

in another IaaS according to task 1’s requirements).

The incoming task, which is task 2 that has higher

priority, is the one that is being processed. If the

processing percentage is more than 50%, which was

not the case, task 1 will continue to be processed

while task 2 is queuing.

IaaS 1 finishes processing client 2’s task 1 and

sends it through the IaaS dispatcher to the result

queue, and then sends it back to client 2.

IaaS 2 finishes processing client 1’s task 2 and

returns the result back to the client through the result

queue of IaaS dispatcher. Once task 2 is processed,

IaaS dispatcher calls for the removed task (client 1’s

task 1) and gets it into IaaS 2 to be processed.

Client 2 submits a new task (task 2) to the task

queue with the following parameters: VM no.2;

priority 1. IaaS dispatcher gets notified but keeps the

task waiting in the queue as the requested IaaS is

busy with another task. Once IaaS 2 finishes

processing client 1’s task 1, it gets client’s 2 task 2

into IaaS 2 to be processed.

Client 2 submits a new task (task 3) with the

following parameters: VM 3; default priority. The

task gets forwarded from the tasks queue to the IaaS

dispatcher which moves it to IaaS 3 for processing

as per the task’s parameters set by client 2. IaaS 3

finishes the processing of task 3 and sends it back to

client 2.

Client 1 submits his/her third task without

specifying the VM machine requirements and sets its

priority to 1. The task gets into the task queue and

gets forwarded to IaaS dispatcher. Since VM

requirements are not specified, and all IaaS

resources are free, the task randomly gets assigned

to one of the available IaaS resources it run in VM 3.

The task is then processed, and the result is sent

back to client 1. Table II shows the scenario of the

processing steps explained above.

Table II Result sample

 Equation 1 Equation2 Equation3

User 1 15 *

VM: no 2

Priority: 0

15 *

VM: no 2

Priority: 2

15 *

VM:

undefined

Priority: 1

User 2 15 *

VM: no 1

Priority: 1

15 *

VM: no 2

Priority: 1

15 *

VM: no 3

Priority: 0

The equation was sorted out in the following order:

 On VM1: Task (Client 2 , task 1)

 On VM2: Task (Client 1, task 1), task (Client

1, task 2), task (Client 2, task 2)

 On VM3: Task (Client 2, task 3), task (Client

1, task 3)

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a mixed usage of the three

service models of cloud computing (IaaS, SaaS, and

PaaS) to get the most of each model and create a

new fully automated cloud computing environment

that maintains the highest level of security possible

and at the same time fulfils the mobility concept for

the system as a whole and the client tasks. By

merging IaaS and SaaS, a new kind of virtual PaaS,

International Journal of Computer Trends and Technology (IJCTT) – Volume 41 Number 1 – November 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 36

called SPI, has emerged that has the best features of

each cloud type, decreases the disadvantages

inherited in the system, and minimizes any security

risks. Numbers of future works that can be

implemented in the field of cloud systems such as:

User Responsive (Encoding); clouds are usually very

complex and difficult to encode. This is very

difficult to modify the given cloud application

according to the particular requirements.

REFERENCES

[1] M. Rouse. What is public cloud. Retrieved from
Whatis.com. (2014, October 12).

[2] Cisco Systems. Managing the Real Cost of On-Demand
Enterprise Cloud Services with Chargeback Models. White
Paper.(pp. 10), 2010

[3] S.Ahmed and S. Maria. Cloud Computing: Paradigms and
Technologies. F. Xhafa and N. Bessis (eds.), Inter-
cooperative Collective Intelligence: Techniques and
Applications, Studies in Computational Intelligence 495,
DOI: 10.1007/978-3-642-35016-0_2, Springer-Verlag
Berlin Heidelberg, 2014.

[4] C. Y. R Buyya. Vision, hype and reality for delivering
computing as 5th utility . In Cloud computing and emerging
IT platforms, 2009.

[5] T.Alwada’n. Security for Mobile Grid Systems. PhD Thesis.
School of Computing, De Montfort. (pp. 26-28), 2012.

[6] T.Athanaileas. An agentbased framework for integrating
mobility into grid services. Proceedings of the 1st
international conference on MOBILe Wireless
MiddleWARE Operating Systems, and Applications (pp.
31:1-31:6). Brussels: Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering,
2007.

[7] S.Wong and K.Ng. Performance evaluation of mobile grid
services. Proceedings of the 2nd KES International
conference on Agent and multiagent systems: technologies
and applications (pp. 557-566). Berlin, Heidelberg:
Springer-Verlag, 2008.

[8] J.Stamos, and D. Gifford. Remote evaluation. ACM
Transactions on Programming Language and Systems, (pp
537-565), 1990.

[9] C.B.Westphall, and C. Westphall. Management and security
for grid, cloud and cognitive networks. Revista de Sistemas
de Informao da FSMA 8, (pp. 8-21), 2011.

