
International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 1 - July 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 1

Success of Grails and Rails in Near Future
Levis Abraham

#1
, Krutuja Niphadkar

*2
, Neha Chopade

#3

#1
MCA student, SIES College of Management Studies, Navi Mumbai, India

#2
MCA student, SIES College of Management Studies, Navi Mumbai, India

#3
Associate Professor, SIES College of Management Studies, Navi Mumbai, India

Abstract: As there is a need for the possibility to

deploy new applications in a short period of time

there is also a need for a framework, which facilitates

those demands. Hence the idea behind was to give a

detailed explanation of two powerful web application

frameworks which are truly object oriented

programming language & dynamic in nature. Both

frameworks are derived from different languages i.e.

Groovy & Ruby, with different features, similarities

& differences. Grails & Rails have been progressing

& developed a lot over the years. We chose this topic

for our research, so that after studying, analyzing &

understanding both the frameworks, we could derive

their progress in the market. Both are used for rapid

application development which is easy to configure

and produce. They work on principles of convention

over configuration, scaffolding and don’t repeat

yourself (DRY). It also has an active user community

in the IT market. To further illustrate our work, we

gave an overview insight of their growth, by

compiling & giving statistics reports & trends which

were analyzed by different industry experts &

ourselves. Based on the reports & work we are

producing, it shows they are well established in the

market with huge companies like Twitter, LinkedIn,

Vodafone etc, using their frameworks. In conclusion

with respect to our work, one should choose

framework wisely based on the size of one’s

application & the scope of the application. We are

also highlighting their past success & how it will

continue to be successful in the near future.

Keywords: Grails, Rails, CoC, DRY, Scaffolding, MVC,

Active Record

I. INTRODUCTION

Ruby was initially designed and developed

in the mid-1990s by Yukihiro "Matz" Matsumoto in

Japan, under the influence of other similar scripting

languages such as Perl, Smalltalk, Eiffel, Ada, and

Lisp. A clean, concise, consistent, and structured like

languages such as Java, Ruby also offers the speed

and ease of use of scripting languages such as PHP.

Ruby is also a powerful dynamic, reflective, object-

oriented, general-purpose programming language, so

instead of writing large amounts of code, developers

can declare commands efficiently with subtle

inferences via small amounts of code [1]. In the past

& also currently, many programmers have wanted a

fast, productive approach that produces reliable, clean

applications more quickly, using less code. That's

were Ruby on Rails started appearing in the market.

Rails first released publicly in 2004, which is free and

available under an MIT license. David Heinemeier

Hansson, a partner and programmer designed Rails

by extracting various features from Basecamp, a

Ruby-based project-management. Rails turned the

general-purpose programming language of Ruby into

a specific solution for creating Web applications,

giving it direction and thereby putting “Ruby on

Rails.” The Rails application-development

framework is purely based on Ruby. Ruby on Rails

attempts to combine PHP‟s simple propinquity with

Java‟s architecture, purity, and quality. Rails uses

integrated programming packages and preset code,

known as conventions, designed to be complete and

ready to use immediately, without configuration. The

language itself has grown into one of the more widely

used programming languages with a large active

community [2]. Convention over Configuration

(CoC) is a corner stone in Ruby on Rails and along

with DRY (Don't Repeat Yourself) they are the key

concepts used when designing Ruby on Rails.

Groovy was created in 2003, is a powerful,

optionally typed and dynamic language that was the

first, and currently only, JSR approved language

(JSR-241) other than Java for the JVM [3]. Other

languages like Ruby fall under the umbrella of JSR-

223. It has static-typing and static compilation

capabilities, for the Java platform aimed at improving

developer productivity thanks to a concise, familiar

and easy to learn syntax. Groovy includes features

found in Python, Ruby, and Smalltalk, but uses

syntax similar to the Java programming language.

Scripting for the Java Platform and hundreds of other

languages can compile to byte code and run on the

JVM. Groovy‟s similarities to Java and reliance on

the JDK set it apart from these other dynamic

languages and enable it to achieve a level of

integration with Java [4]. Grails is a framework built

using the programming language Groovy, which is an

agile and dynamic language built to run on the Java

Virtual Machine. It is intended to be a high-

productivity framework by following the "coding by

convention" paradigm, providing a stand-alone

development environment and hiding much of the

configuration detail from the developer. Groovy uses

the strength of Java and new features inspired by

other languages such as Ruby, Python and Perl; this

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 1 - July 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 2

gives Grails a strong base to stand on. Grails was

previously known as 'Groovy on Rails'; in March

2006 that name was dropped in response to a request

by David Heinemeier Hansson, founder of the Ruby

on Rails framework [5]. The background of Grails

starts with Ruby on Rails gaining popularity and

changing the way web development is done and with

a lot of companies that have invested money in Java

they are losing out on the Ruby on Rails like

development, hence Grails was created. Grails is not

a Ruby on Rails clone, but tries to offer a Ruby on

Rails like environment and incorporate concepts that

are familiar to Java developers. There is also a

command line interface available for Grails, which

can be used for e.g. installing plug-ins or generating

an application structure, it can also be used to run self

made scripts [6].

Section 2, consists of our research related

work which majorly explains what grails and rails

have in common. Documentation & Development

Approach i.e. their respective MVC Architecture is

compared and analyzed for understanding their

frameworks in depth. Section 3, consists of our

analysis work and their features along with

similarities. In order to further understand how

successfully they have deployed in the market our 4
th

section i.e. Section 4, consists of all statistics, trends

and our review to showcase how powerful &

successful both frameworks are respectively. Section

5, consists of our concluding statements from both

frameworks point of view. Section 6, finally contains

all the references we went through to make our

research paper complete.

II. RELATED WORK

A. Documentation and Learning

Grails has a lot of documentations to offer for any

developer to facilitate the learning process. It has in-

built API and tag library, which are well documented

and really helpful when developing with Grails.

Grails offers several different tutorials, guides, books

and lot more to guide the developer when learning

how to use and work around with this framework.

Ruby on Rails (RoR) is a much older framework, thus

it has also been able build a large foundation of

documentation, from the scratch i.e. APIs to guides

and books. Rails offer a large community, which

includes active users, wiki and blog related channel

for asking queries. So it gives the developer a great

starting point for getting started with the framework

[7].

B. Development Approach

Rails

Figure 1 – Rails MVC Architecture, Source – [8].

Rails use a model-view-controller approach to

application development. MVC clearly separates code

according to its purpose. Three sub-frameworks play

a significant part in this separation:

Active Record, Action View, and Action Controller

In the Active Record, Rails‟ object-relational

mapper (ORM) connects programming objects to

database tables so that users can access information

they want from a database. Rails‟ ORM is purely

based on convention over configuration. This means

developers don‟t have to spend time designing and

configuring code that specifies how a table relates to

a class of objects.

Rails‟ Action View template renders the

HTML response to the request, which it then sends

back to the browser. Action View component

generates views, which represent the visual

appearance of an application‟s response to a request.

Action View templates work with Ruby and thereby

simplifies developers‟ work by not forcing them to

learn a specialized template language.

The Action Controller performs controller

development in Rails. In application development,

controllers connect the program with its interface and

handle communication between them. The Action

Controller receives Web-based requests for

information in a database, separates and decodes

them to determine what the user wants, and then

decides which piece of application code should

handle the task [9].

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 1 - July 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 3

Grails

Figure 2 – Grails MVC Architecture, Source – [10].

Grails follows a very popular pattern in web

applications development, called

Model – View – Controller.

Model -

In Grails, data models are defined using “domain

classes”. Grails comes with a persistence manager

based on Hibernate, called GORM (Grails Object

Relational Mapping), which manages entities life

cycles and provides default searching methods.

GORM is based on Hibernate, a popular Object-

Relational Mapping (ORM) tool which provides a

framework to map object oriented entities to

relational database. Every operation performed over a

domain class will be translated by Hibernate into any

necessary SQL query to reflect the performed

operation in the database. All domain classes of our

application are generated in the “domain” folder

within our application folder structure [11]

View -

In Grails, views are developed using Groovy Server

Pages (GSP), which is a simplified JSP version

allowing to place expressions within HTML code and

use JSTL like tags. When our application is running,

we can decide which view should be processed and

send to the client by means of the “render” method in

the controllers or we can let grails to use a default

view. All the views of our applications are generated

in the “views” folder within our application folder

structure [11].

Controller -

In Grails, controllers are the components responsible

for handling incoming client requests, managing the

execution of the business logic and updating the view

so the user the can know the final status of the data

model upon the execution of the action. The

convention in Grails is that any class in the

“controller” folder of our application structure and

with the name ending in “Controller” will be

considered a controller by our application. Grails will

identify upon each HTTP request, which controller it

should call based on the definition set in –

“conf/UrlMappings.groovy”

 “Conf” is the first part of the name of our controller.

“UrlMappings”- “action” is the method to be

executed.

Groovy- “id” is the identifier of a domain-class

instance [11].

III. ANALYSIS

A. GORM & ActiveRecord

GORM is the Grails Object Relational Model

interface. It is primarily backed by Hibernate 3 (A

very popular, flexible & powerful open source Java

ORM); although more recently GORM has been

separated from Hibernate to allow for connectivity to

alternative database mappers and NoSQL data stores.

Due to the dynamic nature of Groovy with its static

and dynamic typing, along with the convention of

Grails, there is far less configuration involved in

creating Grails domain classes [12].

Grails Example:

i) package spud.cms

class SpudSnippet {

 String name

 String content

 String format = 'html'

 Date dateCreated

 Date lastUpdated

 static mapping = {

 }

 static constraints = {

 name blank:false

 content nullable:true

 }

}

ii) def book = Book.findByTitle("Sherlock Holmes")

book

 .addToAuthors(name:"Sir Author Conan Doyle")

 .addToAuthors(name:"Dr. John Hamish Watson")

 .save()

The ActiveRecord sub framework establishes the

connection between the domain objects and the

database. It transforms the CRUD

(Create/Retrieve/Update/Delete) functions that come

from the Action Controller into SQL commands,

sends the requests to the database, and returns the

received results to the Action Controller. Active

Record also validates whether a user is permitted to

access or change a specific record. The sub

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 1 - July 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 4

framework follows the Object/Relational Mapping

pattern.

Rails Example:

class SpudSnippet < ActiveRecord::Base

 validates :name, :presence => true

 validates_uniqueness_of :name, :scope => :site_id

end

B. Convention over Configuration

Grails focuses heavily on conventions to remove the

need for the developer to spend time on

configuration. First of all, it has a well defined folder

structure of were each functionality should be placed,

such as controllers for views, test classes, translations

and so on. This enables the developer to almost not

have to do any configuration to get started, unless it is

for customization purposes such as URL-mapping.

Other than the structure, Grails relies on naming

conventions across most part of the framework, such

as specific suffix depending on the functionality of

the file, which with the folder structure really

enhances the purpose of the file. Rails have a similar

attitude to conventions as compared with Grails,

which is not surprising considering Grails got

influenced heavily by Ruby on Rails. Rails also have

a specific folder structure, which it uses in order to

find the various application functionalities without

using configuration. As well as the folder convention,

Rails also uses naming conventions for specific files

to clarify their purpose within the project [7].

C. Scaffolding

Grails also offers scaffolding, which lets the

developer to auto generate views and controller

actions for Create-Retrieve-Update-Delete (CRUD)

for any given domain class. The way for an

application to express a dependency on the

scaffolding plug-in is by including the following in

build.gradle.

dependencies

{

 // ...

 compile "org.grails.plugins:scaffolding"

 // ...

 }

Grails provide two types of scaffolding: dynamic and

static.

Dynamic Scaffolding -

Dynamic scaffolding is achieved by enabling the

scaffold property to “true” in the controller (provided

the controller follows the same naming convention as

the domain class). In cases where the domain names

are different, it is necessary to specify the name of the

domain to the scaffold property.

class BookController {

 static scaffold = true

}

With this configuration, if the application is now

started, it will auto-implement all the CRUD-related

actions within the controller and also generates the

respective views.

Static Scaffolding -

With static scaffolding, Grails allows the developer to

generate a controller and the views used to create the

user interface from the command line.

This can be achieved by running the:

-> “grails generate-*<domain>” command.

-> grails generate-controller Book

Both uses the default templates, which come bundled

with Grails, to generate the view and controllers for a

particular domain. Static scaffolding is beneficial

when working to build a prototype, test an idea or

create an admin interface [13], [14].

The database scheme and the scaffold console

command lets Rails create a basic skeleton of

controllers and view templates that have create-

retrieve-update-delete (CRUD) functionality. In most

of the programming situations, Rails also offers

generators that save a lot of time for recurring

elements. Example: A login form.

The automatic creation of project scaffolding saves

time and lets the developer immediately start work on

the application‟s core functionality.

Eg: - $ rails generate scaffold Post name:string

title:string content:text

D. Validation

Grails creates validation when generating views and

controller from a domain model. Grails gives a

standard error message telling in which field the

errors occurred. It is possible to customize these error

messages and use localization to get error messages

in the user‟s native language. Grails also changes

color of the fields with errors so the user finds it

easier were a mistake is made. The user‟s data are

still in the fields so the users do not have to rewrite

everything [7].

Below is a sample code:

Controller:

myDomainInstance.validate()

Domain:

static constraints = {

 myField(blank:false)

}

Input page:

<g:hasErrors bean="${myDomainInstance}">

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 1 - July 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 5

 <div class="errors">

 <g:renderErrors bean="${myDomainInstance}"

as="list" />

 </div>

</g:hasErrors>

<div class="value ${hasErrors(bean:

myDomainInstance, field: 'myField', 'errors')}">

 <g:textField name="myField"

value="${projectInstance?.myField}" />

</div>

Code snippet - Sample code of how input validation

is solved in Grails with MVC architecture.

Rails has a scaffold generating command and if one is

reusing the code given by this command, one just

needs to add one single line of code for adding

validation of one or more fields. Then one gets

validation of the fields, an error message and fields

with error highlighted. Rails are very powerful when

it comes to input validation.

Below is a sample code:

Controller:

No code needed.

Domain model:

 validates_presence_of :myField1, myField2

 validates_length_of :myField2, :within => 2..30

Input page:

For printing error message this line is used:

<%= error_messages_for „myModel‟ %>

Code snippet - Sample code of how input validation

is solved in Rails with MVC Architecture

E. Testing

Testing in Grails is relatively much easier, as it offers

a structure for unit testing and integration testing right

away. The proper unit test classes are made

automatically when a domain model is created.

Within the created class, a stub code is created, which

leaves one tasks to the developer and that is filling the

class with tests. The integration tests have to be

created separately depending on what should be

tested as they do not belong to a certain part of the

application by default. With all tests, they can be run

with a single command, which generates statistics

about how the tests went. Rails as similar to Grails,

offers a structure for adding tests to the application

and it also generate certain files automatically. It has

the ability to do unit tests on the models, functional

tests on the controllers and integration tests between

controllers; furthermore it offers additional way of

testing other features too. All of these tests can easily

be run via a command in the console or the IDE [7].

Features –

Feature Grails Rails

Programming

Language

Groovy Ruby

Approach Domain Oriented Database

Oriented

Object Role

Modeling

Hibernate Active

Record

Architecture MVC MVC

Support Static/Dynamic

Typing

Dynamic

Typing

Servers Tomcat, Jboss,

Weblogic,

IntelliJ Ultimate,

Jetty &

GlassFish.

FastCGI,

Jboss Portal,

Mongrel,

JRuby &

GlassFish.

Testing

Frameworks

JUnit Rspec

Infrastructure Heavy

Framework

Light

Framework

Community Active & Popular Active &

Popular

Similarities –

 Both are used for Rapid Application

Development.

 Both are easy to configure & use

productively.

 Both work on Convention over

Configuration (CoC), Scaffolding & Don‟t

Repeat Yourself (DRY).

 Both can be developed as WAR files.

 Both have built-in Web Servers.

 Both support multi-lingual content.

 Both are Full-Stack Frameworks.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 1 - July 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 6

IV. STATISTICS AND CURRENT TRENDS

One of the source shows -

Figure 3, Source: Matt Raible‟s – “Grails & Rails

Web Framework Comparison” [15].

Mainly there are:

0 – If it does not have these characteristics.

0.5 – If it has at some level.

1 – If it is fully satisfied.

According to another source from DevRates, they

focus on reviews by developers using libraries on

their daily work.

DevRates contains projects reviews of most popular

tagged categories and programming languages with

an active user community who gives latest reviews.

Figure 4, Source - [16].

Based on the top 10 technologies in web framework,

Grails stands the highest with 9.3 rating in

comparison with Rails which is at 8.0

Current Job Opportunities & Trends

Due to the ease of development, scalability and

learning curve, enterprises are going with Grails &

Rails. However, there is a slight demand and job

opportunities in Grails with comparison to Rails.

According to one of the surveys conducted by

Indeed.com, from 2012 to 2016, the job trends are

shown below.

Figure 5, Source - [17].

According to PayScale, based on 31
st
 March 2016,

they have given average salary information for Grails

& Rails as per the stats given below.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 1 - July 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 7

Figure 6, Source - [18].

Figure 7, Source - [19].

Google Trends of Grails & Rails – As of 2016

Regional Interest for Grails

Regional Interest for Rails

Related Searches for Grails in Google

Related Searches for Rails in Google

Figure 8, Sources - [20].

According to all the statistics & reports we have

accumulated & on the basis of data gathered in our

research, we have created an overview report card.

Weightage – A (2 point), B (1 point)

 Grails Rails

Validation & Testing A A

Code Conventions A A

Developers Tools A B

Learning Curve B A

Scalability & Growth A B

Job Trends B B

Total Score 10 9

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 37 Number 1 - July 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 8

V. CONCLUSION

To choose a framework based on a suitable

application is very important. If the framework is not

suitable for the application, the framework might be

obstruction instead of a helping hand. It‟s crucial to

find out if the framework is built for the size of

application. Choosing between the two i.e. Grails &

Rails depends on the requirements, the intensity of

the development project and the features you are

looking in a particular framework. As a dynamic web

framework embracing DRY principles, Grails was

designed to be a companion to, rather than a

replacement for, Java. Grails can dramatically reduce

the complexity of building web applications, helping

Java developers create applications with greater

speed, agility and flexibility in terms of integrating

with existing systems. During the implementation

apart from the well documented part of Grails, a

really neat feature with Grails is that it works well

with existing Java libraries, because of Groovy. This

means that when developing one can easily use a Java

library without any complications. More over Grails

is a very domain oriented framework and offers easy

ways of creating a database to work with and

relations between tables in that database. Grails is not

alone in the realm of dynamic Java web frameworks.

Much inspired by peer framework i.e. Ruby on Rails.

Some of these frameworks share similar principles of

philosophy.

Ruby on Rails has become quite popular

over the years. It‟s a very easy platform to work with

& is very mature in the industry. Most people will

become very productive with it very quickly. It

abstains from heavy tools and focuses instead on

“individuals and their interactions.” The process of

programming is much faster than with other

frameworks and languages, partly because of the

object-oriented nature of Ruby and the vast collection

of open source code available within the Rails

community. The principles of CoC, DRY &

scaffolding provide a first operable version early in

the development cycle & saves lot of time and effort

while coding. It is purely database-oriented

framework and has developed a strong focus on

testing, and has good testing frameworks. Like Rails,

Grails is also gaining in popularity, illustrating a

growing trend in rapid application development. Like

to conclude by saying that both have been

successfully developed over the years, adopted by

various user communities and will continue to

progress in near future based on the current trends in

the market.

VI. REFERENCES

[1] “Ruby Programming Language Wikipedia,”, Available:
https://en.wikipedia.org/wiki/Ruby_(programming_lang

uage)

[2] “IEEE Journals and Magazine”, Title – Ruby on Rails,

Author - Michael Bächle and Paul Kirchberg

[3] “Groovy Programming Language,”,

Available: https://jcp.org/en/jsr/results?id=2490,

https://jcp.org/en/jsr/detail?id=241

[4] “Groovy - An agile dynamic language for the Java

Platform,” , Available: http://www.groovy-lang.org/

[5] “Grails Framework Wikipedia,”, Available:

https://en.wikipedia.org/wiki/Grails_(framework)

[6] “Grails – Introduction , Available:

- https://grails.org/wiki/Introduction

[7] “Evaluation of Web Application Frameworks”,

Available: http://publications.lib.chalmers.se/

[8] Image Source, Available:

https://viblo.asia/leminhtuan2015/posts/KE7bGoAOR5
e2

[9] “IEEE Journals and Magazine”, Title – Will Software

Developer Ride Ruby on Rails to Success?, Author –

David Geer,
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumb

er=1597080

[10] “Rapid Development with Neo4J under Grails,”,

Available: http://www.slideshare.net/stasimus/neo4-

grails

[11] “Grails Model View Controller Pattern,” , Available:

http://www.wideskills.com/grails/grails-model-view-
controller-pattern

[12] “Moving from Grails to Rails,” , Available:
http://www.redwindsw.com/blog/2014-01-15-moving-

from-rails-to-grails-differences-and-similarities

[13] “Grails Scaffolding,”

Available:

http://docs.grails.org/latest/guide/scaffolding.html

[14] “Grails Web Framework,” Cited, Available:

http://www.sapient.com/content/dam/sapient/sapientglo
balmarkets/pdf/thought-

leadership/MarProg_Grails_WP_Web.pdf

[15] Image Source: Matt Raible‟s – “Grails & Rails Web

Framework Comparison”

[16] Image Source, Available:

http://devrates.com/stats/top?tagName=web+framework

[17] Image Source, Available:

http://www.indeed.com/jobtrends/q-grails-q-rails.html

[18] Image Source, Available:

http://www.payscale.com/research/IN/Skill=Ruby_on_

Rails/Salary#by_Years_Experience

[19] Image Source, Available:

http://www.payscale.com/research/IN/Employer=Grail_
Research/Salary#by_Years_Experience

[20] Image Source, https://www.google.co.in/trends/explore/

http://www.ijcttjournal.org/

