
International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 2 - July 2016 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 73 

Designing An Enterprise Service Bus (ESB) 

Architecture As Business Model Protocol 

(BMP) For Distributed Electronic-Commerce 

Systems And Applications. 

Anibrika S.K. Bright
1
, Dr. M. Asante

2
, Ashigbi F. Degadzor

3
, Mustapha M. Adamu

4
 

Koforiuda Polytechnic, Koforidua Polytechnic
1
 

Christ Apostolic University College, Kumasi
1
 

Kwadaso. 

Contact: +233 0506618729, Eastern Region, Ghana, West Africa.
1
 

Computer Science Dept., Knust, Kumasi, Ghana, W/A 

Contact: +233 208168613, Ashanti Region, Ghana West Africa.
2
 

Department Of Computer Science, Koforidua Polytechnic 

Departemnt Of Computer Sceince, Koforidua, Ghana
4
 

Contact: +233244224737, Eastern Region, Ghana, West Africa. 

ABSTRACT 

Enterprise Service Bus (ESB) architecture is considered a platform to realize a service-oriented architecture. An 

ESB brings flow-related patterns such as transformation and routing of messages and applications through a 

Service-Oriented Architecture platform (SOA). An ESB can also provide an abstraction of layers for endpoints. This 

promotes flexibility in the transport layer and easy connection and communication between services. This paper 

therefore seeks to model and design a service oriented architecture that creates a platform for business modules 

intercommunication that would establish a reliable protocol to enable efficient and secure interaction between 

modules and look at the feasibility of implementing an electronic-commerce platform based on the Enterprise 

Service Architecture (ESA). To achieve these objectives, this paper would consider the Enterprise Service Bus 

architecture as the blueprint that represents the piece of software residing between the business applications and 

enables communication among them. Ideally, the ESB should be able to replace all direct contacts with the 

applications on the bus, so that all communication takes place via the ESB. To achieve this objective, the ESB 

(Enterprise Service Bus) must encapsulate the functionality offered by its component applications in a meaningful 

way. This typically occurs through the use of an enterprise message model. The message model defines a standard 

set of messages and protocols that the ESB will both transmit and receive. In an enterprise architecture making use 

of an ESB, an application will communicate via the bus, which acts as a message broker between applications and 

platforms. Such an approach has the primary advantage of reducing the number of point-to-point connections 

required to allow applications to communicate. This, in turn, makes impact analysis for major software changes 

simpler, modular and more straightforward. By reducing the number of points-of-contact to a particular 

application, the process of making a system to changes in one of its components becomes easier. In conclusion 

faster and cheaper communication between existing systems ensure increased reliability that ensure point-to service 

solutions to enterprise-wide deployment (distributed bus) and predefined ready-for-use service and application 

types types. On the other hand, there would be increased overhead and slow down communication speed for those 

already compatible services and applications. 

 

Keywords: Deployment, services, application, architecture, bus, protocol. 

http://www.ijcttjournal.org/
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/w/index.php?title=Enterprise_message_model&action=edit&redlink=1


International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 2 - July 2016 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 74 

INTRODUCTION 

In software engineering, a Service-Oriented 

Architecture (SOA) is a set of principles and 

methodologies for designing and developing software 

in the form of interoperable services. These services 

are well-defined business functionalities that are built 

on software components (discrete pieces of code 

and/or data structures) that can be reused for different 

purposes-program modularity. SOA design principles 

are used during the phases of systems development 

and integration. One of the main platforms that was 

introduced is the Enterprise Service Bus referred to 

as ESB. ESB is considered a platform to realize a 

service-oriented architecture. An ESB brings flow-

related concepts such as transformation and routing 

to a Service-Oriented Architecture. An ESB can also 

provide an abstraction for endpoint applications. This 

promotes flexibility in the transport layer and enables 

loose coupling and easy connection between services (BEA 

et al) . The role of the IT architect is to evaluate business 

problems and build solutions to solve them. The architect 

begins by gathering input on the problem, developing an 

outline of the desired solution, and considering any special 

requirements that need to be factored into that solution. The 

architect then takes this input and designs the solution, 

which can include one or more computer applications that 

address the business problems by supplying the necessary 

business functions. To improve the processes over time, 

capture and reuse the experience of the IT (Information 

Technology) architects in such a way that future 

engagements can be made simpler and faster. This is done 

by capturing knowledge gained from each engagement and 

using it to build a repository of assets (Braga, Rubira and 

Dhab, 1998). Information Technology (I.T) architects can 

then build future solutions based on these proven assets. 

This reuse saves time, money, and effort and helps ensure 

delivery of a solid, properly architected solution. An 

important subset of them uses web services and is designed 

using Service-Oriented Architecture (SOA) principles. A 

definition SOA as an architectural style in which a system 

is composed from a set of loosely coupled services that 

interact with each other by sending messages (packets of 

data). In order to interoperate, each service publishes its 

description, which defines its interface and expresses 

constraints and policies that must be respected in order to 

interact with it. In this architectural style, applications are 

built by coordinating and assembling services in the form 

of a workflow that invokes services as needed, as well as 

standard software components. A service is a logical 

representation of a business activity that has a 

specified outcome (Buschmann and Sommerland, 

1996) . A key principle about services is that they 

should be easily reusable and discoverable, even in 

an inter-organizational context. Furthermore, the 

channels of communication between the participating 

entities in a service-oriented application are much 

more vulnerable than in operating systems or within 

the boundaries of an organization’s intranet, since 

they are established on public networks. The 

complexity of the software used to handle web 

services adds to the total complexity and can be a 

source of attacks, which makes security an important 

concern (Chappell et al, 2004) .An Enterprise Service 

Bus (ESB) is an infrastructure component for 

integrating applications and services. ESBs facilitate 

the connectivity of business logic, where this 

business logic is represented as a service. Most 

businesses have a heterogeneous environment with 

applications implemented in various application 

programming models, such as J2EE, .Net, so on. One 

goal of universal connectivity, of an ESB, is to allow 

these different applications (services) to be connected 

( Corsaro et al, 2002). An ESB facilitates this 

connectivity by providing transformations that allow 

the invocation of a service or a service request, which 

is presented in one format to be “transformed” to a 

different format which the service provider can 

respond to. ESB may provide support for:  

1. Assembling and routing of messages 

between services  

2. Converting transport protocols 

between requestor and services  

3. Transformation of message formats 

between requestor and services  

4. Handling of business events and 

processes from disparate sources  

At a conceptual level, an ESB allows the application 

designer/developer to build an application framework 

that invokes services without having to know where 

these services are located or how they are invoked. 

An ESB is responsible for the routing of messages 

between service requestors and service providers (Erl 

et al, 2009). 

 

CONCEPTUAL FRAMEWORK 

Many authors in the past have had extensive research 

on the Service Oriented Architectures like the 

Enterprise Service Bus (ESB) that allows the 

separation of application logic by providing a “Police 

Layer” that serves as an interface for monitoring 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 2 - July 2016 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 75 

,coordination and management of service requests 

and response by various application that interact with 

other for resources. 

The following papers were found during the literature 

review, and passed our selection criteria.Enterprise 

Service Bus: A Performance Evaluation Published by 

Sanjay P. Ahuja, Amit Patel in 2011. This paper also 

becomes useful because it contained a performance 

analysis between different types of ESBs. SOAs & 

ESBs Published by J. Paisley in 2005. This paper also 

brings up some of the challenges that can be 

encountered when implementing an ESB and also 

some of the challenges that can be encountered when 

implementing a complex ESB solution. Service-

Oriented Performance Modeling was alsopropounded 

by the MULE Enterprise Service Bus (ESB) Loan 

Broker Application, Published by P. Brebner in 2009. 

This paper handles both scaling and performance in 

ESBs. An integration strategy for large enterprises 

also  Published by Dejan Rismic in 2006. It provides 

information on important aspects of ESB. This is 

neededto be able to understand and improve the ESB. 

Performance Prediction of Service-Oriented 

Applications based on an Enterprise Service Bus, 

Published by Yan Liu, Ian Gorton and Liming Zhu in 

2007. This paper handles important aspects of ESB 

performance and communication protocols that 

ensure effective and efficient request and response 

platform.  

 

METHODOLOGICAL FRAMEWORK 

 

In this section, a platform of the Service – Oriented 

Architecture called the Enterprise Service Bus (ESB) 

is considered in relation to electronic business 

modeling. First of all the Enterprise Service 

Architecture reference is looked at as the basic 

architecture prototype for electronic commerce 

modeling. 

METHODOLOGICAL OBJECTIVE 

Provide a convenient infrastructure to integrate a 

variety of distributed services and related 

components in a simple way. 

 

SCENARIO 

An Electronic Commerce agency interacts with many 

services to do flight reservations, check hotel 

availability, check customer credit, and others. This 

interaction is being done now by direct interaction, 

which results in many ad hoc interfaces, and requires 

many format conversions. The system is not scalable 

and it is hard to support standards. Distributed 

applications using web dedicated services, as well as 

related services such as directories, databases, 

security, and monitoring.There may be also other 

types of components (J2EE-Java 2 Enterprise 

Edition, .NET-any web compliant programming 

language). There may be different standards applying 

to specific components and components that do not 

follow any standards. 

 

METHODOLOGICAL APPROACH 

When an organization has many scattered services, 

how can one aggregate them so they can be used 

together to assemble applications, at the same time 

keeping the architectural structure as simple as 

possible and hidden from the user, and apply uniform 

standards? The solution to this problem is affected by 

the following forces and programming indicators: 

• Interoperability. It is fundamental for a business 

unit in an institution to be able to interact with a 

variety of services, internal or external. 

• Simplicity of structure: you want a simple way to 

interconnect services; this simplifies the work of the 

integrators. 

• Scalability: one need to have the ability to expand 

the number of interconnected services without 

making changes to the basic architectural design. 

• Message flexibility: one need to also provide a 

variety of message invocation styles (synchronous 

and asynchronous) and formatting. you can thus 

accommodate all component needs. 

• Simplicity of management: you need to monitor and 

manage many services, perform load balancing, 

logging, routing, format conversion, and filtering. 

• Flexibility: New types of services should be 

accommodated easily. 

• Transparency: you should be able to find services 

without needing to know their locations. 

• Quality of service: you may need to provide 

different degrees of security, reliability, availability, 

or performance. 

• Use of policies: you need a policy-based 

configuration and management. This allows 

convenient governance and systematic changes. 

Policies are high-level guidelines about architectural 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 2 - July 2016 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 76 

or institutional aspects and are important in any 

system that supports systematic governance . 

• Standard interfaces: you need explicit and formal 

interface designs (e.g common GUI-Graphical User 

Interface that is user-friendly). 

 

SOLUTION 

Introduce a common bus structure that provides basic 

brokerage functions as well as a set of other 

appropriate services. Figure 1 shows a typical 

structure (Morrison and Fernandez, 2006). One can 

think of this bus as an intermediate layer of 

processing that can include services to handle 

problems associated with reliability, scalability, 

security, and communications disparity 

 ( Morrison and Fernandez, 2006). An ESB is 

typically part of a Service-Oriented Architecture 

Implementation Framework, which includes the 

infrastructure needed to implement a SOA system. 

This infrastructure may also include support for 

stateful services. Below is the diagram of the 

Enterprise Service Bus architecture reference model 

and the derived architecture that can be used as a 

suitable platform for modeling and designing 

electronic commerce systems based on the ESB 

architecture (MuleSoft et al, 2001). 

 

STRUCTURE 

Figure 1(a) shows the class diagram of the ESB 

pattern. The ESB connects Business Services with 

each other providing support for the needs of these 

services through aService Infrastructure made up of 

Business Application Services (BASs), which in 

turnuse Internal Services to perform their functions. 

BASs are accesses through Service Interfaces (SIs) 

(TradeSoft et al, 2001). 

Figure 1 (a) The internal service infrastructure model 

of (ESB) Architecture (Papazoglou and Heuvel, 

2007). 

RELATED PATTERNS (COMPONENTS AND 

INTERFACES) 
The ESB is a type of Message Channel Broker and it 

is also closely related to the Message Bus pattern, 

both described because of its role as a communicator, 

the ESB is related to a variety of patterns that provide 

communication or adaptation. The ESB can be seen 

also as a microkernel in that it forwards client 

requests to a set of services (Rouselle et al, 2002). 

The Enterprise Service Bus can be considered a 

composite pattern comprised of the following 

patterns: 

• The (Service) Broker pattern which itself is a 

composite pattern that consists of a set of integration-

centric patterns used to translate between 

incompatible data models, data formats, and 

communication protocols. 

• Asynchronous Queuing pattern which establishes an 

intermediate queuing mechanism that enables 

asynchronous message exchanges and increases the 

reliability of message transmissions when service 

availability is uncertain. 

• Intermediate Routing pattern which provides 

intelligent agent-based routing options to facilitate 

various runtime conditions (Rouselle et al,2002). 

Those same capabilities can be used in the provider 

creation layer as well. However, service bus 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 2 - July 2016 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 77 

mediation flow capability is not designed for the 

complex decision logic, exception handling, and state 

management required by the interaction scenarios 

you find in provider creation. On the other hand, 

other business process oriented products focus on 

complex flow capabilities intended for dealing with 

compositional and exception logic, an ability to hold, 

and represent in-process state for longer running 

processes. To summarize, for a successful SOA, you 

must architect layers with clean separation of 

concerns, then implement the layers retaining 

separation of concerns as much as possible. You can 

use any technology to implement a layer, whether the 

technology targets that layer or not, as long as 

compromises are understood and any impact on 

separation of concerns is minimized. Good 

governance during the model and assemble lifecycle 

phases goes a long way towards ensuring appropriate 

separation of concerns (Papazoglou and Heuvel, 

2007). 

 

RESULTS 

THE NEW MODEL OF ESB ARCHITECTURE 

FOR ELECTRONIC COMMERCE 

SYSTEMS/PLATFORMS 

In such a complex architecture, the ESB represents 

the piece of software that lives between the business 

applications and enables communication among 

them. Ideally, the ESB should be able to replace all 

direct contact with the applications on the bus, so that 

all communication takes place via the ESB. To 

achieve this objective, the ESB must encapsulate the 

functionality offered by its component applications in 

a meaningful way. This typically occurs through the 

use of an enterprise message model. The message 

model defines a standard set of messages that the 

ESB will both transmit and receive. When the ESB 

receives a message, it routes the message to the 

appropriate application. Often, because that 

application evolved without the same message-

model, the ESB will have to transform the message 

into a format that the application can interpret. A 

software “adapter” fulfills the task of effecting these 

transformations (analogously to a physical 

adapter).This is illustrated in the figure 2 (a) below: 

ESB  level Architecture based on Electronic-

Commerce model implementation stage: 

 

Figure 2(a) The ESB architecture based Electronic 

Commerce model  

Characteristics of ESB architecture based Electronic-

Commerce model. 

Category Functions 

Invocation support for synchronous and 

asynchronous transport protocols, 

service mapping (locating and 

binding services and processes). 

Routing addressability, static/deterministic 

routing protocols, content-based 

routing, rules-based routing, policy-

based routing. 

Mediation adapters, protocol transformation, 

service mapping. 

Messaging message-processing, message 

transformation and message 

enhancement and remote procedure 

calls. 

Process 

choreography 

implementation of complex 

business processes and service 

protocols. 

Service 

orchestration 

coordination of multiple 

implementation services exposed as 

a single, aggregate service entity 

Complex 

event 

processing 

event-interpretation, correlation, 

pattern-matching 

Other quality 

of service 

security (encryption and signing), 

reliable delivery, transaction 

management. 

Management monitoring, audit, logging, 

metering, admin console, BAM 

http://www.ijcttjournal.org/
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/w/index.php?title=Enterprise_message_model&action=edit&redlink=1
http://en.wikipedia.org/wiki/Adapter
http://en.wikipedia.org/wiki/Business_Activity_Monitoring


International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 2 - July 2016 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 78 

(BAM is not a management 

capability in other words the ESB 

doesn’t react to a specific threshold. 

It is a business service capability 

surfaced to end users. ) 

 Table 1 (a) important features and characteristics of 

the implementation model of ESB 

KEY BENEFITS  

 Faster and cheaper accommodation and 

communication of existing systems and 

applications. 

 Increased flexibility; easier to change as 

requirements change.  

 

STANDARDS-BASED  

 Scales from point-solutions to enterprise-

wide deployment (distributed bus).  

 Predefined ready-for-use service types.  

 More configuration rather than integration 

coding.  

 No central rules-engine, no central broker.  

 Incremental patching with zero down-time; 

enterprise becomes "refactorable".  

KEY DISADVANTAGE:  

Increase overhead especially for those already 

compatible services and applications 

DISCUSSION  

Implementing an SOA requires a process of 

transformation and re-engineering. Each organization 

that deploys a SOA will go through this process in its 

own way based on that organization’s unique 

requirements. Many organizations will begin to 

enable SOA by starting with a broker model. This 

will allow these organizations to initially focus on 

deployment instead of architecture, or application re-

design. The SOA process encourages the re-use of 

existing security functionality as appropriate for local 

application deployment. Not all applications will be 

immediately deployable in a SOA model. Legacy 

functionality may need to be encapsulated within 

business logic instead of being exposed with a 

normalized interface. The model of the ESB will help 

ease this process. Application brokers implementing 

ESB functionality will provide a valuable piece of a 

SOA ecosystem; they will enable the service-

identification of proprietary systems so that these 

systems can operate within an SOA. Implementing 

security across an SOA requires that one focuses on 

the conceptual security model across infrastructure 

components. Breaking down security functionality 

into security tasks allows us to build security services 

that can outlast application level implementations of 

security. A key part of this process is the 

establishment of a timeline to take architecture from 

a proprietary approach (fully application managed 

security) to a full, interoperable ESB based SOA. 

This timeline will often include the migration away 

from a proprietary application managed approach to 

security, through a reverse proxy pattern for HTTP 

(HyperText Transfer Protocol)-accessible resources, 

to a gateway pattern, for HTTP and non-HTTP 

resources, to a gateway as a full ESB. The ESB is 

designed to work within an existing environment. 

While it will allow for the consolidation of common 

services and functionality, it will not require the 

replacement/redeployment of a new infrastructure. 

These messaging services function well and do not 

need to be replaced just because a new architectural 

style has been introduced, or because new technology 

is available. Customers who already deploy these 

services should assess whether the existing topology 

already supplies sufficient security for the business 

while also assessing how to leverage the ESB to 

extend the reach of their service assets. An ESB 

provides the decoupling of service request and 

service invocation to support an SOA. It also includes 

the business events normally bound to the service 

invocations that can be logically associated with the 

message functionality, such as routing, message 

transformation and the underlying transport protocol 

conversion. The ESB is therefore a key enabler of a 

security-as-a-service model, in turn enabling a 

service-oriented approach to security 

infrastructure.The discussion here, as throughout the 

earlier article series, is about architecture, 

architectural layers, architectural roles, and 

architectural principles, such as separation of 

concerns. Architecture alone, however, cannot 

provide business value; the architecture must be 

implemented using appropriate technologies or 

products. Next, discussion focused on the pragmatics 

of architecting and implementing an SOA, the 

integration layer in particular. Separation of concerns 

is critical in SOA, and you need to define the 

necessary architectural layers to achieve a clean 

separation of concerns. That is the reason for the 

http://www.ijcttjournal.org/
http://en.wikipedia.org/wiki/Patch_%28computing%29
http://en.wikipedia.org/wiki/Code_refactoring


International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 2 - July 2016 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 79 

integration layer itself and for the mediation/service 

exposure and provider creation of sub-layers in the 

integration layer. A common cause of failed SOA 

implementations is failure to define a layered 

architecture that promotes separation of concerns, 

leading to an implementation that is inflexible and 

difficult to maintain. For example, some enterprises 

fail to appreciate the difference between an 

integration layer and a service bus, thus mixing 

service exposure and provider creation, in effect 

inappropriately mixing the responsibilities of 

business and IT. This does not mean, however, that 

an idealized layered architecture must be 

implemented with no compromises. Indeed, 

compromises almost always have to be made for 

reasons of performance, cost, technology limitations, 

and so on. For example, it is possible to use clean 

logical layering rather than physical layering to 

improve performance. The question is not whether to 

compromise, but what and where are the fewest 

possible compromises that retain the architectural 

intent and thus maximum separation of services. 

Obviously, to implement the architecture, you must 

choose an implementation technology for each of the 

architectural layers. In SOA (Service Oriented 

Architecture), there are often products that target a 

particular layer. Such a product will be very good for 

development, maintenance, and run time aspects of 

that layer, but not ideal for other layers. The 

technology choice for a layer might, however, be 

based on criteria in addition to the targeted 

architectural layers; the criteria can include skills, 

existing product inventory, development cost (tooling 

significantly impacts such costs), qualities of service, 

total cost of ownership, or a combination of these. It 

is perfectly valid to leverage a technology for a layer 

it does not target if other criteria are more important. 

The important consideration is not so much matching 

products to layers, but that the separation of concerns 

is preserved as much as possible by ensuring the 

separate architectural layers defined are still easily 

identified in the final solution. 

CONCLUSIONS/RECOMMENDATIONS 

I have presented two common patterns used in 

distributed electronic systems. The ESB (Enterprise 

Service Bus) has been used mostly for web services 

but it can be used for any distributed system. Enough 

details are made for an application designer or 

integrator to make good use of the functionality of 

these patterns. Even more precision comes from 

using "service specification" to refer to a formal 

representation of the external semantic, syntactic, and 

operational characteristics of a governed service and 

"service realization" to refer to a physical 

implementation of a service specification. I also 

showed that the term "service bus" in reality is 

logically a representation of (and physically a 

container for) a collection of mediations that perform 

semantically transparent "service exposure" that is, 

exposing providers according to service 

specifications. Service registry and repository 

provides the needed governance of (and can be 

considered a container for) service specifications. In 

addition to the above, service bus is not a complete 

integration layer, at least not an Enterprise 

Application Interface (EAI)-style integration layer 

that performs both semantic and non-semantic 

actions. I showed that mediation is a form of 

integration, and that the service bus provides a non-

semantic "service exposure" sub-layer that is part of 

an integration layer in SOA that includes a "provider 

creation" sub-layer responsible for providing large-

grained providers from one or more small-grained 

providers. Showing to be more precise in statements 

about "logic" in an integration layer in SOA and that 

business logic and integration logic are terms that can 

cause confusion, and identified business-owned 

semantic logic, business-owned non-semantic logic, 

and IT-owned non-semantic logic as more precise 

terms. I further showed the service exposure layer 

can contain only non-semantic logic, but that 

includes business-owned non-semantic logic, thus 

allowing business logic in the service bus (ESB). I 

also showed that, for a successful SOA, you should 

first architect the required layers that guarantee 

separation of concerns and then choose an 

implementation technology for the each of those 

layers, comprising only as much as necessary, thus 

retaining separation of concerns. A product targeting 

one architectural layer can be used for other layers as 

well, assuming preservation of separation of 

concerns. An ESB provides the decoupling of service 

request and service invocation to support an SOA 

(Service Oriented Architecture). It also includes the 

business events normally bound to the service 

invocations that can be logically associated with the 

message functionality, such as routing, message 

http://www.ijcttjournal.org/


International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 2 - July 2016 

ISSN: 2231-2803                    http://www.ijcttjournal.org                                      Page 80 

transformation and the underlying transport protocol 

conversion. The ESB (Enterprise Service Bus) is 

therefore a key enabler of a security-as-a-service 

model, in turn enabling a service-oriented approach 

to security infrastructure. The Enterprise Service Bus 

is type of multi-layer business model that seeks to 

separate the functions of the individual layers and 

processes involved in the request and response 

sessions within electronic commerce systems and 

applications as side the high security level and 

encapsulation interface it provides to various 

distributed service applications. 

 

REFERENCES 

[1]. Angelo Corsaro, “Quality of service in Publish/Subscribe 

middleware”, 

http://www.omgwiki.org/dds/sites/default/files/Quality_of_S
ervice_in_Publish-Subscribe.pdf 

[2]. BEA Aqualogic Service Bus, 

http://en.wikipedia.org/wiki/AquaLogic(retrievedJune 27, 
2011) 

[3]. Braga, A., Rubira, C., and Dahab, R. 1998. Topic: A pattern 

language for cryptographic object-oriented software. Chapter 
16 in Pattern Languages of ProgramDesign 4 (N. Harrison, 

[B] Foote, and H. Rohnert, Eds.). Also in Procs. of PLoP’98, 

DOI= 
http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/ 

[4]. David A. Chappell, Enterprise Service Bus, O'Reilly, 2004 

[5]. D.F. Ferguson, D. Pilarinos, and J. Shewchuck, “The Internet 
Service Bus”, The Architecture Journal 13, 

http://www.architecturejournal.net 

[6]. D.F. Ferguson, D. Pilarinos, and J. Shewchuck, “The Internet 
Service Bus”, The Architecture Journal 13, 

http://www.architecturejournal.net. 

[7]. E.B.Fernandez, Sergio Mujica, and Francisca Valenzuela, 
"Two security patterns: Least Privilege and Secure 

Logger/Auditor.", Procs.of Asian PLoP 2011. 

[8]. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and 
M. Stal., Patternoriented software architecture, Wiley 1996. 

[9]. G. Hoppe and B. Woolf, Enterprise integration patterns: 

Designing, building, and deploying message solutions, 
Addison-Wesley 2004. 

[10]. J.P. Garcia-Gonzalez, Veronica Gacitua, and C. Pahl, 

“Service registry : a key piece for enhancing reuse in SOA 
service oriented architecture”, The 

ArchitectureJournal;21,Microsoft, 2010. 29-36. 

[11]. M. Fowler, Analysis patterns -- Reusable object models, 
Addison- Wesley, 1997. 

[12]. M. Kircher and P. Jain, Pattern-oriented software 

architecture, vol. 3: Patterns for resource management, J. 
Wiley & Sons, 2004. 

[13]. Soumen Chatterjee, “Messaging patterns in Service-Oriented 

Architectures”http://msdn.microsoft.com/en-
us/library/aa480027.aspx. 

[14]. SOA Patterns with BizTalk Server 2009, 

http://www.packtpub.com/soa-patternswith-biztalk-server-

2009/book (retrieved on July 13, 2011). 

[15]. Thomas Erl, SOA Design Patterns, Prentice Hall PTR; 1st 
edition, 2009. 

 

 

 

 

http://www.ijcttjournal.org/
http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/
http://www.architecturejournal.net/
http://www.architecturejournal.net/

