
International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 2 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 80

A Brief Review of Classifiers used in OCR

Applications
Satish Kumar

Panjab University, SSG Regional Centre,

Hoshiarpur, Punjab(India)

Abstract — The performance of a recognition

system depends upon the classifiers used for

classification purpose. Powerful is the

discrimination ability of a classifier, better is its

recognition performance. The generalization ability

of a classifier is measured on the basis of its

performance in classifying the test patterns. There

are various factors which affect generalization.

Moreover, the feature extraction method(s) used for

training a classifier also affects the performance of a

classifier. In this paper, a brief theoretical review of

various classifiers is made. The various characters

of each are covered. The classifiers covered are

Bayes, Parzen, probabilistic, polynomial,

discriminant, radial basis networks, multi layer

perceptron(MLP), k-NN, SVM and SOM.

Keywords — Classifiers, Recognition, PNN, SOM,

k-NN, SVM, MLP.

I. INTRODUCTION

A recognition system must be trained in training

or learning stage using a set of training samples. In

the recognition process, the features or properties

extracted from a character image are compared with

the features of the character images (either stored in

computer memory or used to train the system) whose

classes are known and a class label is assign to it. A

system that performs such type of classification task

is called a classifier. Actually, a classifier works in

two stages: 1) Learning stage and 2) Decision stage.

In learning stage, the features extracted from the

handwritten samples are used to train the classifier.

The designing and training a classification system

using a set of training samples, whose classes are

known, is termed as supervised learning.

The type of classifier used for classification

purpose affects the performance of a recognition

system a lot. Powerful is the discrimination ability of

a classifier; better is its recognition performance.

The final goal of a recognition system is to classify a

test sample which is unknown and not used to train

the classifier and assign a label to it. The

performance of a classifier on a test set (test

samples) may not be same as it is for training sample

set. One must have to optimize a classifier on given

training and test sets, no matter which classifier is

used. The generalization ability of a classifier is

measured on the basis of its performance in

classifying the test patterns. The various factors

which affect generalization are as [1-3]:a) Size of

dataset, b) The discrimination ability of the features

used to represent patterns, c) Physical complexity of

the problem, d) The optimality observed in training a

classifier, e) Unknown parameters.

There is a lot of impact of the size data set used

for training a classifier on the generalization. In

addition to this, the available samples should be well

representatives of the various classes under

consideration. In real-world applications, it is better

if the samples are taken from real situations rather

than artificial ones. Curse of dimensionality is

concerned with the size of training data set and the

size of feature vector used to represent a sample. The

size of the feature vector should be reasonably small

with limited size of training data. The size of feature

vector not only effects the generalization but also

contributes to the classification time a lot. Moreover,

the feature extraction method(s) used for training a

classifier also affects the performance of a classifier

a lot. The classifier should be reasonably trained on

training samples. In learning or in training phase as a

classifier is trained, the error on training dataset as

well as on test dataset decreases. After certain

epochs or cycles the error on training set decreases

or remains constant but error on validation or test set

further starts increasing. In such situation the

classifier is said to be over-trained and it affects the

generalization and degrades the performance of a

classifier.

One most important factor related to the

architecture of a classifier that affects generalization

is the number of unknown parameters required to be

optimized in a classifier. If these parameters are very

large, the classifier will be too complex. Some of

these parameters may not be sufficiently updated or

molded due to large structure of a classifier and

limited size of training data set. Consequently, it

results in poor generalization. On the other hand,

fewer numbers of unknown parameters may give

large errors even on training data due to improper

mapping of input data to desired output data. It also

contributes to poor generalization. In case of neural

network the unknown parameters are weights and

biases. The complexity of the problem is natural

factor and it depends upon the complexity of the

patterns under consideration.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 2 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 81

II. BRIEF REVIEW OF CLASSIFIERS

The various authors have suggested different

classifiers to solve different character recognition

problems and some such classifiers are: Bayes

Classifier, Parzen window classifier, linear

discrimination function, quadratic discrimination

function, k-NN (k-nearest neighbors), polynomial

classifier(PC),), learning vector quantization (LVQ),

radial basis function(RBF), self organization map

(SOM), probabilistic neural network(PNN

multilayer perceptron(MLP), hidden Markov model

(HMM). and support vector machine (SVM). A brief

review of various classifiers such as Bayes classifier,

linear discrimination function, quadratic

discrimination function, Parzen window classifier,

radial basis function (RBF), self organization map

(SOM), probabilistic neural network, polynomial

classifier (PC) is made in this Section. In addition to

this, three more classifiers, i.e., MLP, SVM and k-

NN are also discussed in this Section.

.

A. Bayes Classifiers

In Bayes classifier, an unknown pattern u is

assigned a class ωi by minimizing conditional

average risk i.e.

 If (u)(u) ji for

 . ; 1,2,3,..., ijqj (1)

Where (u)i and)(uj are the conditional

average risk or loss incurred in assigning u to a class

ωi and ωj,, respectively. The number q represents

total number of classes under consideration.

 Expression (1) can be equivalently written as

 if)().()()(jjii ωωωω Pu/pPu/p

for

 ijqj ; ..., 1,2,3,4,5, , (2)

Where P(ωi) and P(ωj) are the probabilities of

occurrence of class ωi and ωj, respectively and

)(iωu/p and)(jωu/p are probability density

functions of patterns from class ωi and ωj ,

respectively.

In Bayes classifier, a sample u is assigned to a

class having decision function)(uΨj [4].

)().()(jjj ωω Pu/puΨ
 for

; ...,1,2,3,4,5, qj (3)

In Bayes classifiers, the probability density

functions used to express patterns in each class and

the probability of each class must be available.

B. Discriminant Classifiers (Linear & Quadratic)

The probability density)(jωu/p of the Bayes

classifier can be estimated using the following

multivariate Gaussian function

e
uuup j

n
jj

j

j

T
ω

1
)()2

1

2/12/
(

||)2(

1
)/(

 (4)

Here j is a covariance matrix ,
j

is mean

vector and ; 1,2,3,..., qj n is the dimension of

pattern vector u.

From (3) and (4), we have quadratic discriminant

(QD) classifier whose decision function is given by

(5).

1)]()[(
2

1
||ln

2

1
)(ln)(j j

T

jj uuPu jjω

 (5)

The decision boundaries of (5) are quadratic

equations in u. If covariance matrix is the same for

all the classes i.e.
j

 then (5) can be written as:

11

2

1
)(ln)(

j

T

jj

T
jj uPuΨ

 (6)

Since decision boundaries of (6) are linear

equations in u, it is called as linear classifier.

Furthermore, if covariance matrix is identity matrix

and the probability of each class is same, i.e.,
q

1 ;

then (6) can be written as:

j

T

jj
j uuΨ T

2

1
)(; for

 ; 1,2,3,..., qj (7)

Quadratic discriminant classifier has following

problems [5].

1) Poor estimation in parameter degrades

performance.

2) The processing time and memory requirements

are large.

3) Performance degrades if distribution is away

from the normal distribution.

C. Parzen Classifiers

It is a non-parametric classifier. In Bayesian

classifier the probability distribution)/(iωup is

usually unknown. One way to estimate the

probability distribution is to use the Parzen’s

probability distribution function. In Parzen classifier,

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 2 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 82

the probability densities are estimated locally using

Gaussian kernel function which is as follow:

)/(iωup =)(
1

1
uu

V

il

i

l

i

iV
 (8)

Where kernel is given as:

||..π)2(

).(.)(
.2

1

2/12/

1

2

)(

ii
nn

iliil

i
il

i

D

e
D

uuuu

uu

T

Where n is dimension of feature space, u il is l
th

pattern from class ωi, iV is number of training

patterns from class ωi , Di is window width of class

ωi and i is sample covariance matrix of ωi.

The performance of Parzen classifier depends upon

the kernel function that depends upon the window

width Di . The selection of Di is critical in design

of Parzen classifiers [6-7].

D. Radial Basis Function Network

Radial basis function (RBF) network is a special

class of multilayer neural network with a single

hidden layer having non-linear functional nodes and

an output layer with linear functional nodes. The

output of a hidden layer unit is determined by the

distance (generally the Euclidean distance) between

the input vector u and the prototype vector μi . The

activation function is Gaussian kernel. The output of

the hidden layer node in terms of Gaussian function

is given as:

)(
σ2

exp
2

2
||||

)(
i

i
i

u
u (9)

Where u is input sample having n-dimensional

feature vector and μi is mean vector and σ i is

standard deviation. The vector μi is also called as

centre of the RBF unit. The output at the j
th

functional node of the output layer is given as:

)()(
1

uwu
iij

l

i
jv (10)

Where wij is weight between the i
th

 node of the

hidden layer and j
th

 node of the output layer and l is

the number of hidden layer nodes. Its some pros and

cons are as [8,9]:

 1). In training phase it converges fast as compared

to back-propagation algorithm.

 2). It is unaffected against garbage patterns due to a

set of local radial basis functions.

 3). RBF is slower in test phase as it consists of large

number of functional units in hidden layer.

E. Probabilistic Neural Network (PNN)

The basis of PNN is the Bayesian classification

theory. It uses Parzen windows to approximate the

probability distribution of the input pattern which is

given by (8).

The PNN design is four layered having 02

hidden, 01 input and 01 output layer. The input

pattern is passed through input layer and it is fully

linked with hidden layer called as pattern layer.

There is one summation node to compute (8) for

each class in second hidden layer. Final layer is

decisive. PNN gives decision as per Bayes rule

expressed in (3)

Some points against and in favor of PNN are as

follows [10-11]:

1) Its training time is even small in comparison to

other neural network classifiers.

2) It is slow during test phase since it required

combining various training samples to get

Parzen estimate.

3) Difficult to implement in applications that require

large size of training data samples. So it is suited

in applications that need learning rather

generalization.

F. Polynomial Classifier

Polynomial Classifier consists of 3-layered

structure having 01 hidden layer; 01 input and

01output layer. The input pattern is passed through

input layer as in case of PNN. The elements of the

hidden layer are corresponding to the enhanced

features obtained by polynomial combination of

original features (corresponding to the first layer).

The enhanced features are represented by a set of

basis functions, Q(u). For example, for two

dimensional feature vector,],[21

T
uuu and with

polynomial of degree two, the vector is given by

],,,,,[)(2
221

2
1211

T
uuuuuuuQ

(11)

The nodes of the output layer are corresponding

to the decision functions, where j
th

 node represents

the decision function of class j. The output of the

final layer is linear combination of basis functions.

The output of the j
th

 node is given by

)()(
1

uQwu
iijj

l

i
v (12)

Where, l is the size of hidden layer. The above

equation can be written as

)()(uQwuv T
 (13)

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 2 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 83

The coefficients of w are computed without

iterative procedure (learning) from cross correlation

matrix })({ duQΛ T
 and moment matrix of

enhanced features })()({
T

uQuQΛ acquired from

training set using equation no. (14)

})({w}.)()({ duQΛuQuQΛ TT
 (14)

Here d represents the desire response of the input

pattern u and Λ (.) represents the

expectation operator. The size of the polynomial

grows if higher degree polynomial is considered;

this enhances the size of feature vector. However,

some measures have been suggested in [8] to shrink

feature size.

G. Self Organizing Map

In Kohonen self organizing map(SOM), all the

input nodes of input layer are connected to all the

output nodes of the output layer. The nodes of output

layer are generally arranged in two dimensional

arrays. The connection weights are initialized using

a random number generator. The Euclidean distance

on each output node is computed. The output unit

having minimum distance is selected and this node is

called as winner node. All the connection weights to

this node and some of its neighboring nodes(selected

using some criteria) are updated. The neighborhood

identifying function is generally a Gaussian function.

SOM learning algorithm in brief is summarized as

[2,12-13]:

1). the connection weights between all input and

output nodes are initialized to a small random value.

The neighbourhood function and learning

parameters are also initialized.

2). Input a sample u. Compute Euclidean distance

)(uDE j between the input node and the weight

on each output node j and find a node (also called

winning node) having this distance minimum using

below given expression.

 ||||)(ww ijij uuDE ; j = 1,2,3, …, q;

 i = 1,2,3, ….…, n;

(min[ofIndex
j

l)(wuDE ij
)] (15)

3). Update the weights of the winning node as well

as some of its neighboring nodes in (t+1)
th

 iteration

using

)]()()[()()()1(ttuuttt www ijljijij s

 (16)

Where)(uslj represents the neighbourhood of l
th

winner node on output layer to j
th

node

on output

layer

estimated using Gaussian function and)(t

is learning parameter.

4). Repeat 2 and 3 until no evident changes in the

feature map.

The SOM is generally used for clustering as it learns

in unsupervised manner.

H. Nearest Neighbors Classifier

Nearest neighbor classifier is based on non-

parametric classification method. It is not only

simple but also proves to be very successful in many

pattern recognition applications. It has its own place

in classification methods as it is theoretically sound

and practically simple and efficient. Cover et al [15]

showed that the probability of error, say Re , of k-

NN is bounded below by Bayes probability of errors

Rb and bounded above by twice the Bayes

probability of errors for any number of classes, i.e.,

R2R bebR

Time complexity in k-NN is O(n×m). Here n is

the size of training sample dataset and m is the size

of features used. As far as the space requirement is

concerned, the classifier requires complete training

data set in memory, although this requirement can be

relaxed by using secondary storage device and using

main memory optimally by bringing only that data

which is currently active. Recently, various rules

such as editing rules, reduced rules, condensed rules

and prototype based methods have been proposed by

various authors in order to enhance the

computational speed, reduce memory requirements

and optimize classification accuracy. Some

references about such rules are available in [30].

Though, it is not fast still successfully used in many

pattern recognition problems. k-nearest neighbors

classifier has been used in some handwritten

recognition problems [17-19]. Some work on Indian

languages, where k-NN is used, is reported in[20-

23]. k-nearest neighbors classifier is a simple and

flexible method of classification. It predicts

unlabeled samples based on their similarity with

samples in training data set.

Consider we have labeled training samples (ui,di) ,

i=1,2,3 m, ui R
n
 and di (1,2,3…..q),

where ui represents training samples and di label

represents the class of samples from which a test

sample belongs to out of q classes. The goal is to

guess the correct label of a new unlabelled example

u.

1) k-Nearest Neighbors Rule: k-NN assigns, u , the

name of class that emerge as majority among k

nearest samples. The rule is known as majority rule.

In case the value of k is even or greater than two. In

addition to this all the k samples belong to different

categories creates uncertainty. In such cases, a

random and nearest tiebreaker is taken to remove the

conflict.

In order to implement k-NN rule, one requires

1) a data set of labeled training samples.

2) a distance metric, to compute the distance

between a training sample and a test sample.

3) the value of k i.e. the number of nearest

neighbors to be considered.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 2 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 84

2) k-Factor: The choice of k impacts the

performance of k-NN a lot. The performance of k-

NN is satisfactory when k=1, but with overlapping

classes the performance deters too. Similarly, if k is

too large, the neighborhood may include samples

from other classes leading to misclassification.

There are various distance metrics used to find the

distance between training samples and a test sample.

Some popular metrics are Euclidean distance, city-

block, and Hamming distance.

3) Euclidean Distance: The Euclidean distance

||uiu||)ui,uDE(between an unlabeled

test sample u and a labeled training sample ui is

given as

n

)(j)ui(j)u()ui,uDE(

1j

2

(17)

Where n is the size of feature vector of a sample

pattern under consideration. k-nearest neighbors of

an unlabeled test sample mean out of total training

samples, k samples which have minimum value of

Euclidean distance from an unlabeled sample are

used for decision making.

The k-NN classifier is simple to use and

implement. It requires no training before use and

thus can easily adapt new training data. But it is lazy

algorithm as it learns in test phase only. It requires

large storage space since each training sample of

data set is compared with the test sample. It is highly

vulnerable to curse of dimensionality. With high

dimensional feature vector the Euclidean distance

calculation becomes quite expensive. High

dimensional data not only increases the

computational cost but also, some times, degrades

the classification efficiency due to the presence of

some non-active feature vectors.

I. Feed Forward Network with Back propagation

Among the various ANN based classifiers; a Feed

Forward Network with Back propagation is mostly

used classifier for handwritten recognition problems.

Neural networks are not only used to solve pattern

recognition problems. Jain et al [13] give the various

other tasks that ANNs can perform and these tasks

are categorization, function approximation,

forecasting, optimization, associative memory and

controlling I/O of various systems. The most

commonly used feed forward network for pattern

recognition problem is trained with error back-

propagation algorithm, which is based on error-

correction learning rules.

1) Error Back-Propagation Algorithm:

Back-propagation algorithm was developed by

Werbos in 1974 and it was further rediscovered by

Parker and LeCun in 1975 and these developments

were reported in 1986[13]. When feed-forward

network is trained with error Back-propagation

algorithm, the network consists of two kinds of

signals [2]:

a) Forward signal (Input Signal), which is originated

at input neuron of input layer and transmitted in

forward direction through the network and appears

at output neuron at output layer as an output. It is

used to map given input data to desired output.

b) Backward signal (Error signal), which is

originated at output neuron of output layer and

propagated in backward direction through the

network and used to update network weights.

Actually this network does not have backward

feedback rather errors are back-propagated during

network training and weights are adjusted

dynamically. As already mentioned, an error back-

propagation algorithm is based on error-correction

learning rule. The objective is to bring the actual

output vk closer to desired output dk equivalent to

minimizing squared-error cost function (20). The

delta rule (21) is used to update the weights of

output layer neuron. But multilayer feed-forward

network with back-propagation algorithm consists of

number of hidden layers in addition to output layer.

The delta rule (21) is extended to change the weights

of hidden layer and so this rule is also called as

generalized delta rule. Weight adjustment between

any neurons j and k is proportional to the negative

gradient of the error, generated at k
th

 neuron, with

respect to weight, i.e.,

jk
jk

w
w

E(t)
(t) (18)

2) Error-Correction Learning Rules: As

already mentioned, in case of supervised learning the

network is trained with an exact output for every

input pattern. This learning is achieved in various

iterations. In a given iteration the output generated by

a network is not equal to exact/desired output. If vk is

the actual output generated and dk is the desired

output at k
th

 neuron in output layer in t
th

 iteration, then

output error is

)()()(ttte vd kkk (19)

The error signal ek(t) is used to adjust all weights of

k
th

 neuron. The adjustment in weights are made to

bring output vk(t) of the k
th

 neuron closer to the

desired output equivalent to minimizing squared-

error cost function expressed in error signal terms as

)(e
2

1
)(2 ttE k (20)

This adjustment in weights is done in step-wise

manner in number of iterations and when this error

is at minimum, the learning process is terminated.

The learning rule used to minimize error in this way

is called error-correction learning rule.

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 2 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 85

Considered an input vector

},.....,........,,{ 321 uuuuuu ni and weights due

to this input vector to k
th

 neuron are w1k, w2k,

w3k,……, wik,…wnk , then small change in i
th

connection weight between i
th

 input node to k
th

neuron in t
th

 iteration is given by

 (t)u(t)(t)Δ ikik ew (21)

where, is learning rate parameter and have

positive constant value.

This is delta rule due to Widrow and Hoff (1960)

and is so called Widrow–Hoff rule. It is stated as

adjustments made in weights of a neuron which is

proportional to the product of error signal and input

signal to that neuron.

3) Resilient Propagation: The Resilient

propagation algorithm [16] has been designed to

remove the shortcomings of gradient descent method

where the change in weights wΔ jk
 is based on the

learning rate η and the derivatives
jkw

E of the error

surface as expressed in (18). In resilient propagation,

the weight update jkΔw is done directly without

taking into account the partial derivative. In this,

each weight (either due to hidden layer or output

layer) has its own individual update value jkΔ

which only determines the size of the weight update.

The update value is designed according to the below

given learning rule based on error E(t)

 (t)Δ jk =

else1)(tΔ

0
w

*
w

1)(t
if1)(tΔη

0
w

*
w

if1)(tΔη

jk

jkjk
jk

jkjk
jk

E(t)E

*

E(t)1)E(t
*

,

,

,

 (22)

 Where η1η0

Once weight-value is adapted, the weight-update

follows a very simple rule which is given as:

 (t)Δw jk
 =

else,0

0
w

if,(t)Δ

0
w

if,(t)Δ

jk
jk

jk
jk

E(t)

E(t)

 (23)

The value of weights in (t+1)
th

 iteration is

(t)wΔ(t)w1)(tw jkjkjk

a) Initializing Update Values: The initial

update value jkΔ = 0Δ =0.1 is a good choice. In

order to avoid overflow and underflow in update

value minimum and maximum values have been

fixed at minΔ = e1
16

 and maxΔ =50.0, respectively.

The optimal choice for increase factor η
+

 and

decrease factor η
-
 , are 1.2 and 0.5, respectively.

b) Learning Mode: Resilient propagation

algorithm works in batch mode. The update values

and weights are changed after the presentation of

entire training examples that constitute an epoch. In

pattern recognition problems an MLP (back-

propagation) is mostly trained with gradient descent

method. Resilient propagation method has some

advantages over gradient descent methods as:

1) It converges very fast on pattern recognition

problems.

2) Its performance is not very sensitive to the

settings of the training parameters which is very

much dependent on the learning parameters and

momentum in case of gradient descent.

The various issues concerned with training an MLP

using back-propagation or resilient propagation are:

a) The size of the network i.e. the number of layers

and number of neurons in each layer.

b) The optimal value of learning parameter η

(particularly in case of back-propagation trained

with gradient descent method).

J. Support Vector Machine(SVM)

SVMs are being extensively used for

classification. The decision boundaries are defined

purely on the basis of decision planes such as a

hyper plane having a line like structure. As in case

of neural network, learning in this case is also on the

basis of a number of examples.

The foundation of SVM is due to Vapnik [26]. It

has been successfully used for handwritten

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 2 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 86

recognition by Dong et al [27] and Oliveira et al

[28]. A comprehensive tutorial on SVM for pattern

recognition is given by Burges[24]. SVM is

originally a two-class binary classifier used to deal

with linear classes. But this behavior of SVM has

been extended to multi-class classification problems

too. In addition to this, its ability only to deal with

linear classes has been extended to non-linear

classes.

Support vector machines are derived from a class

of hyper planes 0c z.u ; Rz n represents

the normal to hyper plane and Rc represents the

offset; corresponding to the decision function

c)sign(z.ug(u) . An optimal hyper plane

used for separating the two classes is one, which

does not commence misclassification errors on data

samples having small perturbations. The purpose is

to find the optimal solution for all kinds of two class

classification problems. The main cases of our

interest are: 1) Linearly separable 2) Linearly non-

separable and 3) Non-linearly separable.

Actually, the training examples appear in linear

classifier, either for separable or non-separable cases,

in form of dot product i.e. ui.uj. In case of non-linear

support vector machine, the non-linear training data

is mapped onto a higher dimensional feature space

say, Fs, using a function in which training data

also appears in the form of dot product (ui). (uj)

such as

sFRnΦ: (24)

and the data in new space is in linear form which can

be easily classified using a linear algorithm. If a

kernel function K , given in (25), performs the above

said task then only we need K in training algorithm

)u).ΦuΦ()u,uK(jiji ((25)

 It classify a new pattern say, u, as

c))uK(u,d

U

λsign(g(u) ii

S

1i

i (26)

Where λi and c are evaluated by maximizing (27)

and di is tag of ui

)u,uK(ddλ

m m

j
λ

2

1
m

λL jijij

i

i

i

iD

1 11

s.t. Cλ0 i (27)

Kernel is a non-linear function used for mapping

a non-linear input data to a high dimensional data.

Data in high dimensional feature space then can be

classified by constructing a hyper plane using a

linear function. In this way a kernel plays an

important role in changing a linear support vector

classifier to a non-linear support vector classifier and

without this kernel function a support vector

classifier can only be used to solve linear

classification problems. The most common kernel is

linear kernel and it is dot product between the input

data to classify and a support vector member set i.e.

u.u)u,uK(ii (28)

This kernel contributes a linear classifier. A radial

basis function support vector kernel is expressed as

)
σ2

||uu||
exp()u,uK(

2

2

i

i (29)

where
2
 is Gaussian width and must be chosen

during training.

Polynomial kernel is a p th
 order polynomial of the

form given below

)1u.u()u,uK(
p

ii (30)

 Where p is degree of polynomial and it must be

chosen during training. Kernels (29) and (30) are

non-linear and used to construct non-linear support

vector classifier from linear support vector classifier.

As discussed that the support vector classifier can be

generalized to solve non-linear classification

problems by substituting the dot product ui.uj with a

suitable symmetric kernel function

)u).Φ.uΦ()u,uK(jiji (.

1) Decomposition Methods: In real world

applications, it requires a large training data set. The

size of optimization problem is directly related to the

size of training data set. The larger is the size of

data set, the larger and complex will be the

optimization problem. The size of matrix

)u,uK(ddM jijiij in (27) depends on the size of

data set of training examples. If we have very large

training data set, then it becomes very difficult to fit

the matrix M in memory for optimization. The

solution to this problem is to decompose the

Quadratic Programming (QP) in a series of smaller

problems. The commonly used decomposition

methods for solving quadratic problem are chunking

algorithm, Osuna’s algorithm and sequential

minimal optimization (SMO) [29].

2) Extension to Multi-Class: So far we have

concentrated on the support vector classifier to deal

with two classes. Since SVM basically is a binary

classifier. Its behavior can be extended to deal with q

class (q >2) pattern recognition problems such as

text categorization, digit recognition and character

recognition, etc.

The various methods to deal with q class

recognition problem using binary support vector

machines are: one-against-one, one-against-others

and directed acyclic graph(DAG) and all-

together[25].

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 2 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 87

3) One-Against-One: In case of one-against-

one methods, there is one SVM for each pair of

classes. If we have q classes, then there will be

1)/2q(q SVMs. Each SVM is trained

independently for two classes, i.e., s
th

 and t
th

 . To

find the class of unknown new test example, u , we

predict the value of gst(u), using (26) , for all

1)/2q(q SVM.

)c(u)Φ.sign(g ststst z(u) (31)

where subscripts s and t mean a binary SVM is

trained with the examples of s
th

 and t
th

 classes.

Final decision about the class of u will be made on

the basis of the voting from all the classifiers.

Initially, each class has zero votes. If the value of

(u)gst is positive then we increase the vote of class

s by one otherwise we increase the vote of class t by

one. The class of u is the class having maximum

votes. A conflict arises in this case, when two or

more patterns have equal votes. In such situations a

class is selected having lower index.

Hsu et al[25] studied and compared the

performance of some multi-class SVM

implementation approaches on 10 practical problems

and concluded that one-against-one perform the

others. Moreover, with this approach the SVM

classifier is easy to train.

III. CONCLUSION

There are various factors which affect

generalization and these factors are size of data set,

the discrimination ability of the feature type used to

represent patterns to train classifier, physical

complexity of problem at hand, optimality observed

in training a classifier, and unknown parameters

present in classifier. The various neural network

based classifiers used for handwritten character

recognition are radial basis function, self

organization map, probabilistic neural network and

multilayer perceptron. The RBF is faster in training

phase but slower in test phase as it consists of large

number of functional units in hidden layer. The PNN

is suitable for learning based applications than

generalization. The SOM is generally used for

clustering as it learns in unsupervised manner. The

MLP is most commonly used classifier among the

neural network based classifiers. It is fast in test

phase. An MLP trained with resilient propagation

algorithm converges faster on pattern recognition

problems as compared to an MLP trained with

gradient decent method. It has been designed to

remove the limitations of the gradient descent

method. Its performance is also not much sensitive

to parameter selection.

Among the other classifiers discussed here, the

SVM classifier is robust in dealing with handwritten

variations as its classification performance is better

as compared to other classifiers. The k-NN based

classifier is also mostly used in pattern recognition

problems. This classifier is lazy and also called as

instance based. This requires large storage space as

whole data must be in memory in recognition phase.

The performance of Parzen classifier depends upon

the kernel function that depends upon the window

width and the selection of this window width is very

critical. The processing time and memory

requirements of QD classifier are large. In addition

to this the poor estimation in parameters degrades

the performance of QD classifier.

REFERENCES

[1] O. D. Trier, A. K. Jain and T. Taxt, ―Feature Extraction

Method for Character Recognition – a Survey‖, Pattern
Recognition, Vol. 29, No. 4, pp. 641-662(1996).

[2] S. Haykin, ―Neural Networks A Comprehensive

Foundation‖, Second Edition, and Pearson Education, Asia.
[3] A. K. Jain and R. P. W. Duin and J. Mao, ―Statistical

Pattern Recognition: A Review‖, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 22, No. 1,
pp. 4-37(2000).

[4] R. C. Gonzalez and R. E. Woods, ―Digital Image

Processing‖, 2nd Ed., Pearson Education.
[5] T. Kawatani, ―Handprinted Numeral Recognition with the

Learning Quadratic Discriminant Function‖, Proceedings
of the International Conference on Document Analysis and

Recognition, pp. 14-17(1993).

[6] S. J. Raudys and A. K. Jain, ―Small Sample Size Effects in
Statistical Pattern Recognition: Recommendations for

Practitioners‖, IEEE Transactions on Pattern Analysis and

Machine Intelligence‖, Vol.13, No. 3, pp. 252-264(1991).
[7] Y. Hamamoto, S. Suchimura and S. Tomita, ― On the

Behavior of Artificial Neural Network Classifiers in High-

Dimensional Space‖, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 18, No. 5, pp.

571-574(1996).

[8] U. Kressel and J. Schürmann, ―Pattern Classification
Techniques Based on Function Approximation‖, Handbook

of Character Recognition and Document Analysis, World

Scientific , pp. 49-78(1997).
[9] A. K. Jain, J. Mao and K. Mohiuddin, ―Artificial Neural

Networks: A Tutorial‖, IEEE Computer Special Issue on

Neural Computing, pp. 31-43(1996).
[10] F. Ancona, A M. Colla, S. Rovetta and R. Zunino,

―Implementing Probabilistic Neural Networks, Neural

Computing & Applications‖, Vol. 5, pp. 152-159(1997).
[11] N. K. Bose and P. Liang, ―Neural Network Fundamentals

with Graphs, Algorithms and Applications‖, Tata

McGraw-Hill, New Delhi.
[12] B. Yagnanarayan, ―Artificial Neural Networks‖, Prentice

Hall India, New Delhi, (2001).

[13] A. K. Jain, J. Mao and K. Mohiuddin, ―Artificial Neural
Networks: A Tutorial‖, IEEE Computer Special Issue on

Neural Computing, pp. 31-43(1996).

[14] U. Kressel and J. Schürmann, ―Pattern Classification
Techniques Based on Function Approximation‖, Handbook

of Character Recognition and Document Analysis, World

Scientific , pp. 49-78(1997).
[15] T. M. Cover and P.E. Hart, ―Nearest Neighbor Pattern

Classification‖, IEEE Transactions on Information Theory,

Vol. 13 , pp. 212-217(1967).
[16] M. Riedmiller and H. Braun, ―A Direct Adaptive Method

for Faster Back-propagation Learning: The RPROP

Algorithm,‖ Proceedings of the IEEE International
Conference on Neural Networks, Vol. 1, pp. 586-591

(1993).\[17] S. J. Smith, M. O. Bourgoin, K. Sims and

H.L. Voorhees, ―Handwritten Character Classification
using Nearest Neighbor in Large Database‖, IEEE

Transactions on Pattern Analysis and Machine Intelligence,

Vol.16, No. 9, 915-919(1994).

http://www.ijcttjournal.org/

International Journal of Computer Trends and Technology (IJCTT) – Volume 34 Number 2 - April 2016

ISSN: 2231-2803 http://www.ijcttjournal.org Page 88

[18] Zs. M. Kovics and R. Guerrieri, ―Massively-Parallel

Handwritten Character Recognition Based on the Distance

Transform‖, Pattern Recognition, Vol. 28, No. 3, pp. 293-

301(1995).

[19] S. O. Belkasim, M. Shridhar and M. Ahmadi, ―Pattern
Recognition with Moment Invariants: A Comparative

Study and New Results‖, Pattern Recognition, Vol. 24, No.

12, pp. 1117-1138(1997).
[20] G. S. Lehal and C. Singh, ―Feature Extraction and

Classification for OCR of Gurmukhi Script‖, Vivek, Vol.

12, pp. 2–12(1999).
[21] S. Antani and L. Agnihotri, ―Gujarati Character

Recognition‖, Proceedings of the Fifth International

Conference on Document Analysis and Recognition,
Bangalore, India, pp. 418–421(1999).

[22] S. D. Connel, R.M.K. Sinha and A. K. Jain, ―Recognition

of Unconstrained On- Line Devanagari Characters‖,
Proceedings of the International Conference on Pattern

Recognition, Barcelona, Spain, Vol. 2, pp. 368-371(2000).

[23] C. V. Jawahar, M.N.S.S. K. Pavan Kumar and S. S. Ravi
Kiran, ―A Bilingual OCR for Hindi-Telugu Documents

And Its Applications‖, International conference on

Document Analysis and Recognition, Vol. 1, pp. 408-

412(2003).

[24] C. J. C. Burges, ―A Tutorial on Support Vector Machines

for Pattern Recognition‖, Data Mining and Knowledge
Discovery, Vol. 2, No. 2, pp. 121–167 (1998).

[25] C.-W. Hsu and C.-J. Lin, ―A Comparison of Methods for
Multi-class Support Vector Machines‖, IEEE

Transactions on Neural Networks, Vol. 13, No. 2, pp.

415–425(2002).
[26] V. Vapnik, ―The Nature of Statistical Learning Theory‖

Springer-Verlag, New Tork (1995).

[27] J.-X. Dong, A. Krzyzak and C. Y. Suen, ―An Improved
Handwritten Chinese Character Recognition System using

Support Vector Machine‖, Pattern Recogniotion Letters,

Vol. 26, No. 12, pp. 1849-1856(2005)
[28] L. S. Oliveira and R. Sabourin, ―Support Vector Machines

for Handwritten Numerical String Recognition‖ , Ninth

International Workshop on Frontiers in Handwriting
Recognition, Kokubunji, Tokyo, Japan, pp. 39-44(2004).

[29] T. Joachims, ―Making Large-Scale SVM Learning

Practical‖, In Advances in Kernel Methods- Support

Vector Learning, B. Schölkopf, C.J.C. Burges, and A. J.

Smola, Eds. Combridge, MA: MIT Press(1998).

[30] C.- L. Liu and M. Nakagawa, ―Evaluation of Prototype
Learning Algorithms for Nearest- Neighbor Classifier in

Application to Handwritten Character Recognition‖,

Pattern Recognition, Vol. 34, pp. 601-615 (2001).

http://www.ijcttjournal.org/

