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Abstract— In this paper, a method is presented for 

classifying snake toxins into neurotoxins, cytotoxins 

or cardiotoxins, using a four-stage neural network. 

A training phase was used to teach the network to 

recognize the type of toxin based on the number of 

amino acid residues between the disulphide bridges, 

on a sample set of 139 snake toxins. When the 

trained network was used to classify a set of 239 

toxins, the system achieved an accuracy of 74%. 
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I. INTRODUCTION 

Snake toxins are a group of peptides found in snake 

venoms that have one or more adverse physiological 

effects on humans and/or animals [1] [2]. These 

toxins can be classified into broadly two groups: 

neurotoxins and cytotoxins. Neurotoxic proteins 

work by binding to the nicotinic acetylcholine 

receptors in the post-synaptic membrane of muscles, 

thereby blocking acetylcholine binding and in turn 

preventing the excitation of muscles, often leading to 

paralysis and death. Cytotoxins work by making 

cells undergo necrosis as a result of which cell lysis 

occurs. During this phase, cells often exhibit 

swelling, and lose membrane integrity, thereby 

releasing cell contents into its environment. Both of 

these toxins are hazardous to human health, and 

snake antivenoms are often the only alternative left 

for mitigating its effects. 

 

Neurotoxic proteins also exhibit a wide variety, for 

example long and short neurotoxins, with the short 

neurotoxins being more similar to the cytotoxins 

than to the long chain neurotoxins [3]. Cardiotoxins 

are a type of cytotoxin, which have a direct impact 

on cardiac muscle tissues. Preliminary work on 

classification of snake toxins was done by Dufton 

[3], based on overall chain lengths between the eight 

cysteine residues which invariably occur in almost 

all snake toxins and are responsible for forming four 

disulphide bridges. These cysteines were used as 

reference points and the inter-cysteine chain length 

was used for classification. Classification using 

decision trees was done by Nag et al. [4] based on 

the presence or absence of each possible tri-mer in 

the protein sequence. 

The basic idea of neural computing was first 

developed from the computational model of a 

physiological brain based on threshold logic [5]. 

Artificial neural networks are a computational tool 

modelled on the structure and behaviour of neurons 

and synapses in the human brain, and these networks 

can be trained to recognize and classify complex 

patterns [6]. Since its inception, neural networks 

have been used in many classification tasks such as 

facial recognition [7], fingerprint recognition [8], 

speech recognition [9], and handwriting recognition 

[10]. Artificial neural networks are generally 

organized into layers, also called stages. Each layer 

has one or more nodes. A network has atleast two 

stages: the input layer, and the output layer. Between 

these two layers, zero or more hidden layers may 

exist. The neural network used in our work are of the 

feed-forward type, wherein nodes in one layer are 

connected (via edges) to nodes in the next layer only. 

Edges have weights associated with it. Each layer 

also usually has a bias node. Nodes receive inputs 

from nodes in the previous layer and output a 

weighted sum of those inputs, often modified using 

some threshold logic or activation function. Pattern 

recognition is achieved by adjusting the weights of 

the edges to minimize the error at each step, also 

called epoch, and the network is said to be learning 

from its experience of repeated classification and 

misclassification efforts during the training phase. 

 

A major feature of snake toxins is the presence of 

eight cysteine residues, which form four disulphide 

bridges among them. This feature indicates that the 

snake toxin family is homologuous [3], and this 

signature is also used for deriving a motif or pattern 

in recognizing this protein family [11]. In this paper, 

we improve on Dufton’s method [3] by using these 

cysteines as fixed reference points, and counting the 

frequency of each amino-acid residue in every inter-

cysteine region, and feed this as an input to a four-

stage artificial neural network. The outputs are 

decoded to classify each toxin into one of the three 

categories of neurotoxin, cytotoxin or cardiotoxin 

variety. The rest of this paper is organized as follows: 

in Section II we discuss the methods used, the 

network topology, and the data. In Section III, we 

discuss the results obtained by us and the accuracy 

of the system, and finally we conclude with the 

general implications of our results in Section IV. 
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II. METHODS 

A. Data 

The snake toxin data was obtained from 

SwissProt (Nov. 2015 Release) [12]. The training set 

used for training the neural network consisted of 122 

snake toxins ranging in length from 60 to 108 

residues, having 87 neurotoxins (71%), 30 

cytotoxins (25%) and 5 cardiotoxins (4%), from 37 

species of snakes. The validation set consisted of 

239 snake toxins from 53 species, ranging in length 

from 57 to 147 residues, having 176 neurotoxins 

(74%), 58 cytotoxins (24%) and 5 cardiotoxins (2%). 

The training and test datasets are listed fully in Table 

I and Table II respectively. Both long and short 

chain neurotoxins as well as elapitoxins, 

bungarotoxins, cobrotoxins, neurotoxin homologs 

and weak neurotoxins have been collectively 

grouped under neurotoxins. 

 

B. Network Topology 

The artificial neural network (ANN) used in our 

work is a feed-forward network with 4 layers: the 

input layer, two hidden layers and an output layer. 

The input layer consists of a total of 701 nodes (700 

input nodes plus one bias node), while the output 

layer consists of 3 nodes. The two hidden layers 

have 101 (100 nodes and 1 bias node), and 11 (10 

nodes and 1 bias node) nodes respectively. The input 

is binary encoded, and the outputs are also received 

in binary form, which is decoded to obtain the 

results. The weights on the edges range between 

1.0 and +1.0. A sigmoid function (see Eqn. (1)) 

was used for the producing node outputs. The 

topology is illustrated in Fig. 1. 

 

 
 

Fig. 1. The neural network topology 

C. Input encoding and output decoding 

The inputs to the neural network must be provided 

in binary form, however the snake toxin data 

consists of a set of protein sequences. That data must 

be encoded into binary before being fed into the 

network. This is achieved by first determining the 

positions of the eight signature cysteine residues in 

each sequence. Therefore, there are seven inter-

cysteine regions (region between two consecutive 

cysteines) in each sequence, in which the frequency 

(F) of each amino acid residue is determined. As a 

result, we obtain 7 × 20 frequency counts (20 amino 

acids for each of the 7 regions). The logarithmic 

value of the percentage frequency (L) is then 

obtained using Eqn. (2) for each of those frequency 

values. 
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Where, Fb(a) is the frequency of amino-acid a in the inter-

cysteine region b, and |Rb| is the length of that region. 

 

This logarithmic value ranges between 0 and 20, 

which is then converted into binary resulting in a 5-

bit binary number. Therefore, the whole data can 

then be quantified in 7 × 20 × 5 = 700 bits. These 

700 bits are fed as inputs to the network. 

 

The network has 3 output nodes, which output a 

binary value, and is decoded as in Table III. 

Combinations of output values not shown in the 

table are treated as incorrect classifications. 

 

D. Training and classifying 

After the toxin data was encoded into binary, the 

training-set was fed into the neural network and it 

was trained till the output error for each sequence 

dropped below 0.05. Initial weights were assigned 

randomly. The learning rate was set to a constant 0.9. 

After the system was trained, the validation-set was 

fed into the network and the outputs decoded and 

recorded. The process is illustrated in Fig. 2. 

 

III.  RESULTS AND DISCUSSION 

The neural network was implemented in Java 8, 

on a standard Intel Celeron 1 GHz processor with 

2GB memory. The experiment was repeated several 

times, and the system achieved a peak accuracy of 

73.64% after it was trained for 75 epochs in 89.9 

seconds. The classification statistics for each type of 

toxin are tabulated in Table IV. The summed mean 

squared errors (MSEs) seen during the epochs are 

presented in Fig. 3. The decreasing MSEs signify 

that the network is being gradually trained to 

recognize the pattern, as it makes less and less 

misclassifications. 

 

From Table IV, we can see that there were no 

false positives, i.e. no toxin was incorrectly 

classified as being of some other category. Failed 
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classifications refer to instances where the outputs 

could not be uniquely decoded, i.e. those outputs 

which are not present in Table III. It can be seen that 

the system routinely fails to detect cardiotoxins, 

however it can be attributed to the lack of sufficient 

data in the cardiotoxin category. 

 

 
 

Fig. 2. The training and classification process 

 

IV. CONCLUSIONS 

Neural networks have been widely used in 

bioinformatics for various classification purposes, 

such as prediction of secondary structure [13]. 

However, one of the main difficulties in using neural 

networks is deciding on the optimum network 

topology. The universal approximation theorem [14] 

states that feed-forward networks with a single 

hidden layer are universal approximators in C(R
m
). 

Networks with two hidden layers can approximate 

any arbitrary function. 

 

Increasing the number of hidden layers further 

increases training time exponentially, without any 

significant gain in accuracy. Therefore, we have 

decided on using two hidden layers in our neural 

network. The accuracy ranged from 55% to 74% 

during our experiments with an average accuracy of 

64%. The training time ranged from 55 seconds to 5 

minutes. Since the number of input nodes in our 

network is huge, increasing the nodes in the hidden 

layers was not feasible, and during our trials, even 

increasing the number of hidden neurons did not 

have any appreciable gain in performance. 

 

 
Fig. 3. Plot of MSE as the network is trained through the 

epochs 

 

It is clear that the entire snake toxin family is 

homologous, and particularly the long and short 

chain neurotoxins are quite similar to each other. 

However, there are two other points to consider: 

firstly, the short neurotoxins are more similar to the 

cytotoxins than the long neurotoxins, and secondly, 

the cytotoxic group is quite varied implying that it 

has undergone extensive functional evolution, and 

do not have any close affinity with one another [3]. 

This is further strengthened when we look at the 

accuracy of the neural network in each toxin 

category, where we find (see Table IV) that accuracy 

rates for cytotoxins and cardiotoxins (which are also 

cytotoxins) are quite lower than those of neurotoxins. 

 

From Table IV, we can see that there were no 

false positives, i.e. no toxin was incorrectly 

classified as being of some other category. Failed 

classifications refer to instances where the outputs 

could not be uniquely decoded, i.e. those outputs 

which are not present in Table III. It can be seen that 

the system routinely fails to detect cardiotoxins, 

however it can be attributed to the lack of sufficient 

data in the cardiotoxin category. 
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TABLE I. THE TRAINING-SET USED FOR TRAINING THE NEURAL NETWORK 

 

Species 
Min. 

length 

Max. 

length 

No. of 

proteins 
Neurotoxins Cytotoxins Cardiotoxins 

Acanthophis antarcticus 74 79 3 3 - - 

Aspidelaps scutatus 68 68 1 1 - - 

Austrelaps labialis 96 107 2 2 - - 

Austrelaps superbus 90 92 2 2 - - 

Bungarus caeruleus 76 76 1 1 - - 

Bungarus candidus 73 87 5 5 - - 

Bungarus multicinctus 87 103 8 6 1 1 

Demansia vestigiata 88 88 2 2 - - 

Dendroaspis jamesoni 

kaimosae 
72 72 1 1 - - 

Dendroaspis polylepis 

polylepis 
72 72 4 4 - - 

Dendroaspis viridis 72 73 2 2 - - 

Drysdalia coronoides 88 108 7 7 - - 

Hydrophis hardwickii 92 93 3 3 - - 

Hydrophis stokesii 70 72 2 2 - - 

Laticauda colubrina 69 69 1 1 - - 

Laticauda laticaudata 87 87 1 1 - - 

Laticauda semifasciata 87 87 1 1 - - 

Naja anchietae 72 72 1 1 - - 

Naja annulata annulata 71 71 1 1 - - 

Naja annulifera 60 60 2 - 2 - 

Naja atra 81 81 10 - 10 - 

Naja haje haje 71 71 1 1 - - 

Naja kaouthia 60 81 3 1 2 - 

Naja melanoleuca 60 71 3 2 1 - 

Naja mossambica 60 60 2 - 2 - 

Naja naja 60 71 7 5 2 - 

Naja nivea 60 71 3 1 2 - 

Naja oxiana 60 73 3 1 2 - 

Naja pallida 60 60 1 - 1 - 

Naja sputatrix 81 90 6 1 5 - 

Notechis scutatus 

scutatus 
94 94 1 1 - - 

Ophiophagus hannah 72 94 24 20 - 4 

Oxyuranus 

microlepidotus 
92 92 4 4 - - 

Oxyuranus scutellatus 

scutellatus 
92 92 1 1 - - 

Pseudechis australis 89 89 1 1 - - 

Pseudonaja textilis 89 89 1 1 - - 

Tropidechis carinatus 93 93 1 1 - - 

37 species 60 108 122 87 30 5 
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TABLE II. THE VALIDATION-SET USED FOR TESTING THE NEURAL NETWORK 
  
Species Min. 

length 

Max. 

length 

No. of 

proteins 

Neurotoxins Cytotoxins Cardiotoxins 

Acanthophis antarcticus 62 62 1 1 - - 

Aipysurus laevis 60 81 3 3 - - 

Aspidelaps scutatus 63 64 2 - 2 - 

Austrelaps superbus 81 81 1 1 - - 

Bungarus caeruleus 147 147 2 2 - - 

Bungarus candidus 84 147 9 9 - - 

Bungarus fasciatus 63 86 7 7 - - 

Bungarus flaviceps flaviceps 146 146 2 2 - - 

Bungarus multicinctus 83 147 29 28 - 1 

Cryptophis nigrescens 81 81 2 2 - - 

Demansia vestigiata 84 84 1 1 - - 

Dendroaspis angusticeps 66 66 1 1 - - 

Dendroaspis jamesoni 

kaimosae 
60 60 1 1 - - 

Dendroaspis polylepis 

polylepis 
60 65 3 3 - - 

Dendroaspis viridis 60 60 1 1 - - 

Drysdalia coronoides 78 81 2 2 - - 

Hemachatus haemachatus 61 63 6 2 4 - 

Hoplocephalus stephensii 81 81 1 1 - - 

Hydrophis cyanocinctus 60 79 2 2 - - 

Hydrophis hardwickii 81 81 3 3 - - 

Hydrophis lapemoides 60 60 1 1 - - 

Hydrophis ornatus 60 60 1 1 - - 

Hydrophis peronii 81 81 2 2 - - 

Hydrophis schistosus 60 60 1 1 - - 

Laticauda colubrina 83 83 5 5 - - 

Laticauda crockerii 62 62 3 3 - - 

Laticauda laticaudata 62 83 7 7 - - 

Laticauda semifasciata 83 83 1 1 - - 

Micrurus corallinus 78 86 3 3 - - 

Micrurus pyrrhocryptus 60 60 1 1 - - 

Micrurus surinamensis 58 64 4 4 - - 

Naja annulata annulata 61 61 1 1 - - 

Naja annulifera 60 62 13 4 9 - 

Naja atra 60 86 31 9 20 2 

Naja christyi 62 62 1 1 - - 

Naja haje haje 60 61 2 1 1 - 

Naja kaouthia 60 86 10 5 5 - 

Naja melanoleuca 61 61 3 1 2 - 

Naja mossambica 60 62 5 2 3 - 

Naja naja 60 83 8 5 3 - 

Naja nivea 60 61 2 1 1 - 

Naja oxiana 60 61 2 1 1 - 

Naja pallida 61 61 1 1 - - 

Naja philippinensis 61 61 1 1 - - 

Naja sagittifera 60 60 1 - 1 - 

Naja samarensis 61 61 1 1 - - 

Naja sputatrix 60 86 16 10 6 - 

Notechis scutatus scutatus 81 81 1 1 - - 

Ophiophagus hannah 57 86 15 13 - 2 

Oxyuranus microlepidotus 83 83 2 2 - - 

Oxyuranus scutellatus 

scutellatus 
62 83 3 3 - - 

Pseudechis australis 83 83 1 1 - - 

Pseudechis porphyriacus 83 83 1 1 - - 

Pseudonaja textilis 79 79 7 7 - - 

Tropidechis carinatus 81 81 2 2 - - 

53 species 57 147 239 176 58 5 
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TABLE III. DECODING THE OUTPUT FROM THE NEURAL NETWORK 
 

D1 D2 D3 Classification output 

1 0 0 Neurotoxin 

0 1 0 Cytotoxin 

0 0 1 Cardiotoxin 

  
 

TABLE IV. CLASSIFICATION RESULTS 

 

Toxin type No. of 

proteins 

True 

positives 

False 

positives 

False 

negatives 

Failed 

classifications 

Neurotoxin 176 134 (76.1%) 0 42 (23.8%) 42 

Cytotoxin 58 40 (68.9%) 0 18 (31%) 18 

Cardiotoxin 5 2 (40%) 0 3 (60%) 3 

Total 239 176 0 63 63 

Percentages - 73.64% 0% 26.35% 26.35% 
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