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Abstract — The performance of a recognition 

system depends upon the classifiers used for 

classification purpose. Powerful is the 

discrimination ability of a classifier, better is its 

recognition performance.  The generalization ability 

of a classifier is measured on the basis of its 

performance in classifying the test patterns. There 

are various factors which affect generalization. 

Moreover, the feature extraction method(s) used for 

training a classifier also affects the performance of a 

classifier. In this paper, a brief theoretical review of 

various classifiers is made. The various characters 

of each are covered. The classifiers covered are 

Bayes, Parzen, probabilistic, polynomial, 

discriminant, radial basis networks, multi layer 

perceptron(MLP), k-NN, SVM and SOM. 
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I. INTRODUCTION  

A recognition system must be trained in training 

or learning stage using a set of training samples. In 

the recognition process, the features or properties 

extracted from a character image are compared with 

the features of the character images (either stored in 

computer memory or used to train the system) whose 

classes are known and a class label is assign to it. A 

system that performs such type of classification task 

is called a classifier. Actually, a classifier works in 

two stages: 1) Learning stage and 2) Decision stage.  

In learning stage, the features extracted from the 

handwritten samples are used to train the classifier.  

The designing and training a classification system 

using a set of training samples, whose classes are 

known, is termed as supervised learning. 

The type of classifier used for classification 

purpose affects the performance of a recognition 

system a lot. Powerful is the discrimination ability of 

a classifier; better is its recognition performance. 

The final goal of a recognition system is to classify a 

test sample which is unknown and not used to train 

the classifier and assign a label to it. The 

performance of a classifier on a test set (test 

samples) may not be same as it is for training sample 

set. One  must have to optimize a classifier on given 

training and test sets, no matter which classifier is 

used. The generalization ability of a classifier is 

measured on the basis of its performance in 

classifying the test patterns. The various factors 

which affect generalization are as [1-3]:a) Size of 

dataset, b) The discrimination ability of the features 

used to represent patterns, c) Physical complexity of 

the problem, d) The optimality observed in training a 

classifier, e) Unknown parameters. 

There is a lot of impact of the size data set used 

for training a classifier on the generalization. In 

addition to this, the available samples should be well 

representatives of the various classes under 

consideration. In real-world applications, it is better 

if the samples are taken from real situations rather 

than artificial ones. Curse of dimensionality is 

concerned with the size of training data set and the 

size of feature vector used to represent a sample. The 

size of the feature vector should be reasonably small 

with limited size of training data. The size of feature 

vector not only effects the generalization but also 

contributes to the classification time a lot. Moreover, 

the feature extraction method(s) used for training a 

classifier also affects the performance of a classifier 

a lot. The classifier should be reasonably trained on 

training samples. In learning or in training phase as a 

classifier is trained, the error on training dataset as 

well as on test dataset decreases. After certain 

epochs or cycles the error on training set decreases 

or remains constant but error on validation or test set 

further starts increasing. In such situation the 

classifier is said to be over-trained and it affects the 

generalization and degrades the performance of a 

classifier.  

One most important factor related to the 

architecture of a classifier that affects generalization 

is the number of unknown parameters required to be 

optimized in a classifier. If these parameters are very 

large, the classifier will be too complex.  Some of 

these parameters may not be sufficiently updated or 

molded due to large structure of a classifier and 

limited size of training data set. Consequently, it 

results in poor generalization. On the other hand, 

fewer numbers of unknown parameters may give 

large errors even on training data due to improper 

mapping of input data to desired output data. It also 

contributes to poor generalization. In case of neural 

network the unknown parameters are weights and 

biases. The complexity of the problem is natural 

factor and it depends upon the complexity of the 

patterns under consideration. 
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II. BRIEF REVIEW OF CLASSIFIERS 

The various authors have suggested different 

classifiers to solve different character recognition 

problems and some such classifiers are: Bayes 

Classifier,  Parzen window classifier, linear 

discrimination function, quadratic discrimination 

function, k-NN ( k-nearest neighbors), polynomial 

classifier(PC), ), learning vector quantization (LVQ), 

radial basis function(RBF), self organization map 

(SOM), probabilistic neural network(PNN 

multilayer perceptron(MLP), hidden Markov model 

(HMM). and support vector machine (SVM). A brief 

review of various classifiers such as Bayes classifier, 

linear discrimination function, quadratic 

discrimination function, Parzen window classifier, 

radial basis function (RBF), self organization map 

(SOM), probabilistic neural network, polynomial 

classifier (PC) is made in this Section. In addition to 

this, three more classifiers, i.e., MLP, SVM and k-

NN are also discussed in this Section.  

. 

A. Bayes Classifiers 

In Bayes classifier, an unknown pattern u is 

assigned a class ωi  by minimizing conditional 

average risk i.e.     

     If (u)(u) ji for  

             .   ; 1,2,3,..., ijqj                 (1)

  

Where (u)i  and  )(uj  are the conditional 

average risk or loss incurred in assigning u to a class 

ωi and ωj,, respectively.  The number q represents 

total number of classes under consideration. 

  Expression (1) can be equivalently written as  

 

 if )().()()( jjii ωωωω Pu/pPu/p
  

for   

                                 ijqj    ; ..., 1,2,3,4,5, ,       (2)                         

                                              

Where P(ωi) and P(ωj)   are the probabilities of 

occurrence of  class ωi and ωj, respectively    and 

)( iωu/p   and )( jωu/p  are   probability density 

functions of patterns from class ωi  and  ωj , 

respectively.  

In Bayes classifier, a sample u is assigned to a 

class having decision function )(uΨj  [4]. 

)().()( jjj ωω Pu/puΨ
       for 

                             
; ...,1,2,3,4,5, qj                     (3) 

 

In Bayes classifiers, the probability density 

functions used to express patterns in each class and 

the probability of each class must be available.  

 

 

 

 

B. Discriminant Classifiers (Linear & Quadratic) 

The probability density )( jωu/p  of the Bayes 

classifier can be estimated using the following 

multivariate Gaussian function  
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Here  j  is a covariance matrix , 
j

is mean 

vector and ; 1,2,3,..., qj n is the dimension of 

pattern vector u. 

From (3) and (4), we have quadratic discriminant 

(QD) classifier whose decision function is given by 

(5).             
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                                                                                 (5) 

The decision boundaries of (5) are quadratic 

equations in u. If covariance matrix is the same for 

all the classes i.e. 
j

  then (5) can be written as: 
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                                                                               (6) 

Since decision boundaries of (6) are linear 

equations in u, it is called as linear classifier. 

Furthermore, if covariance matrix is identity matrix 

and the probability of each class is same, i.e., 
q

1 ; 

then (6) can be written as:    

j

T

jj
j uuΨ T

2

1
)(  ;   for  

                ; 1,2,3,..., qj                              (7)                               

 

Quadratic discriminant classifier has following 

problems [5]. 

1) Poor estimation in parameter degrades 

performance. 

2) The processing time and memory requirements 

are large. 

3) Performance degrades if distribution is away 

from the normal distribution. 

C. Parzen Classifiers  

It is a non-parametric classifier. In Bayesian 

classifier the probability distribution )/( iωup is 

usually unknown. One way to estimate the 

probability distribution is to use the Parzen’s 

probability distribution function. In Parzen classifier, 
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the probability densities are estimated locally using 

Gaussian kernel function which is as follow: 

)/( iωup = )(
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Where kernel  is given as: 

                        

||..π)2(

).(.)(
.2

1

2/12/

1

2

)(

ii
nn

iliil

i
il

i

D

e
D

uuuu

uu

T

Where n is dimension of feature space, u il  is l
th

 

pattern  from class ωi, iV  is number of training 

patterns from class ωi , Di  is window width of class 

ωi  and  i  is sample covariance matrix of  ωi. 

The performance of Parzen classifier depends upon 

the kernel function that depends upon the window 

width Di . The selection of Di is critical in design 

of Parzen classifiers [6-7].  

D. Radial Basis Function Network 

Radial basis function (RBF) network is a special 

class of multilayer neural network with a single 

hidden layer having non-linear functional nodes and 

an output layer with linear functional nodes.  The 

output of a hidden layer unit is determined by the 

distance (generally the Euclidean distance) between 

the input vector u  and the prototype vector μi .  The 

activation function is Gaussian kernel. The output of 

the hidden layer node in terms of Gaussian function 

is given as: 

)(
σ2

exp
2

2
||||

)(
i

i
i

u
u                                    (9) 

Where u  is input sample having n-dimensional 

feature vector and  μi is mean vector and  σ i is 

standard deviation. The vector μi  is also called as 

centre of the RBF unit. The output at the j
th

 

functional node of the output layer is given as: 

     )()(
1

uwu
iij

l

i
jv                                    (10) 

Where   wij  is weight between the i
th

 node of the 

hidden layer and j
th

  node of the output layer and l is 

the number of hidden layer nodes. Its some pros and 

cons are as [8,9]: 

 1). In training phase it converges fast as compared 

to back-propagation algorithm. 

 2). It is unaffected against garbage patterns due to a 

set of local radial basis functions. 

 3). RBF is slower in test phase as it consists of large 

number of functional units in hidden layer.  

E. Probabilistic Neural Network (PNN) 

The basis of PNN is the Bayesian classification 

theory. It uses Parzen windows to approximate the 

probability distribution of the input pattern which is 

given by (8). 

The PNN design is   four layered having 02 

hidden, 01 input and 01 output layer.  The input 

pattern is passed through input layer and it is fully 

linked with hidden layer called as pattern layer.  

There is one summation node to compute (8) for 

each class in second hidden layer. Final layer is 

decisive. PNN gives decision as per Bayes rule 

expressed in (3) 

Some points against and in favor of PNN are as 

follows [10-11]: 

1)  Its training time is even small in comparison to 

other neural network classifiers. 

2) It is slow during test phase since it required 

combining various training samples to get 

Parzen estimate.  

3) Difficult to implement in applications that require 

large size of training data samples. So it is suited 

in applications that need learning rather 

generalization. 

F. Polynomial Classifier 

Polynomial Classifier consists of 3-layered 

structure having 01 hidden layer; 01 input and 

01output layer. The input pattern is passed through 

input layer as in case of PNN. The elements of the 

hidden layer are corresponding to the enhanced 

features obtained by polynomial combination of 

original features (corresponding to the first layer).  

The enhanced features are represented by a set of 

basis functions, Q(u). For example, for two 

dimensional feature vector, ],[ 21

T
uuu and with 

polynomial of degree two, the vector is given by 

                             

],,,,,[)( 2
221

2
1211

T
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(11)   

                                

The nodes of the output layer are corresponding 

to the decision functions, where j
th

 node represents 

the decision function of class j.  The output of the 

final layer is linear combination of basis functions. 

The output of the j
th

 node is given by 

 )()(
1

uQwu
iijj

l

i
v                                       (12)                                                  

 

Where, l is the size of hidden layer. The above 

equation can be written as  

                          

)()( uQwuv T
                                                (13) 
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The coefficients of  w  are computed without 

iterative procedure (learning) from cross correlation 

matrix })({ duQΛ T
 and moment matrix of 

enhanced features })()({
T

uQuQΛ  acquired from 

training set using equation  no. (14) 

                                  

})({w}.)()({ duQΛuQuQΛ TT
                (14)                                   

 

Here d represents the desire response of the input 

pattern u and Λ (.) represents the                                         

expectation operator. The size of the polynomial 

grows if higher degree polynomial is considered; 

this enhances the size of feature vector. However, 

some measures have been suggested in [8] to shrink 

feature size.  

G. Self Organizing Map 

In Kohonen self organizing map(SOM), all the 

input nodes of input layer are connected to all the 

output nodes of the output layer. The nodes of output 

layer are generally arranged in two dimensional 

arrays. The connection weights are initialized using 

a random number generator. The Euclidean distance 

on each output node is computed. The output unit 

having minimum distance is selected and this node is 

called as winner node. All the connection weights to 

this node and some of its neighboring nodes(selected 

using some criteria) are updated. The neighborhood 

identifying function is generally a Gaussian function.  

SOM learning algorithm in brief is summarized as 

[2,12-13]: 

1). the connection weights between all input and 

output nodes are initialized to a small random value. 

The neighbourhood function and learning 

parameters are also initialized. 

2). Input a sample u. Compute Euclidean distance 

)(uDE j  between the input node  and the weight 

on each output node j  and find a node (also called 

winning node) having this distance minimum using 

below given expression. 

 ||||)( ww ijij uuDE  ;     j = 1,2,3,  …, q;   

                                            i = 1,2,3,  ….…, n;    

(min[ ofIndex   
j

l )( wuDE ij
)]                               (15)                                                                                           

3). Update the weights of the winning node as well 

as some of its neighboring nodes in (t+1)
th

 iteration 

using  

                                

)]()()[()()()1( ttuuttt www ijljijij s        

                                                                             (16) 

Where )(uslj represents the neighbourhood of l
th

 

winner node on output layer to j
th 

node
 
on output 

layer
 
estimated using   Gaussian function and )(t

is learning parameter. 

4).  Repeat 2 and 3 until no evident changes in the 

feature map.  

The SOM is generally used for clustering as it learns 

in unsupervised manner.  

H. Nearest Neighbors Classifier 

Nearest neighbor classifier is based on non-

parametric classification method. It is not only 

simple but also proves to be very successful in many 

pattern recognition applications. It has its own place 

in classification methods as it is theoretically sound 

and practically simple and efficient. Cover et al [15] 

showed that the probability of error, say Re , of k-

NN is bounded below by Bayes probability of errors 

Rb and bounded above by twice the Bayes 

probability of errors for any number of classes, i.e., 

R2R bebR  

Time complexity in k-NN is O(n×m). Here n is 

the size of training sample dataset and m is the size 

of features used. As far as the space requirement is 

concerned, the classifier requires complete training 

data set in memory, although this requirement can be 

relaxed by using secondary storage device and using 

main memory optimally by bringing only that data 

which is currently active. Recently, various rules 

such as editing rules, reduced rules, condensed rules 

and prototype based methods have been proposed by 

various authors in order to enhance the 

computational speed, reduce memory requirements 

and optimize classification accuracy.  Some 

references about such rules are available in [30].  

Though, it is not fast still successfully used in many 

pattern recognition problems. k-nearest neighbors 

classifier has been used in some handwritten 

recognition problems [17-19]. Some work on Indian 

languages, where k-NN is used, is reported in[20-

23]. k-nearest neighbors classifier is a simple and 

flexible method of classification. It predicts 

unlabeled samples based on their similarity with 

samples in training data set.   

Consider we have labeled training samples (ui,di) , 

i=1,2,3 . . . . . . . m, ui R
n
 and di  (1,2,3…..q), 

where ui represents training samples and  di  label 

represents the class of  samples  from which  a test 

sample  belongs to out of q classes. The goal is to 

guess the correct label of a new unlabelled example 

u. 

1) k-Nearest Neighbors Rule: k-NN assigns, u , the 

name of class that emerge as majority among k 

nearest samples. The rule is known as majority rule.  

In case the value of k is even or greater than two. In 

addition to this all the k samples belong to different 

categories creates uncertainty. In such cases, a 

random and nearest tiebreaker is taken to remove the 

conflict. 

In order to implement k-NN rule, one requires  

1) a data set of  labeled training samples.  

2) a distance metric,  to compute the distance 

between a training sample and a test sample.  

3) the value of k i.e. the number of nearest 

neighbors to be considered. 
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2) k-Factor: The choice of k impacts the 

performance of  k-NN a lot. The performance of k-

NN is satisfactory when k=1, but with overlapping 

classes the performance deters too. Similarly, if k is 

too large, the neighborhood may include samples 

from other classes leading to misclassification. 

There are various distance metrics used to find the 

distance between training samples and a test sample. 

Some popular metrics are Euclidean distance, city-

block, and Hamming distance. 

3) Euclidean Distance: The Euclidean distance 

||uiu||)ui,uDE(  between an unlabeled 

test sample u and a labeled training sample ui is 

given as 

                                       

n

)(j)ui(j)u()ui,uDE(

1j

2

         

(17)                                    

 

Where n is the size of feature vector of a sample 

pattern under consideration. k-nearest neighbors of 

an unlabeled test sample mean out of total training 

samples,  k samples which have minimum value of 

Euclidean distance from an unlabeled  sample are 

used for decision making. 

The k-NN classifier is simple to use and 

implement. It requires no training before use and 

thus can easily adapt new training data. But it is lazy 

algorithm as it learns in test phase only. It requires 

large storage space since each training sample of 

data set is compared with the test sample. It is highly 

vulnerable to curse of dimensionality. With high 

dimensional feature vector the Euclidean distance 

calculation becomes quite expensive. High 

dimensional data not only increases the 

computational cost but also, some times, degrades 

the classification efficiency due to the presence of 

some non-active feature vectors. 

I. Feed Forward Network with Back propagation 

Among the various ANN based classifiers; a Feed 

Forward Network with Back propagation  is mostly 

used classifier for handwritten recognition problems. 

Neural networks are not only used to solve pattern 

recognition problems. Jain et al [13] give the various 

other tasks that ANNs can perform and these tasks 

are categorization, function approximation, 

forecasting, optimization, associative memory and 

controlling I/O of various systems. The most 

commonly used feed forward network for pattern 

recognition problem is trained with error back-

propagation algorithm, which is based on error-

correction learning rules. 

1) Error Back-Propagation Algorithm: 

Back-propagation algorithm was developed by 

Werbos in 1974 and it was further rediscovered by 

Parker and LeCun in 1975 and these developments 

were reported in 1986[13]. When feed-forward 

network is trained with error Back-propagation 

algorithm, the network consists of two kinds of 

signals [2]:  

a) Forward signal (Input Signal), which is originated 

at input neuron of input layer and transmitted in 

forward direction through the network and appears 

at output neuron at output layer as an output. It is 

used to map given input data to desired output.  

b) Backward signal (Error signal), which is 

originated at output neuron of output layer and 

propagated in backward direction through the 

network and used to update network weights. 

Actually this network does not have backward 

feedback rather errors are back-propagated during 

network training and weights are adjusted 

dynamically. As already mentioned, an error back-

propagation algorithm is based on error-correction 

learning rule. The objective is to bring the actual 

output vk closer to desired output dk equivalent to 

minimizing squared-error cost function (20).  The 

delta rule (21) is used to update the weights of 

output layer neuron. But multilayer feed-forward 

network with back-propagation algorithm consists of 

number of hidden layers in addition to output layer. 

The delta rule (21) is extended to change the weights 

of hidden layer and so this rule is also called as 

generalized delta rule. Weight adjustment between 

any neurons j and k is proportional to the negative 

gradient of the error, generated at k
th

 neuron, with 

respect to weight, i.e.,   

jk
jk

w
w

E(t)
(t)                                     (18) 

2)  Error-Correction Learning Rules: As 

already mentioned, in case of supervised learning the 

network is trained with an exact output for every 

input pattern. This learning is achieved in various 

iterations. In a given iteration the output generated by 

a network is not equal to exact/desired output. If vk is 

the actual output generated and dk is the desired 

output at k
th

 neuron in output layer in t
th

 iteration, then 

output error is  

                                          

)()()( ttte vd kkk                                      (19) 

 

The error signal ek(t) is used to adjust all weights of 

k
th 

 neuron. The adjustment in weights are made to 

bring output vk(t) of the k
th

 neuron closer to the 

desired output equivalent to  minimizing squared-

error cost function expressed in error signal terms as

)(e
2

1
)( 2 ttE k                                                  (20) 

                                            

This adjustment in weights is done in step-wise 

manner in number of iterations and when this error 

is at minimum, the learning process is terminated. 

The learning rule used to minimize error in this way 

is called error-correction learning rule. 
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Considered an input vector 

},.....,........,,{ 321 uuuuuu ni  and weights due 

to this input vector to k
th

 neuron are  w1k, w2k, 

w3k,……, wik,…wnk , then small change in i
th

 

connection weight between i
th

 input node to k
th
 

neuron in   t
th

 iteration is given by 

 

 (t)u(t)(t)Δ ikik ew                                    (21)                               

                                           

 

where,   is learning rate parameter and have 

positive constant value. 

This is delta rule due to Widrow and Hoff (1960) 

and is so called Widrow–Hoff rule. It is stated as 

adjustments made in weights of a neuron which is 

proportional to the product of error signal and input 

signal to that neuron. 

3) Resilient Propagation: The Resilient 

propagation algorithm [16] has been designed to 

remove the shortcomings of gradient descent method 

where the change in weights wΔ jk
 is based on the 

learning rate η and the derivatives 
jkw

E of the error 

surface as expressed in (18). In resilient propagation, 

the weight update jkΔw  is done directly without 

taking into account the partial derivative. In this, 

each weight (either due to hidden layer or output 

layer) has its own individual update value jkΔ  

which only determines the size of the weight update.  

The update value is designed according to the below 

given learning rule based on error E(t)  

   (t)Δ jk =

else1)(tΔ

0
w

*
w

1)(t
if1)(tΔη

0
w

*
w

if1)(tΔη

jk

jkjk
jk

jkjk
jk

E(t)E

*

E(t)1)E(t
*

,

,

,

      

                                                                               (22)  

  Where η1η0  

 

Once weight-value is adapted, the weight-update 

follows a very simple rule which is given as: 

                (t)Δw jk
  =

else,0

0
w

if,(t)Δ

0
w

if,(t)Δ

jk
jk

jk
jk

E(t)

E(t)

              

                                                                               (23) 

                                                                                                                 

The value of weights in  (t+1)
th

  iteration is 

                                   

(t)wΔ(t)w1)(tw jkjkjk      

a) Initializing Update Values: The initial 

update value jkΔ = 0Δ =0.1 is a good choice.  In 

order to avoid overflow and underflow in update 

value minimum and maximum values have been 

fixed at minΔ = e1
16

 and maxΔ =50.0, respectively. 

The optimal choice for increase factor η
+

 and 

decrease factor η
-
 , are 1.2 and 0.5, respectively. 

b)  Learning Mode: Resilient propagation 

algorithm works in batch mode. The update values 

and weights are changed after the presentation of 

entire training examples that constitute an epoch. In 

pattern recognition problems an MLP (back-

propagation) is mostly trained with gradient descent 

method. Resilient propagation method has some 

advantages over gradient descent   methods as: 

1) It converges very fast on pattern recognition 

problems. 

2) Its performance is not very sensitive to the 

settings of the training parameters which is very 

much dependent on the learning parameters and 

momentum in case of gradient descent. 

 

The various issues concerned with training an MLP 

using back-propagation or resilient propagation are: 

a) The size of the network i.e. the number of layers 

and number of neurons in each layer. 

b) The optimal value of learning parameter η 

(particularly in case of back-propagation trained 

with gradient descent method). 

 

J. Support Vector Machine(SVM) 

SVMs are being extensively used for 

classification. The decision boundaries are defined 

purely on the basis of decision planes such as a 

hyper plane having a line like structure.  As in case 

of neural network, learning in this case is also on the 

basis of a number of examples.  

The foundation of SVM is due to Vapnik [26]. It 

has been successfully used for handwritten 
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recognition by Dong et al [27] and Oliveira et al 

[28]. A comprehensive tutorial on SVM for pattern 

recognition is given by Burges[24]. SVM is 

originally a two-class binary classifier used to deal 

with linear classes. But this behavior of SVM has 

been extended to multi-class classification problems 

too. In addition to this, its ability only to deal with 

linear classes has been extended to non-linear 

classes.  

Support vector machines are derived from a class 

of hyper planes  0c z.u ; Rz n  represents 

the normal to hyper plane and Rc  represents the 

offset; corresponding to the decision function

c)sign(z.ug(u) . An optimal hyper plane 

used for separating the two classes is one, which 

does not commence misclassification errors on data 

samples having small perturbations. The purpose is 

to find the optimal solution for all kinds of two class 

classification problems. The main cases of our 

interest are: 1) Linearly separable 2) Linearly non-

separable and 3) Non-linearly separable. 

Actually, the training examples appear in linear 

classifier, either for separable or non-separable cases, 

in form of dot product i.e. ui.uj. In case of non-linear 

support vector machine, the non-linear training data 

is mapped onto a higher dimensional feature space 

say, Fs, using a function  in which training data 

also appears in the form of dot product (ui). (uj) 

such as  

sFRnΦ:                                                       (24)                                                                                                                                        

and the data in new space is in linear form which can 

be easily classified using a linear algorithm. If a 

kernel function K , given in (25), performs the above 

said task then only we need K in training algorithm

)u).ΦuΦ()u,uK( jiji (                            (25)                                                                                                                                                 

 It classify a new pattern say, u, as 

 

c))uK(u,d

U

λsign(g(u) ii

S

1i

i              (26)                                                                                                                                   

Where   λi  and c are evaluated by maximizing  (27) 

and di is tag of ui  

          

)u,uK(ddλ

m m

j
λ

2

1
m

λL jijij

i

i

i

iD

1 11

          

s.t.          Cλ0 i                                          (27)                                                                                                                                                                              

Kernel is a non-linear function used for mapping 

a non-linear input data to a high dimensional data. 

Data in high dimensional feature space then can be 

classified by constructing a hyper plane using a 

linear function. In this way a kernel plays an 

important role in changing a linear support vector 

classifier to a non-linear support vector classifier and 

without this kernel function a support vector 

classifier can only be used to solve linear 

classification problems.  The most common kernel is 

linear kernel and it is dot product between the input 

data to classify and a support vector member set i.e. 

u.u)u,uK( ii                                           (28)                                                                                                                                  

This  kernel contributes a linear classifier. A radial 

basis function support vector kernel is expressed as

)
σ2

||uu||
exp()u,uK(

2

2

i

i               (29)                                                  

                           

where 
2
 is  Gaussian width  and must be chosen 

during training. 

Polynomial kernel is a p th
 order polynomial of the 

form given below 

)1u.u()u,uK(
p

ii                            (30)                                                                                                          

 

 Where p  is degree of polynomial and it must be 

chosen during training. Kernels (29) and (30) are 

non-linear and used to construct non-linear support 

vector classifier from linear support vector classifier. 

As discussed that the support vector classifier can be 

generalized to solve non-linear classification 

problems by substituting the dot product ui.uj with a 

suitable symmetric kernel function

)u).Φ.uΦ()u,uK( jiji ( .  

1)  Decomposition Methods: In real world 

applications, it requires a large training data set. The 

size of optimization problem is directly related to the 

size of training data set. The larger is   the size of 

data set, the larger and complex will be the 

optimization problem. The size of matrix 

)u,uK(ddM jijiij  in (27) depends on the size of 

data set of training examples. If we have very large 

training data set, then it becomes very difficult to fit 

the matrix M in memory for optimization. The 

solution to this problem is to decompose the 

Quadratic Programming (QP) in a series of smaller 

problems. The commonly used decomposition 

methods for solving quadratic problem are chunking 

algorithm, Osuna’s algorithm and sequential 

minimal optimization (SMO) [29]. 

 

2) Extension to Multi-Class: So far we have 

concentrated on the support vector classifier to deal 

with two classes. Since SVM basically is a binary 

classifier. Its behavior can be extended to deal with q 

class (q >2) pattern recognition problems such as 

text categorization, digit recognition and character 

recognition, etc.  

The various methods to deal with q class 

recognition problem using binary support vector 

machines   are: one-against-one, one-against-others 

and directed acyclic graph(DAG ) and all-

together[25]. 
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3) One-Against-One: In case of one-against-

one methods, there is one SVM for each pair of 

classes. If we have q classes, then there will be 

1)/2q(q  SVMs. Each SVM is trained 

independently for two classes, i.e., s
th

 and t
th

 . To 

find the class of unknown new test example, u , we 

predict the value of  gst(u),  using (26) , for all 

1)/2q(q   SVM. 

  )c(u)Φ.sign(g ststst z(u)                    (31)                           

                                               

where subscripts s and t mean a binary SVM is 

trained with the examples of s
th

 and t
th

  classes. 

Final decision about the class of  u will be made on 

the basis of the voting from all the classifiers. 

Initially, each class has zero votes. If the value of 

(u)gst  is positive then we increase the vote of class 

s by one otherwise we increase the vote of class t by 

one. The class of u is the class having maximum 

votes. A conflict arises in this case, when two or 

more patterns have equal votes. In such situations a 

class is selected having lower index.  

Hsu et al[25] studied and compared the 

performance of some multi-class SVM 

implementation approaches on 10 practical problems 

and concluded that one-against-one perform the 

others. Moreover, with this approach the SVM 

classifier is easy to train.  

 

III. CONCLUSION 

There are various factors which affect 

generalization and these factors are size of data set, 

the discrimination ability of the feature type used to 

represent patterns to train classifier, physical 

complexity of problem at hand, optimality observed 

in training a classifier, and unknown parameters 

present in classifier. The various neural network 

based classifiers used for handwritten character 

recognition are radial basis function, self 

organization map, probabilistic neural network and 

multilayer perceptron. The RBF is faster in training 

phase but slower in test phase as it consists of large 

number of functional units in hidden layer. The PNN 

is suitable for learning based applications than 

generalization. The SOM is generally used for 

clustering as it learns in unsupervised manner. The 

MLP is most commonly used classifier among the 

neural network based classifiers. It is fast in test 

phase. An MLP trained with resilient propagation 

algorithm converges faster on pattern recognition 

problems as compared to an MLP trained with 

gradient decent method. It has been designed to 

remove the limitations of the gradient descent 

method. Its performance is also not much sensitive 

to parameter selection. 

Among the other classifiers discussed here, the 

SVM classifier is robust in dealing with handwritten 

variations as its classification performance is better 

as compared to other classifiers. The k-NN based 

classifier is also mostly used in pattern recognition 

problems. This classifier is lazy and also called as 

instance based. This requires large storage space as 

whole data must be in memory in recognition phase. 

The performance of Parzen classifier depends upon 

the kernel function that depends upon the window 

width and the selection of this window width is very 

critical. The processing time and memory 

requirements of QD classifier are large. In addition 

to this the poor estimation in parameters degrades 

the performance of QD classifier. 
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