
1

The Code Sanitizer: Regular Expression Based
Prevention of Content Injection Attacks

Sandeep D Sukhdeve1, Prof.(Mrs) Hemlata Channe2
1M.E.student ,2Asst.Professor, Pune Institute of Computer Technology, Pune(India).

1sukhdevesandeep@gmail.com,2hpchanne@gmail.com

Abstract—We are increasingly relying on web, and per-
forming important transactions online through it. The impact
and quantity of security vulnerabilities in such applications
has increased in recent years. Regular expression has become
a common practice to ensure execution of trusted application
code. However, its effectiveness in protecting client-side web
application code has not yet been established. In this paper,
we seek to study the efficacy of regular expression based
approach for preventing script injection attacks. The paper
proposes an efficient use of regular expressions to identify
malicious payload contents. This paper analyzes important
aspects in content injection attacks. The goals of this research
work are two-fold: i) propose an efficient way to identify
content injection attacks (XSS and SQL injection) using regu-
lar expressions, and ii) We present a Nondeterministic Finite
Automata (NFA) based approach to detect content injection
attacks. Our evaluation on Alexas top 500 sites and phpBB
popular PHP application shows that the proposed approach
effective on preventing content injection attacks on the input
fields available on those websites. The proposed approach
incurs an average performance overhead of 1.02%.

Keywords—Regular expression, Content Injection, Cross-
site scripting, SQL injection, injection attacks.

I. INTRODUCTION

NOWADAYS various transactions are per-
formed by dynamic web applications. For ex-

ample, users pay their utility bills, book air tickets
by using dynamic websites to save time and money.
It is crucial that user data should be kept secret. That
is, confidentiality and integrity of user data must
be provided by developers of the web application
but unfortunately there is no such guarantee for
preserving the underlying web application from
various content injection attacks. Content injection
attacks can breach the confidentiality property and
integrity property of information in the vulnerable
web application.

A. Content Injection and Types

Content injection attack refers to inserting ma-
licious content into a legitimate site. There are
two types of content injection attacks namely SQL
injection and Cross-site scripting.
• SQL Injection (SQLI): It is a prevalent attack

technique that allows attackers to gain direct
access to the databse of the web application and
extract sensitive information from the victim
web application’s database [30].

• Cross-site Scripting (XSS): It is a web applica-
tion vulnerability that allows attackers to inject
client-side script into web pages that can be
viewed by other users. Attackers can use cross-
site scripting vulnerability as a tool to bypass
access control mechanisms such as the same-
origin policy (SOP) [2], [29]. Some examples
of real-world cross-site scripting attacks can be
found at [5], [15], [24], [32], [33].

Script injection attacks are the most prevalent
threat on the web. According to the symantec se-
curity threat report of 2015 [27], cross-site script-
ing is listed on number two out of top ten web
application vulnerabilities. Web sites vulnerable to
content injection attacks are from various category
such as blogging, hosting, entertainment, shopping,
sports, etc. According to the Open Web Application
Security Project (OWASP) 2013 top ten web appli-
cation vulnerability report [22], injection attack is a
number one web application vulnerability and cross-
site scripting listed at number three among the top
ten web application vulnerabilites.

In 2011, the National Institute of Standards and
Technologys National Vulnerability Database [17]
reported total 289 SQL injection vulnerabilities in
websites (7% of all vulnerabilities). In December
2011, security experts from SANS Institute reported

K DURAISAMY
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 35 Number 1 - May 2016

K DURAISAMY
Text Box

K DURAISAMY
Text Box
ISSN: 2231-2803 http://www.ijcttjournal.org Page 21

2

a major SQL injection attack(SQLIA) that affected
approximately 160,000 websites using ASP.NET,
Microsofts Internet Information Services (IIS), and
SQL Server frameworks [9].

Regular expressions have become a common
practice to ensure the execution of trusted appli-
cations. Mainstream OSes such as Windows and
Linux check the signature of application binaries
against the public whitelist using regular expression
before installing them [34]. Browsers enable code
signature verification on its extensions using regular
expressions to make sure that its code is signed
by a trusted party (e.g., Mozillas AMO [14]).
Although regular expressions have been success-
fully implemented in several application platforms,
its effectiveness in protecting web applications has
not yet been established. Lack of validation and
incorrect sanitization of user inputs make websites
vulnerable to content injection attacks. To address
this problem, researchers have proposed various
mechanisms ranging from simple static analysis to
complex dynamic analysis. In this paper, we seek
to study the efficacy of regular expression-based
whitelisting for defending web applications against
script injection attacks.

B. Observations
To evaluate effectivness of the proposed approach

against dynamics of different websites, we conduct
a longitudinal study on the Alexas top 500 websites
(1500 web pages) and phpBB popular PHP blog
web application, testing manually with depth limit
of 3. We use XSS cheatsheets and SQL injection
strings to test effectivness of the proposed approach.

We observed that the aim of content injection
attack to gain illegal access to user data. The
Structural Query Language Injection (SQLI) attack
happens when an attacker is allowed to change the
logic or syntax of a SQL query by injecting new
SQL keywords. SQL Injection attack is a class of
content injection attacks that occurs when there is
no input validation mechanism deployed by web
devleopers in the web application.

In cross-site scripting attack, the attackers hides
malicious content into the content being delivered
from the compromised site. When the resulting
combined content process by the browser at the
client-side, browser is unable to differentiate be-
tween inject content and website’s benign content,

and thus operates under the permissions granted to
that system. By finding ways of injecting malicious
content into web pages, an attacker can gain access
to sensitive page content, and a variety of other
information maintained by the browser on behalf of
the user [29]. The successful XSS attack is a result
of the absence of the input validation in the web
application by the developers.

The existing techniques proposed by researchers
are either not publicly available or are difficult to
adopt. Lightweight and easy to adopt are desirable
properties for a solution to combat content injection
attacks. Developers unawareness of security mech-
anisms and content injection sanitization can result
in data loss or corruption, lack of accountability, or
denial of access. Injection can sometimes lead to
complete host takeover. Therefore, it is important
to provide a solution that protect web applications
from SQLI and XSS attacks.

C. Main Idea
Use regular expression to combat against SQLI

and XSS attacks. Recently, regular expressions have
become more pouplar than static patterns to scan
payloads. For example, the recent ruleset of Snort
IDS includes about 2,000 static patterns and more
than 500 regular expressions. A theoretical worst
case study shows that a single regular expression
of length n an be expressed as a DFA of up to
O(

∑n) states whereas NFA representation would
require only O(n) states [10]. Therefore, the pro-
pose solution in this paper uses NFA based regular
expression technique for efficiently detection of con-
tent injection attacks.

D. Contributions
In summary, this paper makes the following con-

tributions:
1) We conduct a 2-month study on effectivness

of the proposed approach on the Alexa Top
500 sites and phpBB popular PHP blog web
application via regular expressions.

2) We propose an novel approach, a multi-
layered sanitization approach based on reg-
ular expressions to prevent script injection
attacks. The proposed approach employs a
novel regular expression scheme, structural
regular expression signatures which rely on

K DURAISAMY
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 35 Number 1 - May 2016

K DURAISAMY
Text Box
ISSN: 2231-2803 http://www.ijcttjournal.org Page 22

3

source code structure, and are secure & robust
against content injection attacks.

3) Classifies state-of-the-art research performed
on detection and prevention of content injec-
tion attacks.

4) Provides analysis of important aspects in con-
tent injection attacks.

5) Presented a Nondeterministic Finite Automata
(NFA) based implementation to support more
complex regular expressions than the previous
approaches.

The rest of this paper is organized as follows:
Section II explains content injection attack vectors
(SQL injection and Cross-site Scripting attack) with
the help of example. Section III discusses the liter-
ature survey. Section IV describes our motivation.
Section V describes architecture of the proposed
scheme. Section VI presents mathematical model
of the system. Section VII describes implementa-
tion details and evaluation results of the proposed
approach and we conclude the paper in Section VIII.

II. BACKGROUND

An Example of SQL Injection Attack
Typically users are requested to provide some input
data on web pages (for example, username and
passwords) and web applications make a SQL query
to the database based on the information received
from the user. Malicious user can send crafted input
to change the SQL statement structure and execute
arbitrary SQL commands on the vulnerable system.

Lets consider an example of web application that
accepts username and password for users in order
to allow authenticate users to login to the web site.
When user input is received at server side by the
web application, following SQL query is created and
executed by the web application to verify credentials
provided by the user:
SELECT * FROM usertable WHERE

userID = ’Sandeep’ and password =
’abc123’

Assume malicious users provided following
crafted input in the password input box:
’ or 1=1 --
The SQL query in the web application will be-

come:
SELECT * FROM usertable WHERE

userID = Sandeep and password = ’’
or 1=1 --’

The ”or 1=1” will make the query TRUE and
results in returning all the records in the ”usertable”
to the malicious user. The ”–” comments out the last
’ character appended by the web application.

An Example of Cross-site Scripting Attack
Attacker can inject scripts in a web page by

stored. For example, when asked for a text inputs
by web page, malicious user can provide script code
rather than providing text inputs. Therefore, if the
developers of website are not carefully sanitizing the
user inputs, an occurrence of the text < script >
... < /script > in the input text can be stored
and later executed in the visitor’s browser when it
renders the script of malicious user in the page.

III. LITERATURE SURVEY

A. SQL Injection Detection and Prevention Solu-
tions

Several solutions that mitigate the risk posed
by SQL Injection attacks have already been pro-
posed [1], [6]–[8], [12]. All of these solutions have
been successful in mitigating SQL Injection attacks.
However, none of these solutions address the actual
SQL injection attack that exist in the source code. A
common way to remove SQL injection vulnerability
is to separate the SQL structure from the SQL
input by using prepared statements. Stephen et.al.
[28] proposed a prepared statement replacement
algorithm and a corresponding tool for automated
fix generation.

Cristian [21] et.al. presented a hybrid approach
based on the Adaptive Intelligent Intrusion Detector
Agent (AIIDA-SQL) for the detection of SQL in-
jection attacks. The AIIDA-SQL agent incorporates
a Case-Based Reasoning (CBR) engine which is
equipped with learning and adaptation capabilities
for the classification of SQL queries and detection
of malicious user requests. To carry out the tasks
of attack classification and detection, the agent
incorporates advanced algorithms in the reasoning
cycle stages. Concretely, an innovative classification
model based on a mixture of an Artificial Neuronal
Network together with a Support Vector Machine is
applied in the reuse stage of the CBR cycle. This
allowed clasification of SQL queries.

B. Cross-site Scripting Detection and Prevention
Solutions

Mozilla has a feature called signed scripts [25].
Scripts are signed when they require additional

K DURAISAMY
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 35 Number 1 - May 2016

K DURAISAMY
Text Box
ISSN: 2231-2803 http://www.ijcttjournal.org Page 23

4

privileges, such as writing to local files, and the
absence of a signature does not constrain scripts.
Server-side techniques to protect against script in-
jection attacks have been reported extensively in the
literature. A systematic approach to filtering injected
attacks involves partitioning trusted and untrusted
content into separate channels and subjecting all
untrusted content to application defined sanitization
checks [20]. Su and Wassermann [26] develop a
formal model for command injection attacks and
apply a syntactic criterion to filter out malicious
dynamic content. Applications of taint checking to
server programs that generate content to ensure that
untrustworthy input does not flow to vulnerable
application components have also been explored
[16], [31]. UserCSP [19] is a Mozilla tool that
allows security savvy users to specify and enforce
content security policy to protect themselves from
cross-site scripting attacks. The tool automatically
infers content security policies for the websites
user visits and enforce them to protect users from
XSS attacks. Other solutions [3], [4] need browser
modifications to identify untrusted or malicious
scripts from trusted scripts. JCShadow [18] pro-
posed an approach to isolate untrusted scripts in-
cluded within origin from diferent sources. It is
effective and robust against malicious scripts mis-
takenly included by web publishers in their web
applications. Whereas the proposed approach in this
paper focuses on the sanitization of the content
injected by malicious users through the input text
fields available on websites for various purposes
such as login username/passwords, form fields, etc.

BrowserShield [23] propose to defeat JavaScript-
based attacks by rewriting scripts according to
a security policy prior to executing them in the
browser. In BrowserShield, the rewriting process in-
serts trusted JavaScript functions to mediate access
to the document tree by untrusted scripts.

Jackson et al. [11] describe several unexpected
repositories of private information in the browsers
cache that could be stolen by XSS attacks. They
advocate applying a refinement of the same-origin
policy [13] to cover aspects of browser state that
extend beyond cookies. By allowing the server to
explicitly specify the scripts that it intentionally
includes in the document, our approach can also
be thought of as an extension of the same-origin
policy.

IV. NEED AND MOTIVATION

Traditionally, content injection was limited to
personal computing environments. However, content
injection vulnerabilities could spread much faster
due to the popularity of mobile computing and cloud
computing technologies. Many research efforts have
been taken to address problems related to content in-
jection (XSS and SQLI) since the discovery of those
attacks. Still, XSS vulnerabilities are still prevalent
in web application source codes and attacks are still
taking place victimizing site owners and innocent
users. Inadequate validation and sanitization of user
inputs is root cause of sucessful content injection
attacks, however, exisitng solutions failed to address
the root cause correctly to mitigate the content
injection attacks such as XSS and SQLI.

V. ARCHITECTURE OF THE PROPOSED
SOLUTION

Figure 1 shows architecture of the proposed solu-
tion to detect and prevent content injection attacks.
It contains user input detector which extracts user
input and send it to detection module for further
processing. The ASCII decoder unit is used to
decode user input data in ASCII format for consis-
tency in data format and void encoding techniques
used by attackers to conceal the data. The Regular
Expression Matcher takes user input from ASCII
decoder and also takes regular expression set to
perform matching of regular expression on user
data. Dynamic pattern matcher allows updation of
rule sets to detect various content injection attacks.
The XSS Sanitizer module removes XSS code from
the input and SQLI Sanitizer removes SQL code
from the input to sanitize the content.

VI. MATHEMATICAL MODELLING

Standard Theorem: Language (L) is regular
if and only if it has a regular expression [10].
Proposed Theorem: SQL injection language

and XSS injection language is regular if there exists
a regular expression for it. To prove the above
proposed theorem, we show how to construct for
any given regular expression an equivalent NFA.

First, we list the charachteristic pattern for XSS
and SQL injection attacks. The SQL injection attack
string charactersitics are given below:

1) contains zero or more alphanumeric or under-
score characters.

K DURAISAMY
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 35 Number 1 - May 2016

K DURAISAMY
Text Box
ISSN: 2231-2803 http://www.ijcttjournal.org Page 24

5

User Input
Detector

ASCII
Decoder

Dynamic
Pattern
Matcher

Regular
Exp

Matcher

RuleSet

Regular Exp 1
Regular Exp 2

Regular Exp N

Regular
Expression Set

XSS
Sanitizer

SQLI
Sanitizer

Fig. 1. Architecture of the Proposed Solution

2) presence of ubiquitous single quote or double
quote followed by above sequence.

3) the word or with various combinations of its
uppercase/lowercase.

4) mathematical equation to make the query true.
The figure 2 shows NFA model for a regular

expression to detect SQL injection attack. NFA is
a tuple that contains (Q, F,

∑
, δ, q0).

Q = {q0, q1, q2,− − − − −q13}, where Q is set of
states.
F = {q9, q11, q12, q13}, where F is set of rejection
states.∑

= {0, 1, 2, 3,− − −9, a, b, c, d,− − − −
−−, x, y, z, <,−, >,′ , ”,=,#}, where

∑
is set of

inputs.
δ is transition function.
q0 is initial state.

The cross-site scripting (XSS) attack string char-
actersitics are given below:

1) contains zero or more alphanumeric or under-
score characters.

2) opening < script > tag.
3) contains zero or more alphanumeric or under-

score characters.
4) closing < /script > tag.

The figure 3 shows NFA model for a regular
expression to detect XSS attack.
Q = {q0, q1, q2,− − − − −q17}, where Q is set of
states.
F = {q17}, where F is set of rejection states.∑

= {0, 1, 2, 3,− − −9, a, b, c, d,− − − −

Fig. 2. NFA model of regular expression for SQL injection
detection

−−, x, y, z, <, /,>}, where
∑

is set of inputs.
q0 is initial state.

Fig. 3. NFA model of regular expression for XSS detector

VII. IMPLEMENTATION AND EVALUATION

In this section, we give an empirical analysis of
our 2-month long measurement study (from 21st
February 2016 to 18th April 2016) on Alexas top
500 sites and phpBB popular PHP blog web applica-
tion with the following goals. First, we would like to

K DURAISAMY
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 35 Number 1 - May 2016

K DURAISAMY
Text Box
ISSN: 2231-2803 http://www.ijcttjournal.org Page 25

6

determine whether regular expresions are practical
for text input fields in Alexas Top 500 websites and
popular PHP apps. Second, we show that our regular
expression based scheme and policies defined in
Section V are easy to implement and expressive
enough to detect content injection on Alexas top
websites. Lastly, we show that our approach incurs
only a small performance overhead on the browser.

A. Implementation
We implemented the proposed approach by ex-

tending Mozilla Firefox version 44.0.2, an open
source version of Mozilla Firefox. We implemented
an extension which can be patched to the Mozil-
las Firefox by adding approximately 500 lines of
JavaScript code and 100 lines of HTML code. We
have released our extension to the Mozillas addon
public repository (AMO).

Platform: All experiments were conducted in
Mozilla Firefox v44 set up on a HP/Dell Desk-
top host, configured with Intel(R) Core(TM) i5-
200U/i7-3687U 2.10GHz CPU and 4GB RAM run-
ning 64-bit Linux Mint 17/Windows 8.

B. Evaluation
The proposed approach is evaluated with a few

examples to ensure that it is able to detect content
injection. The runtime overhead of the proposed
approach is also measured.

Testbed: To measure effectiveness of the pro-
posed approach, various scenarios are configured
and tested with the presence of proposed approach
and content injection attacks. We created Ubuntu
9.04 virtual machine with phpBB web blog installed
and configured in it. We played a role of attacker
who injects malicious contents into the phpBB web
forum/blog. Without the proposed proposed solution
implemented to detect and prevent content injection
attack, we sucessfully exploited XSS and SQL in-
jection flaws in the phpBB forum/blog.

Effectiveness Results: The content injection at-
tacks manually tried with the Ubuntu 9.04 vir-
tual machine we created with phpBB web blog.
We performed same content injection attacks on
both vanilla Firefox web browser and Firefox web
browser with the proposed solution prototype in-
stalled. The content injection attacks were success-
ful when we used vanilla Firefox web browser,
whereas they were prevented when we used the

Firefox web browser installed with the extension
prototype of the proposed approach.

Preformance Overhead: To measure perfor-
mance overhead, we manually visited atmost three
web pages for every domain in the Alexas top 500
websites and measure the time required to process
each input by the proposed approach prototype
in Mozilla Firefox web browser - average over
five attempts. The average performance overhead of
Alexas 500 web site is measured as 1.02%. Such
performance overhead is acceptable for all websites
and shows compatibility of the proposed approach.

C. Testing Scenarios
Preposition1: Resilience to cross-site script-

ing(XSS) attacks.
Scenario: Consider an adversary X that injects
script code into the form fields < script > ... <
/script > and clicks on the submit button to the
send it the web server.
Resilience: The extension prototype of the proposed
approach intercepts all text input fields and perfor-
mance regular expression check on user inputs to
check the presence of script tags in the input. If
it finds script tags then it replaces < symbol in
the script tag with < and > symbol with >.
This prevents script from execution on victim users
browser.

Preposition2: Resilience to SQL injection at-
tacks.
Scenario: Consider an adversary X that injects SQL
injection code into the form fields ′or1 = 1−− and
clicks on the submit button to the send it the web
server.
Resilience: The extension prototype of the proposed
approach intercepts all text input fields and perfor-
mance regular expression check on user inputs to
check the presence of SQL code symbols in the
input. If it finds SQL code symbols then it replaces
them with the corresponding HTML code. This
prevents web server from mistakenly interpretting
user input as SQL code and SQL code execution
on the web server.

VIII. CONCLUSION

This paper analyzed important aspects in content
security systems. We proposed an efficient way to
identify content injection attacks (XSS and SQL
injection) using regular expressions. In addition,

K DURAISAMY
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 35 Number 1 - May 2016

K DURAISAMY
Text Box
ISSN: 2231-2803 http://www.ijcttjournal.org Page 26

7

we presented a Nondeterministic Finite Automata
(NFA) based implementation, which takes advan-
tage of new basic building blocks to support more
complex regular expressions than the previous ap-
proaches.

In this paper, we conduct a longitudinal man-
ual study of input fields avaialble on websites to
evaluate the efficacy of regular expression-based
sanitizer for preventing script injection attacks. We
then propose a system, which 1) employs a multi-
layered whitelisting approach using a novel regular
expression scheme, structural regular expression,
that is robust against content injection attacks; and
2) comes with an proof-of-concept implementation
to ensure its practicality in real-world settings. Our
large-scale evaluation shows that the proposed ap-
proach can prevent content injection attacks with
reasonable performance.

REFERENCES

[1] G. Buehrer, B.W. Weide, and P.A.G. Sivilotti. Using parse tree
validation to prevent sql injection attacks. In Proceedings of
the 5th International Workshop on Software Engineering and
Middleware, 2005.

[2] CGIsecurity. The cross-site scripting (xss) faq.
http://www.cgisecurity.com/xss-faq.html.

[3] Xinshu Dong, Kailas Patil, Xuhui Liu, Jian Mao, and Zhenkai
Liang. An entensible security framework in web browsers.
Technical Report TR-SEC-2012-01, Systems Security Group,
School of Computing, National University of Singapore, 2012.

[4] Xinshu Dong, Kailas Patil, Jian Mao, and Zhenkai Liang.
A comprehensive client-side behavior model for diagnosing
attacks in ajax applications. In Proceedings of the 18th
International Conference on Engineering of Complex Computer
Systems (ICECCS), 2013.

[5] Dennis Fisher. Persistent xss bug on twitter exploited
by worm. http://threatpost.com/en us/blogs/persistent-xss-bug-
twitter-being-exploited-092110.

[6] W.G.J. Halfond and A. Orso. Amnesia: analysis and monitoring
for neutralizing sql-injection attacks. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software
Engineering, 2005.

[7] W.G.J. Halfond and A. Orso. Combining static analysis and
runtime monitoring to counter sql-injection attacks. In Proceed-
ings of the Third International Workshop on Dynamic Analysis,
2005.

[8] W.G.J. Halfond, A. Orso, and P. Manolios. Using positive
tainting and syntax-aware evaluation to counter sql-injection at-
tacks. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2006.

[9] Mark Hofman. Sql injection attack happening atm.
isc.sans.org/diary/SQL+Injection+Attack+happening+ATM/12127.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to automata
theory, languages and computation. In Reading, 2nd Ed.,
Addison-Wesley, 2001, 2001.

[11] Collin Jackson, Andrew Bortz, Dan Boneh, and John C.
Mitchell. Protecting browser state from web privacy attacks.
In Proceedings of the International Conference on World Wide
Web (WWW), 2006.

[12] Kamlesh Kumar and Deen Bandhu. Prevention and detection
techniques for sql injection attacks. In Proceedings of the IJCTT
vol-12, No-03, 2014.

[13] Mozilla. Same origin policy for
javascript. https://developer.mozilla.org/En/
Same origin policy for JavaScript.

[14] Mozillia. Mozilla. signing a xpi. In https://goo.gl/Ffls5r.
[15] Nex. The clickjacking meets xss: a state of art.

http://www.milw0rm.com/papers/265, 2008.
[16] Anh Nguyen-tuong, Salvatore Guarnieri, Doug Greene, Jeff

Shirley, and David Evans. Automatically hardening web ap-
plications using precise tainting. In Proceeding of the 20th
IFIP International Information Security Conference, 2005.

[17] National Institute of Standards and Technol-
ogy. National vulnerability database (nvd).
http://web.nvd.nist.gov/view/vuln/search.

[18] Kailas Patil, Xinshu Dong, Xiaolei Li, Zhenkai Liang, and
Xuxian Jiang. Towards fine-grained access control in javascript
contexts. In 31st International Conference on Distributed
Computing Systems (ICDCS), 2011, pages 720–729, June 2011.

[19] Kailas Patil, Tanvi Vyas, Fredrik Braun, Mark Goodwin, and
Zhenkai Liang. Poster:usercsp-user specified content security
policies. Symposium On Usable Privacy and Security (SOUPS)
POSTER, 2013.

[20] Tadeusz Pietraszek, Chris V, and En Berghe. Defending against
injection attacks through context-sensitive string evaluation. In
Proceeding of the Recent Advances in Intrusion Detection,
2005.

[21] Cristian Pinzn, Javier Bajo Juan F. De Paz, lvaro Herrero, and
Emilio Corchado. Aiida-sql: An adaptive intelligent intrusion
detector agent for detecting sql injection attacks. In Proceedings
of the 10th International Conference on Hybrid Intelligent
Systems, 2010.

[22] OWASP-The Open Web Applicaiton Se-
curity Project. Owasp top ten project.
https://www.owasp.org/index.php/Top10#OWASP Top 10 for 2013.

[23] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky,
and Saher Esmeir. Browsershield: Vulnerability-driven filtering
of dynamic html. In Proceedings of the Symposium on Oper-
ating Systems Design and Implementation (OSDI), 2006.

[24] RSnake. Xss(cross site scripting) cheat sheet esp: for filter
evasion. http://ha.ckers.org/xss.html.

[25] Jesse Ruderman. Signed scripts in mozilla.
http://www.mozilla.org/projects/security/ components/signed-
scripts.html.

[26] Zhendong Su and Gary Wassermann. The essence of command
injection attacks in web applications. In Proceedings of the
ACM Symposium on Principles of Programming Languages
(POPL), 2006.

[27] Symantec. Internet security threat report volume 20.
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932 GA-
internet-security-threat-report-volume-20-2015-social v2.pdfg,
April 2015.

[28] Stephen Thomas, Laurie Williams, and Tao Xie. On auto-
mated prepared statement generation to remove sql injection
vulnerabilities. In Proceedings of the Elsevier Journal on the
Information and Software Technology, 2009.

[29] Wikipedia. Cross-site scripting.
http://en.wikipedia.org/wiki/Cross-site scripting.

[30] Wikipedia. Sql injection.
https://en.wikipedia.org/wiki/SQL injection.

[31] Yichen Xie and Alex Aiken. Static detection of security
vulnerabilities in scripting languages. In Proceedings of the
USENIX Security Symposium, 2006.

K DURAISAMY
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 35 Number 1 - May 2016

K DURAISAMY
Text Box
ISSN: 2231-2803 http://www.ijcttjournal.org Page 27

8

[32] xssed.com. Myspace.com hit by a permanent xss. http://www.
xssed.com/news/83/Myspace.com hit by a Permanent XSS/.

[33] xssed.com. New orkut xss worm by brazilian web secu-
rity group. http://www.xssed.com/news/77/New Orkut XSS
worm by Brazilian web security group/.

[34] Z. Yan and S. Holtmanns. Trust modeling and management:
from social trust to digital trust. In IGI Global, 2008.

K DURAISAMY
Text Box
International Journal of Computer Trends and Technology (IJCTT) - Volume 35 Number 1 - May 2016

K DURAISAMY
Text Box
ISSN: 2231-2803 http://www.ijcttjournal.org Page 28

